

An Introduction to RP2040 PIO with
CircuitPython

Created by Jeff Epler

https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython

Last updated on 2022-12-01 03:08:23 PM EST

©Adafruit Industries Page 1 of 44

3

6

8

10

11

14

16

19

25

28

35

39

44

44

Table of Contents

Overview

• Major differences between pio in CircuitPython compared to standard pioasm

• Products

Installing CircuitPython

• CircuitPython Quickstart

• Flash Resetting UF2

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Installing Libraries

Using PIO to turn an LED on and off

• Code Walkthrough

Using PIO to control LED brightness

• Code Walkthrough

Using PIO to blink a LED quickly or slowly

• Code Walkthrough

Using PIO to drive a NeoPixel

• Parts

• Full Code Listing

• Code Walk-through

Advanced: Generating Morse Code with Background Writes

Advanced: Driving 7-segment displays with Background Writes

• Parts

• Wiring

Advanced: Using PIO to drive NeoPixels "in the background"

Advanced: Using PIO to control Servos with Background Writes

API Documentation: adafruit_pioasm

API Documentation: rp2pio

©Adafruit Industries Page 2 of 44

Overview

A feature that sets the Raspberry Pi Foundation RP2040 microcontroller apart from

other microcontrollers is "PIO". The RP2040 datasheet says that the "programmable

input/output block (PIO) is a versatile hardware interface. It can support a variety of IO

standards… PIO is programmable in the same sense as a processor."

In this guide, you'll learn how to write and use PIO programs from CircuitPython. The

official datasheet () (chapter 3), the book "Get Started with MicroPython on Raspberry

Pi Pico" () and pico-examples () (pio folder) are helpful resources too, but CircuitPython

sometimes deviates from the way that PIO is used in other environments like C or

MicroPython.

Major differences between pio in CircuitPython compared
to standard pioasm

mov operator restrictions

The mov instruction can accept an optional argument, called an operator, to

reverse (::) or invert (~) its argument. In adafruit_pioasm, one or more spaces

must come between the :: or ~ and the operand. These spaces are not required

by the official dialect.

The official dialect allows "!" to mean the same as "~". This is not accepted by

adafruit_pioasm.

©Adafruit Industries Page 3 of 44

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://www.adafruit.com/product/4898
https://www.adafruit.com/product/4898
https://github.com/raspberrypi/pico-examples/tree/master/pio

Expressions are not supported

Standard pioasm supports expressions like [T1 + 1] . In pioasm, calculations are

not supported. Instead, use string formatting operations to insert the computed

value where necessary, e.g., f"""…[{T1+ 1}]…"""

Interrupts are not supported

The IRQ method of sending signals out of a PIO program is not supported in

CircuitPython.

Products

Except as otherwise noted, these examples were designed for the Raspberry Pi Pico

but can be adapted to the range of boards with the RP2040 microcontroller. The QT

Py RP2040 requires the addition of an external LED and current-limiting resistor for

the standard LED examples.

Adafruit Feather RP2040

A new chip means a new Feather, and the

Raspberry Pi RP2040 is no exception.

When we saw this chip we thought "this

chip is going to be awesome when we

give it the Feather...

https://www.adafruit.com/product/4884

Adafruit ItsyBitsy RP2040

A new chip means a new ItsyBitsy, and

the Raspberry Pi RP2040 is no exception.

When we saw this chip we thought "this

chip is going to be awesome when we

give it the ItsyBitsy...

https://www.adafruit.com/product/4888

©Adafruit Industries Page 4 of 44

https://www.adafruit.com/product/4884
https://www.adafruit.com/product/4884
https://www.adafruit.com/product/4888
https://www.adafruit.com/product/4888

Adafruit QT Py RP2040

What a cutie pie! Or is it... a QT Py? This

diminutive dev board comes with one of

our new favorite chip, the RP2040. It's

been made famous in the new

https://www.adafruit.com/product/4900

Raspberry Pi Pico RP2040

The Raspberry Pi foundation changed

single-board computing when they

released the Raspberry Pi computer, now

they're ready to...

https://www.adafruit.com/product/4864

Raspberry Pi Pico RP2040 with Loose

Unsoldered Headers

The Raspberry Pi foundation changed

single-board computing when they

released the Raspberry Pi computer, now

they're...

https://www.adafruit.com/product/4883

Adafruit MACROPAD RP2040 Bare Bones

- 3x4 Keys + Encoder + OLED

Strap yourself in, we're launching in T-

minus 10 seconds...Destination? A new

Class M planet called MACROPAD! M

here, stands for Microcontroller because

this 3x4 keyboard...

https://www.adafruit.com/product/5100

©Adafruit Industries Page 5 of 44

https://www.adafruit.com/product/4900
https://www.adafruit.com/product/4900
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/4883
https://www.adafruit.com/product/4883
https://www.adafruit.com/product/4883
https://www.adafruit.com/product/5100
https://www.adafruit.com/product/5100
https://www.adafruit.com/product/5100

Adafruit MacroPad RP2040 Starter Kit -

3x4 Keys + Encoder + OLED

Strap yourself in, we're launching in T-

minus 10 seconds...Destination? A new

Class M planet called MACROPAD! M here

stands for Microcontroller because this

3x4 keyboard controller...

https://www.adafruit.com/product/5128

Installing CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython working on your board.

Download the latest version of

CircuitPython for the Raspberry Pi

Pico from circuitpython.org

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 6 of 44

https://www.adafruit.com/product/5128
https://www.adafruit.com/product/5128
https://www.adafruit.com/product/5128
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/raspberry_pi_pico/
https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/98753

Start with your Pico unplugged from USB.

Hold down the BOOTSEL button, and

while continuing to hold it (don't let go!),

plug the Pico into USB. Continue to hold

the BOOTSEL button until the RPI-RP2

drive appears!

If the drive does not appear, unplug your

Pico and go through the above process

again.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

You will see a new disk drive appear called

RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2 file

to RPI-RP2.

©Adafruit Industries Page 7 of 44

https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98758

The RPI-RP2 drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Flash Resetting UF2

If your Pico ever gets into a really weird state and doesn't even show up as a disk

drive when installing CircuitPython, try installing this 'nuke' UF2 which will do a 'deep

clean' on your Flash Memory. You will lose all the files on the board, but at least you'll

be able to revive it! After nuking, re-install CircuitPython

flash_nuke.uf2

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

©Adafruit Industries Page 8 of 44

https://learn.adafruit.com//assets/98759
https://learn.adafruit.com//assets/98759
https://cdn-learn.adafruit.com/assets/assets/000/099/419/original/flash_nuke.uf2?1613329170

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

Ubuntu users: Mu currently (checked May 4, 2022) does not install properly on

Ubuntu 22.04. See https://github.com/mu-editor/mu/issues to track this issue.

See https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

and https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-

circuitpython for other editors to use.

©Adafruit Industries Page 9 of 44

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Installing Libraries

You'll need to install the Adafruit_CircuitPython_Pioasm library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

©Adafruit Industries Page 10 of 44

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

Manually install the necessary library from

the bundle:

adafruit_pioasm.mpy

Before continuing, make sure your board's

lib folder or root filesystem has the

adafruit_pioasm.mpy file copied over.

Using PIO to turn an LED on and off

Normally, you'd use DigitalInOut to turn an LED on and off in CircuitPython.

However, as a simple introduction to PIO, it can also be used to turn an LED on or off.

Here's a CircuitPython program to do just that:

SPDX-FileCopyrightText: 2021 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

#

Adapted from the example https://github.com/raspberrypi/pico-examples/tree/master/

pio/hello_pio

import time

import board

import rp2pio

©Adafruit Industries Page 11 of 44

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com//assets/100005
https://learn.adafruit.com//assets/100005

import adafruit_pioasm

hello = """

.program hello

loop:

 pull

 out pins, 1

; This program uses a 'jmp' at the end to follow the example. However,

; in a many cases (including this one!) there is no jmp needed at the end

; and the default "wrap" behavior will automatically return to the "pull"

; instruction at the beginning.

 jmp loop

"""

assembled = adafruit_pioasm.assemble(hello)

sm = rp2pio.StateMachine(

 assembled,

 frequency=2000,

 first_out_pin=board.LED,

)

print("real frequency", sm.frequency)

while True:

 sm.write(bytes((1,)))

 time.sleep(0.5)

 sm.write(bytes((0,)))

 time.sleep(0.5)

Save the file below as code.py and transfer it to your CIRCUITPY drive. Your device

should automatically restart and run the code. Shortly, a LED will blink on and off

about once every second. If it doesn't, use Mu to connect to the Serial REPL () of your

device and you'll be able to see any errors that occurred.

Code Walkthrough

The full program is shown above, but let's look at the interesting bits a few lines at a

time:

hello = """

.program hello

loop:

 pull

 out pins, 1

; This program uses a 'jmp' at the end to follow the example. However,

; in a many cases (including this one!) there is no jmp needed at the end

; and the default "wrap" behavior will automatically return to the "pull"

; instruction at the beginning.

 jmp loop

"""

PIO programs are included within your CircuitPython source as strings, and then

converted into a program with the assemble function.

sm = rp2pio.StateMachine(

 assembled,

©Adafruit Industries Page 12 of 44

https://learn.adafruit.com/welcome-to-circuitpython/the-repl

 frequency=10000,

 first_out_pin=board.LED,

)

The PIO peripheral contains several "state machines", which are the units that run PIO

programs. The StateMachine constructor takes the assembled program as well as

some additional information:

frequency says how quickly each pio instruction executes. If you have a task

that you need to take "exactly X microseconds" or "execute at exactly Y kHz",

this will allow you to determine the right frequency value.

first_out_pin names the first pin that will be updated by out instructions in

the PIO program. This program only affects a single pin.

while True:

 sm.write(bytes((1,)))

 time.sleep(0.5)

 sm.write(bytes((0,)))

 time.sleep(0.5)

The forever-loop of our Python code alternates between sending the byte 1 and the

byte 0 to the PIO state machine. Each time a byte is sent, the PIO program acts on it.

loop:

 pull

 out pins, 1

 jmp loop

Every PIO instruction is documented in the RP2040 datasheet, so while this guide will

give a high-level description of what is happening, it eliminates many details in order

to keep the descriptions sort.

The first line, loop: , is a label. This line, together with the last line jmp loop create

a forever-loop.

The second line contains the first instruction, pull , which waits until a value is sent

to the State Machine (A value is sent by the sm.write function calls in our Python

code). The value is stored in a location (register) called the OSR (Output Shift Register

).

The next line contains another instruction, out pins, 1 . This is our first instruction

with operands. The first operand, pins, says where the data is being transferred to.

The second operand, 1, says how many bits are being transferred. The source of the

data is the OSR, the same as the implicit destination of the pull instruction.

•

•

©Adafruit Industries Page 13 of 44

The final line contains the last instruction, jmp loop . A jmp instruction makes the

program continue at the named location instead of the next line.

The net effect of this program is to turn the related pin HIGH if the number sent is

even and the pin LOW if the number sent is odd. And that's why the Python forever-

loop makes the Pico's LED turn off and on about once per second.

Using PIO to control LED brightness

Normally, you'd use PWMOut to control the brightness of an LED connected to a GPIO

pin. However, as you may expect, you can also use PIO to create a PWM-like effect.

Here's a CircuitPython program to do just that:

SPDX-FileCopyrightText: 2021 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

#

Adapted from the an example in Appendix C of RPi_PiPico_Digital_v10.pdf

import time

import board

import rp2pio

import adafruit_pioasm

led_quarter_brightness = adafruit_pioasm.assemble(

 """

 set pins, 0 [2]

 set pins, 1

"""

)

led_half_brightness = adafruit_pioasm.assemble(

 """

 set pins, 0

 set pins, 1

"""

)

©Adafruit Industries Page 14 of 44

led_full_brightness = adafruit_pioasm.assemble(

 """

 set pins, 1

"""

)

while True:

 sm = rp2pio.StateMachine(

 led_quarter_brightness, frequency=10000, first_set_pin=board.LED

)

 time.sleep(1)

 sm.deinit()

 sm = rp2pio.StateMachine(

 led_half_brightness, frequency=10000, first_set_pin=board.LED

)

 time.sleep(1)

 sm.deinit()

 sm = rp2pio.StateMachine(

 led_full_brightness, frequency=10000, first_set_pin=board.LED

)

 time.sleep(1)

 sm.deinit()

Code Walkthrough

The full program is shown above, but let's look at the interesting bits a few lines at a

time. In this example, there are three different PIO programs, each one for a different

brightness level:

led_quarter_brightness = adafruit_pioasm.assemble(

 """

 set pins, 0 [2]

 set pins, 1

""")

led_half_brightness = adafruit_pioasm.assemble(

 """

 set pins, 0

 set pins, 1

""")

led_full_brightness = adafruit_pioasm.assemble(

 """

 set pins, 1

""")

The "full brightness" program is most self-explanatory: at each moment, it sets its

corresponding pin to 1.

The "half brightness" program alternately sets its pin to 0 and then to 1. When it

changes rapidly between these two states, the LED appears lit, but dim, to a human

eye. With a few exceptions, each instruction takes the same length of time. For one

instruction the LED is off and for one instruction the LED is on, so the LED is turned on

half the time.

©Adafruit Industries Page 15 of 44

The "quarter brightness" program needs the most explanation. The new element on

the first set line, [2] , indicates that after the set command, there is an additional

delay of 2 cycles before going to the next instruction. That means that the pin is 0 for

3 cycles and 1 for 1 cycle, giving a ratio of 1/4.

while True:

 sm = rp2pio.StateMachine(led_quarter_brightness,

 frequency=10000, first_set_pin=board.LED)

 time.sleep(1)

 sm.deinit()

 sm = rp2pio.StateMachine(led_half_brightness,

 frequency=10000, first_set_pin=board.LED)

 time.sleep(1)

 sm.deinit()

 sm = rp2pio.StateMachine(led_full_brightness,

 frequency=10000, first_set_pin=board.LED)

 time.sleep(1)

 sm.deinit()

The CircuitPython forever loop cycles among the three programs, for one second

each. frequency=10000, or 10kHz, means that the on-off cycle of the LED is far too

fast to be seen by a human eye; the quarter-brightness LED turns on and off 2500

times per second, or 100 times faster than a "24fps" film.

Because the LED is turned fully off for a short time between programs, you may see a

flicker when the brightness changes.

Using PIO to blink a LED quickly or slowly

The next example program introduces new concepts: the pull instruction, which

receives data from the CircuitPython program; and registers , which are similar to

variables in that they can store values and some simple operations can be performed

©Adafruit Industries Page 16 of 44

on those values. However, the uses of PIO registers are much more restricted than

the use of variables in Python.

SPDX-FileCopyrightText: 2021 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

#

Adapted from the example https://github.com/raspberrypi/pico-examples/tree/master/

pio/pio_blink

import array

import time

import board

import rp2pio

import adafruit_pioasm

blink = adafruit_pioasm.assemble(

 """

.program blink

 pull block ; These two instructions take the blink duration

 out y, 32 ; and store it in y

forever:

 mov x, y

 set pins, 1 ; Turn LED on

lp1:

 jmp x-- lp1 ; Delay for (x + 1) cycles, x is a 32 bit number

 mov x, y

 set pins, 0 ; Turn LED off

lp2:

 jmp x-- lp2 ; Delay for the same number of cycles again

 jmp forever ; Blink forever!

"""

)

while True:

 for freq in [5, 8, 30]:

 with rp2pio.StateMachine(

 blink,

 frequency=125_000_000,

 first_set_pin=board.LED,

 wait_for_txstall=False,

) as sm:

 data = array.array("I", [sm.frequency // freq])

 sm.write(data)

 time.sleep(3)

 time.sleep(0.5)

Code Walkthrough

pull block ; These two instructions take the blink duration

 out y, 32 ; and store it in y

The instruction "pull block" says to wait until a value sent from CircuitPython is

available ("block"), and then to pull that value into a holding area known as OSR , or

Output Shift Register. Then, all 32 bits of OSR are stored in the register called Y .

Later, the CircuitPython program will send in a number that represents how long the

©Adafruit Industries Page 17 of 44

LED spends in an on or off state, so remember that this is what the register Y now

holds.

forever:

 mov x, y

 set pins, 1 ; Turn LED on

lp1:

 jmp x-- lp1 ; Delay for (x + 1) cycles, x is a 32 bit number

The next few lines' purpose is to turn the LED on, then wait for the desired length of

time.

Working up from the bottom of this section of code, the last two lines create a loop

that delays for (x+1) cycles. lp1: is a label, and a jmp instruction can skip to it

instead of continuing to the next instruction. In this case, the jump is conditional on

x-- , which means "if X is not zero, jump to lp1. In any case, decrease X by 1."

Because the delay numbers are large and because the program will to change the

delay value without changing the PIO program itself, it cannot use the [#] notation

to delay as in the previous program.

The set instruction to turn on the LED should be familiar by now.

The mov instruction takes the value in Y and copies it to X. If not, and the loop used

jmp y-- , then it would lose the original delay value. But the value is needed each

time the program has a delay. Happily, there are two register X and Y so the program

can just take a copy of the original delay value each time.

Remember that there's a forever: label here, it will be used later.

mov x, y

 set pins, 0 ; Turn LED off

lp2:

 jmp x-- lp2 ; Delay for the same number of cycles again

 jmp forever ; Blink forever!

The next block is very much like the previous block, except that set is used to turn the

LED off before the delay.

The final line, jmp forever , sends us back to the first delay. If it instead relied on

the automatic wrap back to the first instruction, there would only be a single on-off

blink before the program went back to the pull block instruction and waited for a new

blink duration to be sent in, which would not give the desired result.

while True:

 for freq in [5, 8, 30]:

 with rp2pio.StateMachine(

©Adafruit Industries Page 18 of 44

 blink,

 frequency=125_000_000,

 first_set_pin=board.LED,

 wait_for_txstall=False,

) as sm:

 data = array.array("I", [sm.frequency // freq])

 sm.write(data)

 time.sleep(3)

 time.sleep(0.5)

The Python forever-loop repeatedly cycles through the frequencies 5, 8, and 30.

For each frequency, it creates a state machine with our program, calculates and send

the required delay value to it, and waits 3 seconds. Then, before continuing with the

next blink pattern, it delays a half a second.

Of course, your CircuitPython program doesn't need to sleep while PIO is making the

LED blink, it could be doing calculations, updating an LCD display, reading button

presses. The PIO program keeps running independently of what CircuitPython is

doing.

In many applications of PIO, such as sending data out to NeoPixels, a write call

needs to wait until the PIO program has completed. Since PIO programs run

endlessly, there needs to be some definition of "completed". The usual definition is

"the PIO program (through a pull instruction) requested fresh data from CircuitPython,

but none was available". This is called a "transmit stall" or "txstall". Thus, the line wait

_for_txstall=False means that CircuitPython does not wait for this condition

before the sm.write(data) returns.

Using PIO to drive a NeoPixel

©Adafruit Industries Page 19 of 44

If you are using a board with a built-in NeoPixel, the example on this page will use it. If

you have another board, such as a Raspberry Pi Pico, you'll need to connect it to an

external NeoPixel:

Connect Pico VSYS to NeoPixel + or VCC

Connect Pico GND to NeoPixel GND

Connect Pico GP16 to NeoPixel In or DIN

You can also select whatever pin you like

and change the CircuitPython code

accordingly.

This code is tested with the RGB NeoPixel

linked below. The topic of neopixel timing

is actually quite complex, and this program

may not work with all kinds of neopixels.

Parts

If you have the Raspberry Pi Pico or another RP2040 board which does not have a

built-in NeoPixel, you'll need the parts below to follow this example. Adafruit's

RP2040-based boards include a built-in NeoPixel.

Breadboard-friendly RGB Smart NeoPixel -

Pack of 4

This is the easiest way possible to add

small, bright RGB pixels to your project.

We took the same technology from our

Flora NeoPixels and made them

breadboard friendly, with two rows...

https://www.adafruit.com/product/1312

©Adafruit Industries Page 20 of 44

https://learn.adafruit.com//assets/100012
https://learn.adafruit.com//assets/100012
https://www.adafruit.com/product/1312
https://www.adafruit.com/product/1312
https://www.adafruit.com/product/1312

Half-Size Breadboard with Mounting

Holes

This cute 3.2″ × 2.1″ (82 × 53mm)

solderless half-size breadboard has four

bus lines and 30 rows of pins, our favorite

size of solderless breadboard for...

https://www.adafruit.com/product/4539

Breadboarding wire bundle

75 flexible stranded core wires with stiff

ends molded on in red, orange, yellow,

green, blue, brown, black and white.

These are a major improvement over the

"box of bent...

https://www.adafruit.com/product/153

Full Code Listing

SPDX-FileCopyrightText: 2021 Scott Shawcroft, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import rp2pio

import board

import microcontroller

import adafruit_pioasm

NeoPixels are 800khz bit streams. We are choosing zeros as <312ns hi, 936 lo>

and ones as <700 ns hi, 556 ns lo>.

The first two instructions always run while only one of the two final

instructions run per bit. We start with the low period because it can be

longer while waiting for more data.

program = """

.program ws2812

.side_set 1

.wrap_target

bitloop:

 out x 1 side 0 [6]; Drive low. Side-set still takes place before

instruction stalls.

 jmp !x do_zero side 1 [3]; Branch on the bit we shifted out previous delay.

Drive high.

 do_one:

 jmp bitloop side 1 [4]; Continue driving high, for a one (long pulse)

 do_zero:

 nop side 0 [4]; Or drive low, for a zero (short pulse)

.wrap

©Adafruit Industries Page 21 of 44

https://www.adafruit.com/product/4539
https://www.adafruit.com/product/4539
https://www.adafruit.com/product/4539
https://www.adafruit.com/product/153
https://www.adafruit.com/product/153

"""

assembled = adafruit_pioasm.assemble(program)

If the board has a designated neopixel, then use it. Otherwise use

GPIO16 as an arbitrary choice.

if hasattr(board, "NEOPIXEL"):

 NEOPIXEL = board.NEOPIXEL

else:

 NEOPIXEL = microcontroller.pin.GPIO16

sm = rp2pio.StateMachine(

 assembled,

 frequency=12_800_000, # to get appropriate sub-bit times in PIO program

 first_sideset_pin=NEOPIXEL,

 auto_pull=True,

 out_shift_right=False,

 pull_threshold=8,

)

print("real frequency", sm.frequency)

for i in range(30):

 sm.write(b"\x0a\x00\x00")

 time.sleep(0.1)

 sm.write(b"\x00\x0a\x00")

 time.sleep(0.1)

 sm.write(b"\x00\x00\x0a")

 time.sleep(0.1)

print("writes done")

time.sleep(2)

Code Walk-through

Exactly how this program transmit data?

Each original bit is sent in approximately

1250 microseconds. In the transmission

program, 1250 microseconds are divided

into three unequal portions.

To transmit a "0", the pin is set HIGH

during the first portion, and then LOW

during the other portions.

To transmit a "1", the pin is set HIGH during

the first two porttions and low during the

last portion.

This is repeated 24 times for each RGB NeoPixel, and a strip repeats these 24 cycles

once for each pixel—once a pixel has received its own data, it sends any more data to

the next pixel using its Data Out (DOUT) pin.

©Adafruit Industries Page 22 of 44

https://learn.adafruit.com//assets/111351
https://learn.adafruit.com//assets/111351

This is the most compatible timing for NeoPixels that we could find, and it is believed

to work with all pixels and strips sold by Adafruit. It is more compatible than the

"equal thirds" timing that many sources (including older versions of this page!)

describe.

A short delay (approximately 300 microseconds) without any pulses makes the pixels

ready to receive fresh values.

program="""

.program ws2812

.side_set 1

.wrap_target

bitloop:

 out x 1 side 0 [6]; Drive low. Side-set still takes place before

instruction stalls.

 jmp !x do_zero side 1 [3]; Branch on the bit we shifted out previous delay.

Drive high.

 do_one:

 jmp bitloop side 1 [4]; Continue driving high, for a one (long pulse)

 do_zero:

 nop side 0 [4]; Or drive low, for a zero (short pulse)

.wrap

"""

The first new concept is "side set". So far, PIO has changed a pin value using "out";

with "side set" PIO can change the value of a pin while also doing some other activity.

This is from the English idiom "do something on the side", which means in addition to

one's regular job or duties.

When an instruction has side 0 next to it, the corresponding output is set LOW, and

when it has side 1 next to it, the corresponding output is set HIGH. There can be up

to 5 side-set pins, in which case side N is interpreted as a binary number.

The first instruction, out x 1 , transfers the next NeoPixel data bit into the x register.

It also ensures the data out pin is LOW until the data bit is available. This creates the

delay necessary between refreshes of the NeoPixel strip, as well as the LOW period

at the end of each transmitted bit.

Because the state machine is created with auto_pull=True , there's no need for a p

ull instruction.

Next, jmp !x do_zero side 1 sets the output pin HIGH and then continues either

at the next line (if X is nonzero) or at do_zero (if it is zero). !x means "if X is zero"

and is taken from the syntax of C/C++/Arduino code.

©Adafruit Industries Page 23 of 44

Depending whether execution continues at do_one or do_zero , the middle portion

of the signal is transmitted as HIGH or LOW. nop indicates that "no operation"

(except the side-set operation) is performed by the instruction.

Either way, PIO continues from bitloop: , setting the output pin LOW and then

getting the next pixel data into X. If there's more pixel data waiting to be transmitted,

it will continue immediately on to the next lines; otherwise, it will wait until more pixel

data is available.

If you consider each possible path through a single loop (X is zero; X is nonzero) and

count the number of instructions plus the number of [N] delays, you will see that there

are 16 clocks before the execution returns to bitloop .

sm = rp2pio.StateMachine(

 assembled,

 frequency=12_800_000, # to get appropriate sub-bit times in PIO program

 first_sideset_pin=NEOPIXEL,

 auto_pull=True,

 out_shift_right=False,

 pull_threshold=8,

)

print("real frequency", sm.frequency)

Accordingly, the StateMachine is constructed with a requested frequency based on

the desired bit rate (800kHz) times the number of cycles per bit (16).

As discussed above, since the out x instruction should wait until data is available

and then automatically pull it in from CircuitPython, auto_pull=True is specified.

out_shift_right controls how multi-bit values are sent in. NeoPixels expect the

"most significant bits" first, which is the order you get when

out_shift_right=False .

first_sideset_pin controls the pin(s) which are set by side-set operations.

pull_threshold controls the minimum number of bits that have to be available for

an auto-pull to complete. Since NeoPixels are a sequence of bytes, set the value to 8,

the number of bits in a byte.

PIO can't exactly provide any requested frequency. In this case, instead of the exact

value 12.8MHz a slightly different value is provided. This is well within the tolerance of

NeoPixels. When a device has to be controlled at a very specific frequency, it's

important to check that your program is running at a rate that is close enough to the

required rate.

©Adafruit Industries Page 24 of 44

for i in range(30):

 sm.write(b"\x0a\x00\x00")

 time.sleep(0.1)

 sm.write(b"\x00\x0a\x00")

 time.sleep(0.1)

 sm.write(b"\x00\x00\x0a")

 time.sleep(0.1)

It's finally time to light up your NeoPixel by directly specifying the bytes to send to it.

For most RGB NeoPixels, this program will send a sequence of green, red, and blue

pixels, with 30 repetitions.

On the RP2040, the standard neopixel module works very much in the way shown

here, but it's ready to work with the other CircuitPython libraries you may already

know and love, like the LED animations library ().

For a more sophisticated example of driving 8 NeoPixel strips from just 3 GPIO pins

using PIO, there's a dedicated guide ().

Advanced: Generating Morse Code with
Background Writes

As of CircuitPython 7.3, it is possible to send data to one or more PIO peripherals

while Python code keeps running. Depending on how the background_write

function is called, it can send a block of data just once, or repeatedly until it's directed

otherwise.

To introduce this capability, the following example shows morse code messages on

the board's LED. It works on any RP2040 board with board.LED . You can also use it

on a Raspberry Pi Pico, but you'll have to add an external LED and series resistor, then

modify the code to use the right board.GP## connection.

©Adafruit Industries Page 25 of 44

https://learn.adafruit.com/circuitpython-led-animations
https://learn.adafruit.com/neopio-drive-lots-of-leds-with-raspberry-pi-pico

SPDX-FileCopyrightText: 2022 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""Demonstrate background writing, including loop writing, with morse code.

On any rp2040 board with board.LED, this will alternately send 'SOS' and 'TEST'

via the LED, demonstrating that Python code continues to run while the morse

code data is transmitted. Alternately, change one line below to make it send

'TEST' forever in a loop, again while Python code continues to run.

The combination of "LED status" and duration is sent to the PIO as 16-bit number:

The top bit is 1 if the LED is turned on and 0 otherwise. The other 15 bits form a

delay

value from 1 to 32767. A subset of the morse code 'alphabit' is created, with

everthing

based on the 'DIT duration' of about 128ms (1MHz / 32 / 4000).

https://en.wikipedia.org/wiki/Morse_code

"""

import array

import time

from board import LED

from rp2pio import StateMachine

from adafruit_pioasm import Program

This program turns the LED on or off depending on the first bit of the value,

then delays a length of time given by the next 15 bits of the value.

By correctly choosing the durations, a message in morse code can be sent.

pio_code = Program(

 """

 out x, 1

 mov pins, x

 out x, 15

 busy_wait:

 jmp x--, busy_wait [31]

 """

)

The top bit of the command is the LED value, on or off

LED_ON = 0x8000

LED_OFF = 0x0000

The other 15 bits are a delay duration.

It must be the case that 4 * DIT_DURATION < 32768

DIT_DURATION = 4000

DAH_DURATION = 3 * DIT_DURATION

Build up some elements of morse code, based on the wikipedia article.

DIT = array.array("H", [LED_ON | DIT_DURATION, LED_OFF | DIT_DURATION])

DAH = array.array("H", [LED_ON | DAH_DURATION, LED_OFF | DIT_DURATION])

That is, two more DAH-length gaps for a total of three

LETTER_SPACE = array.array("H", [LED_OFF | (2 * DAH_DURATION)])

That is, four more DAH-length gaps (after a letter space) for a total of seven

WORD_SPACE = array.array("H", [LED_OFF | (4 * DIT_DURATION)])

Letters and words can be created by concatenating ("+") the elements

E = DIT + LETTER_SPACE

O = DAH + DAH + DAH + LETTER_SPACE

S = DIT + DIT + DIT + LETTER_SPACE

T = DAH + LETTER_SPACE

SOS = S + O + S + WORD_SPACE

TEST = T + E + S + T + WORD_SPACE

sm = StateMachine(

 pio_code.assembled,

©Adafruit Industries Page 26 of 44

 frequency=1_000_000,

 first_out_pin=LED,

 pull_threshold=16,

 auto_pull=True,

 out_shift_right=False,

)

To simply repeat 'TEST' forever, change to 'if True':

if False: # pylint: disable=using-constant-test

 print("Sending out TEST forever", end="")

 sm.background_write(loop=TEST)

 while True:

 print(end=".")

 time.sleep(0.1)

But instead, let's alternate SOS and TEST, forever:

while True:

 for plain, morse in (

 ("SOS", SOS),

 ("TEST", TEST),

):

 print(f"Sending out {plain}", end="")

 sm.background_write(morse)

 sm.clear_txstall()

 while not sm.txstall:

 print(end=".")

 time.sleep(0.1)

 print()

 print("Message all sent to StateMachine (including emptying FIFO)")

 print()

Now to focus on some specific parts of the program. First, take a look at the PIO

program itself. This program reads the new LED state first, sets it on the pin, reads a

delay, then loops until the delay has been completed:

pio_code = Program(

 """

 out x, 1

 mov pins, x

 out x, 15

 busy_wait:

 jmp x--, busy_wait [31]

 """

)

Next, according to the necessary arrangement of bits, a small vocabulary in Morse

code is built up:

Letters and words can be created by concatenating ("+") the elements

E = DAH + LETTER_SPACE

O = DAH + DAH + DAH + LETTER_SPACE

S = DIT + DIT + DIT + LETTER_SPACE

T = DIT + LETTER_SPACE

SOS = S + O + S + WORD_SPACE

TEST = T + E + S + T + WORD_SPACE

Now, of course the Python code could simply write the data to the State Machine and

wait for it to finish with sm.write(SOS) . However, by using this method, control

©Adafruit Industries Page 27 of 44

won't return to the Python code until all the data is handled. In the case where this is

undesirable, use a background write so that the operation continues in the

background while CircuitPython code continues working in the foreground:

sm.background_write(morse)

sm.clear_txstall()

while not sm.txstall:

 print(end=".")

 time.sleep(0.1)

print()

print("Message all sent to StateMachine (including emptying FIFO)")

print()

By clearing and then monitoring the txstall flag, the code waits for the whole

message to be played before continuing.

Using the loop keyword argument, a single message can be made to loop forever:

print("Sending out TEST forever", end="")

sm.background_write(loop=TEST)

while True:

 print(end=".")

 time.sleep(0.1)

That's one LED, but what if you have greater ambitions? Head to the next page: Drivin

g 7-segment displays with Background Writes ().

Advanced: Driving 7-segment displays with
Background Writes

The following example shows a counter on a 4-digit 7-segment LED without a

separate driver chip. Don't forget you need CircuitPython 7.3 or later.

©Adafruit Industries Page 28 of 44

https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/advanced-driving-seven-segment-displays-with-background-writes
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/advanced-driving-seven-segment-displays-with-background-writes

The main program just counts up forever, looping back to 0000 after 9999.

This example is designed for a Raspberry Pi Pico and bare LED display. For simplicity,

it is wired without any current limiting resistors, instead relying on a combination of

the RP2040's pin drive strength and the 1/4 duty cycle to limit LED current to an

acceptable level, and longevity of the display was not a priority. Also, we're feeling

punk today!

Before integrating a variant of this example code in a project, evaluate whether the

design needs to add current-limiting resistors.

Parts

For this example, you need additional parts:

Premium Male/Male Jumper Wires - 20 x

6" (150mm)

These Male/Male Jumper Wires are handy

for making wire harnesses or jumpering

between headers on PCB's. These

premium jumper wires are 6" (150mm)

long and come in a...

https://www.adafruit.com/product/1957

Full Sized Premium Breadboard - 830 Tie

Points

This is a 'full-size' premium quality

breadboard, 830 tie points. Good for

small and medium projects. It's 2.2" x 7"

(5.5 cm x 17 cm) with a standard double-

strip...

https://www.adafruit.com/product/239

©Adafruit Industries Page 29 of 44

https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/239
https://www.adafruit.com/product/239
https://www.adafruit.com/product/239

White 7-segment clock display - 0.56"

digit height

Design a clock, timer or counter into your

next project using our pretty 4-digit

seven-segment display. These bright crisp

displays are good for adding numeric

output. Besides the four...

https://www.adafruit.com/product/1001

Wiring

Place the Pico and the 7-segment display

on the breadboard, noting the orientation

of the decimal points.

Make the following connections:

Pico GP15 to LED matrix 1 (E SEG)

Pico GP14 to LED matrix 2 (D SEG)

Pico GP13 to LED matrix 3 (DP SEG)

Pico GP12 to LED matrix 4 (C SEG)

Pico GP11 to LED matrix 5 (G SEG)

Pico GP10 to LED matrix 6 (COM4)

Pico GP9 to LED matrix 7 (COLON COM)

Pico GP22 to LED matrix 8 (COLON SEG)

Pico GP21 to LED matrix 9 (B SEG)

Pico GP20 to LED matrix 10 (COM3)

Pico GP19 to LED matrix 11 (COM2)

Pico GP18 to LED matrix 12 (F SEG)

Pico GP17 to LED matrix 13 (A SEG)

Pico GP16 to LED matrix 14 (COM1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 30 of 44

https://www.adafruit.com/product/1001
https://www.adafruit.com/product/1001
https://www.adafruit.com/product/1001
https://learn.adafruit.com//assets/111458
https://learn.adafruit.com//assets/111458

Next, load the code below on your Raspberry Pi Pico's CIRCUITPY drive:

SPDX-FileCopyrightText: 2022 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""Drive a 7-segment display entirely from the PIO peripheral

By updating the buffer being written to the display, the shown digits can be

changed.

The main program just counts up, looping back to 0000 after 9999.

This example is designed for a Raspberry Pi Pico and bare LED display. For

simplicity, it is wired without any current limiting resistors, instead relying

on a combination of the RP2040's pin drive strength and the 1/4 duty cycle to

limit LED current to an acceptable level, and longevity of the display was not

a priority.

Before integrating a variant of this example code in a project, evaluate

whether your design needs to add current-limiting resistors.

https://www.adafruit.com/product/4864

https://www.adafruit.com/product/865

Wiring:

 * Pico GP15 to LED matrix 1 (E SEG)

 * Pico GP14 to LED matrix 2 (D SEG)

 * Pico GP13 to LED matrix 3 (DP SEG)

 * Pico GP12 to LED matrix 4 (C SEG)

 * Pico GP11 to LED matrix 5 (G SEG)

 * Pico GP10 to LED matrix 6 (COM4)

 * Pico GP9 to LED matrix 7 (COLON COM)

 * Pico GP22 to LED matrix 8 (COLON SEG)

 * Pico GP21 to LED matrix 9 (B SEG)

 * Pico GP20 to LED matrix 10 (COM3)

 * Pico GP19 to LED matrix 11 (COM2)

 * Pico GP18 to LED matrix 12 (F SEG)

 * Pico GP17 to LED matrix 13 (A SEG)

 * Pico GP16 to LED matrix 14 (COM1)

"""

import array

import time

import board

import rp2pio

import adafruit_pioasm

_program = adafruit_pioasm.Program(

 """

 out pins, 14 ; set the pins to their new state

 """

)

Display Pins 1-7 are GP 15-9

Display Pins 8-12 are GP 22-16

COM1_WT = 1 << 7

COM2_WT = 1 << 10

COM3_WT = 1 << 11

COM4_WT = 1 << 1

COMC_WT = 1 << 0

SEGA_WT = 1 << 8

SEGB_WT = 1 << 12

SEGC_WT = 1 << 3

SEGD_WT = 1 << 5

SEGE_WT = 1 << 6

©Adafruit Industries Page 31 of 44

SEGF_WT = 1 << 9

SEGG_WT = 1 << 2

SEGDP_WT = 1 << 4

SEGCOL_WT = 1 << 13

ALL_COM = COM1_WT | COM2_WT | COM3_WT | COM4_WT | COMC_WT

SEG_WT = [

 SEGA_WT,

 SEGB_WT,

 SEGC_WT,

 SEGD_WT,

 SEGE_WT,

 SEGF_WT,

 SEGG_WT,

 SEGDP_WT,

 SEGCOL_WT,

]

COM_WT = [COM1_WT, COM2_WT, COM3_WT, COM4_WT, COMC_WT]

DIGITS = [

 0b0111111, # 0

 0b0000110, # 1

 0b1011011, # 2

 0b1001111, # 3

 0b1100110, # 4

 0b1101101, # 5

 0b1111100, # 6

 0b0000111, # 7

 0b1111111, # 8

 0b1101111, # 9

]

def make_digit_wt(v):

 val = ALL_COM

 seg = DIGITS[v]

 for i in range(8):

 if seg & (1 << i):

 val |= SEG_WT[i]

 return val

DIGITS_WT = [make_digit_wt(i) for i in range(10)]

class SMSevenSegment:

 def __init__(self, first_pin=board.GP9):

 self._buf = array.array("H", (DIGITS_WT[0] & ~COM_WT[i] for i in range(4)))

 self._sm = rp2pio.StateMachine(

 _program.assembled,

 frequency=2000,

 first_out_pin=first_pin,

 out_pin_count=14,

 auto_pull=True,

 pull_threshold=14,

 **_program.pio_kwargs,

)

 self._sm.background_write(loop=self._buf)

 def __enter__(self):

 return self

 def __exit__(self, exc_type, exc_value, traceback):

 self.deinit()

 def deinit(self):

 self._sm.deinit()

©Adafruit Industries Page 32 of 44

 def __setitem__(self, i, v):

 if v is None:

 self._buf[i] = 0

 else:

 self._buf[i] = DIGITS_WT[v] & ~COM_WT[i]

 def set_number(self, number):

 for j in range(4):

 self[3 - j] = number % 10

 number //= 10

def count(start=0):

 val = start

 while True:

 yield val

 val += 1

def main():

 with SMSevenSegment(board.GP9) as s:

 for i in count():

 s.set_number(i)

 time.sleep(0.05)

if __name__ == "__main__":

 main()

Let's focus on some specific parts of the program. First, take a look at the PIO

program itself. This program simply reads each value then sends it to the output pins:

_program = adafruit_pioasm.Program(

 """

 out pins, 14 ; set the pins to their new state

 """

)

To display a particular digit on a particular position of the display,

Each SEG pin must be set HIGH if it is to be turned on, and LOW otherwise

Each COM pin must be set LOW if the corresponding digit is to be turned on,

and HIGH otherwise

To display a different digit in each position, the program needs to repeatedly loop

through the correct pin values for each digit.

Next, some constants are built up to describe the function of each pin, and finally the

list DIGITS_WT is created with the correct bits set to show a particular digit, 0 to 9,

plus the bits for each COM (common) pin are turned on:

def make_digit_wt(v):

 val = ALL_COM

 seg = DIGITS[v]

•

•

©Adafruit Industries Page 33 of 44

 for i in range(8):

 if seg & (1 << i):

 val |= SEG_WT[i]

 return val

DIGITS_WT = [make_digit_wt(i) for i in range(10)]

A SMSevenSegment object continually scans out the digits to the display. It operates

at a clock speed of 2000Hz, and it displays each digit for 1 cycle at a time, so the

refresh rate of the display is 500kHz. In almost all situations, this is enough for the

digit to appear 'solid' to the human eye.

class SMSevenSegment:

 def __init__(self, first_pin=board.GP9):

 self._buf = array.array("H", (DIGITS_WT[0] & ~COM_WT[i] for i in

range(4)))

 self._sm = rp2pio.StateMachine(

 _program.assembled,

 frequency=2000,

 first_out_pin=first_pin,

 out_pin_count=14,

 auto_pull=True,

 pull_threshold=14,

 **_program.pio_kwargs,

)

 self._sm.background_write(loop=self._buf)

To display a particular digit at a particular position, we take the DIGITS_WT for that

value and turn OFF the single COM bit for the position in question. A 4-digit number

can be displayed by putting each of its digits in one of the positions. Updating the

number from right to left makes it easy to use division and modulo to compute each

digit:

def __setitem__(self, i, v):

 if v is None:

 self._buf[i] = 0

 else:

 self._buf[i] = DIGITS_WT[v] & ~COM_WT[i]

def set_number(self, number):

 for j in range(4):

 self[3 - j] = number % 10

 number //= 10

Ready for more? Bring some color into your life with PIO and NeoPixels: writing to

NeoPixels LEDS "in the background" while your CircuitPython code continues to run ().

©Adafruit Industries Page 34 of 44

https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/advanced-using-pio-to-drive-neopixels-in-the-background
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/advanced-using-pio-to-drive-neopixels-in-the-background

Advanced: Using PIO to drive NeoPixels "in
the background"

The following example implements a NeoPixel-compatible class that performs the

actual writing of data to the LEDs "in the background", allowing your program to

continue processing while LED data is being transmitted. Background PIO requires

CircuitPython 7.3 or later.

It's designed as a library you can incorporate into your own program, or as a demo

you can load on an Adafruit MacroPad. You can also modify the demo to work on

other devices or with different numbers of NeoPixels.

The example is designed to be used as a library: Copy it to CIRCUITPY and use from

pioasm_neopixel_bg import NeoPixelBackground to import it. If placed on a

MacroPad as code.py, it shows a demo. Adapt the demo to another device by

modifying the connection used (board.NEOPIXEL) and the number of LEDs (12) to

match your setup.

SPDX-FileCopyrightText: 2022 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""Demonstrate background writing with NeoPixels

The NeoPixelBackground class defined here is largely compatible with the

standard NeoPixel class, except that the ``show()`` method returns immediately,

writing data to the LEDs in the background, and setting `auto_write` to true

causes the data to be continuously sent to the LEDs all the time.

Writing the LED data in the background will allow more time for your

Python code to run, so it may be possible to slightly increase the refresh

rate of your LEDs or do more complicated processing.

Because the pixelbuf storage is also being written out 'live', it is possible

(even with auto-show 'false') to experience tearing, where the LEDs are a

combination of old and new values at the same time.

©Adafruit Industries Page 35 of 44

The demonstration code, under ``if __name__ == '__main__':`` is intended

for the Adafruit MacroPad, with 12 NeoPixel LEDs. It shows a cycling rainbow

pattern across all the LEDs.

"""

import struct

import adafruit_pixelbuf

from rp2pio import StateMachine

from adafruit_pioasm import Program

Pixel color order constants

RGB = "RGB"

"""Red Green Blue"""

GRB = "GRB"

"""Green Red Blue"""

RGBW = "RGBW"

"""Red Green Blue White"""

GRBW = "GRBW"

"""Green Red Blue White"""

NeoPixels are 800khz bit streams. We are choosing zeros as <312ns hi, 936 lo>

and ones as <700 ns hi, 556 ns lo>.

_program = Program(

 """

.side_set 1 opt

.wrap_target

 pull block side 0

 out y, 32 side 0 ; get count of NeoPixel bits

bitloop:

 pull ifempty side 0 ; drive low

 out x 1 side 0 [5]

 jmp !x do_zero side 1 [3] ; drive high and branch depending on bit val

 jmp y--, bitloop side 1 [4] ; drive high for a one (long pulse)

 jmp end_sequence side 0 ; sequence is over

do_zero:

 jmp y--, bitloop side 0 [4] ; drive low for a zero (short pulse)

end_sequence:

 pull block side 0 ; get fresh delay value

 out y, 32 side 0 ; get delay count

wait_reset:

 jmp y--, wait_reset side 0 ; wait until delay elapses

.wrap

 """

)

class NeoPixelBackground(# pylint: disable=too-few-public-methods

 adafruit_pixelbuf.PixelBuf

):

 def __init__(

 self, pin, n, *, bpp=3, brightness=1.0, auto_write=True, pixel_order=None

):

 if not pixel_order:

 pixel_order = GRB if bpp == 3 else GRBW

 elif isinstance(pixel_order, tuple):

 order_list = [RGBW[order] for order in pixel_order]

 pixel_order = "".join(order_list)

 byte_count = bpp * n

 bit_count = byte_count * 8

 padding_count = -byte_count % 4

 # backwards, so that dma byteswap corrects it!

 header = struct.pack(">L", bit_count - 1)

 trailer = b"\0" * padding_count + struct.pack(">L", 3840)

©Adafruit Industries Page 36 of 44

 self._sm = StateMachine(

 _program.assembled,

 auto_pull=False,

 first_sideset_pin=pin,

 out_shift_right=False,

 pull_threshold=32,

 frequency=12_800_000,

 **_program.pio_kwargs,

)

 self._first = True

 super().__init__(

 n,

 brightness=brightness,

 byteorder=pixel_order,

 auto_write=False,

 header=header,

 trailer=trailer,

)

 self._auto_write = False

 self._auto_writing = False

 self.auto_write = auto_write

 @property

 def auto_write(self):

 return self._auto_write

 @auto_write.setter

 def auto_write(self, value):

 self._auto_write = bool(value)

 if not value and self._auto_writing:

 self._sm.background_write()

 self._auto_writing = False

 elif value:

 self.show()

 def _transmit(self, buf):

 if self._auto_write:

 if not self._auto_writing:

 self._sm.background_write(loop=memoryview(buf).cast("L"), swap=True)

 self._auto_writing = True

 else:

 self._sm.background_write(memoryview(buf).cast("L"), swap=True)

if __name__ == "__main__":

 import board

 import rainbowio

 import supervisor

 NEOPIXEL = board.NEOPIXEL

 NUM_PIXELS = 12

 pixels = NeoPixelBackground(NEOPIXEL, NUM_PIXELS)

 while True:

 # Around 1 cycle per second

 pixels.fill(rainbowio.colorwheel(supervisor.ticks_ms() // 4))

Let's focus on some specific parts of the program. First, take a look at the PIO

program itself. This program first fetches the number of bits of data to be sent to the

neopixel. Then, while there are still bits left to send, it performs a bit transmission just

like we already saw for NeoPixels in this guide (). Finally, it performs a delay loop to

©Adafruit Industries Page 37 of 44

https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/using-pio-to-drive-a-neopixel

ensure that multiple data transmissions have a gap between them, as required by the

NeoPixel protocol.

_program = Program(

 """

.side_set 1 opt

.wrap_target

 pull block side 0

 out y, 32 side 0 ; get count of NeoPixel bits

bitloop:

 pull ifempty side 0 ; drive low

 out x 1 side 0 [5]

 jmp !x do_zero side 1 [3] ; drive high and branch depending on bit val

 jmp y--, bitloop side 1 [4] ; drive high for a one (long pulse)

 jmp end_sequence side 0 ; sequence is over

do_zero:

 jmp y--, bitloop side 0 [4] ; drive low for a zero (short pulse)

end_sequence:

 pull block side 0 ; get fresh delay value

 out y, 32 side 0 ; get delay count

wait_reset:

 jmp y--, wait_reset side 0 ; wait until delay elapses

.wrap

 """

)

Next, a NeoPixel -like class is implemented. It needs to send the bit count first, then

the pixel data, and finally the delay amount; for this purpose, the header and trailer

arguments for PixelBuf are used.

Because of how the pixel data is organized, it has to be "byte-swapped" before

sending to the NeoPixels. Logic in _transmit also enables background writing if

auto_write is requested, otherwise it writes just once.

def _transmit(self, buf):

 if self._auto_write:

 if not self._auto_writing:

 self._sm.background_write(loop=memoryview(buf).cast("L"), swap=True)

 self._auto_writing = True

 else:

 self._sm.background_write(memoryview(buf).cast("L"), swap=True)

When used as a main program, it simply shows a rainbow on the configured NeoPixel

LEDs:

NEOPIXEL = board.NEOPIXEL

NUM_PIXELS = 12

pixels = NeoPixelBackground(NEOPIXEL, NUM_PIXELS)

while True:

 # Around 1 cycle per second

 pixels.fill(rainbowio.colorwheel(supervisor.ticks_ms() // 4))

©Adafruit Industries Page 38 of 44

Finish up our tour of the background_write feature with an example for controlling a la

rge number of RC Servo motors with a single State Machine ().

Advanced: Using PIO to control Servos with
Background Writes

The background_write feature added in CircuitPython 7.3 is especially handy to

take full advantage of the Servo 2040 board from Pimoroni: (Not familiar with servos

yet? Check out this guide () to learn about servos and how to use them in

CircuitPython)

Pimoroni Servo 2040 - RP2040 18

Channel Servo Controller

Build the hexapod/robot arm/other

articulated contraption of your dreams

with this all-in-one RP2040 powered

servo controller with current

measurement, sensor headers, and RGB...

https://www.adafruit.com/product/5437

This type of servo motor needs a control pulse of around 1ms to 2ms in length,

repeated every 20ms. A standard PWM peripheral can control one motor, but RP2040

only has 8 PWM peripherals. This presents a challenge: How to control all 18 at once?

Pimoroni has their own library for Arduino and MicroPython. Since it's open source,

the author of this guide peeked inside and saw that it could be possible in

CircuitPython too, with the addition of StateMachine.background_write . Here's

example code which will control 18 servo motors in oscillating fashion (though it is

also perfectly OK to do without plugging motors into every position)

SPDX-FileCopyrightText: 2022 Jeff Epler, written for Adafruit Industries

#

SPDX-License-Identifier: MIT

#

Heavy inspiration from Pimoroni's "PWM Cluster":

https://github.com/pimoroni/pimoroni-pico/blob/main/drivers/pwm/pwm_cluster.cpp

https://github.com/pimoroni/pimoroni-pico/blob/main/drivers/pwm/pwm_cluster.pio

import array

To reduce the potential for electrical damage, only plug or un-plug servo motors

when the power is off!

©Adafruit Industries Page 39 of 44

https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/advanced-control-servos-with-pio-and-background-writes
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython/advanced-control-servos-with-pio-and-background-writes
https://learn.adafruit.com/using-servos-with-circuitpython
https://www.adafruit.com/product/5437
https://www.adafruit.com/product/5437
https://www.adafruit.com/product/5437

import board

import rp2pio

import adafruit_ticks

import ulab.numpy as np

from adafruit_motor import servo

import adafruit_pioasm

_cycle_count = 3

_program = adafruit_pioasm.Program(

 """

.wrap_target

 out pins, 32 ; Immediately set the pins to their new state

 out y, 32 ; Set the counter

count_check:

 jmp y-- delay ; Check if the counter is 0, and if so wrap around.

 ; If not decrement the counter and jump to the delay

.wrap

delay:

 jmp count_check [1] ; Wait a few cycles then jump back to the loop

"""

)

class PulseItem:

 def __init__(self, group, index, phase, maxval):

 self._group = group

 self._index = index

 self._phase = phase

 self._value = 0

 self._maxval = maxval

 self._turn_on = self._turn_off = None

 self._mask = 1 << index

 @property

 def frequency(self):

 return self._group.frequency

 @property

 def duty_cycle(self):

 return self._value

 @duty_cycle.setter

 def duty_cycle(self, value):

 if value < 0 or value > self._maxval:

 raise ValueError(f"value must be in the range(0, {self._maxval+1})")

 self._value = value

 self._recalculate()

 @property

 def phase(self):

 return self._phase

 @phase.setter

 def phase(self, phase):

 if phase < 0 or phase >= self._maxval:

 raise ValueError(f"phase must be in the range(0, {self._maxval})")

 self._phase = phase

 self._recalculate()

 def _recalculate(self):

 self._turn_on = self._get_turn_on()

 self._turn_off = self._get_turn_off()

 self._group._maybe_update() # pylint: disable=protected-access

 def _get_turn_on(self):

©Adafruit Industries Page 40 of 44

 maxval = self._maxval

 if self._value == 0:

 return None

 if self._value == self._maxval:

 return 0

 return self.phase % maxval

 def _get_turn_off(self):

 maxval = self._maxval

 if self._value == 0:

 return None

 if self._value == self._maxval:

 return None

 return (self._value + self.phase) % maxval

 def __str__(self):

 return f"<PulseItem: {self.duty_cycle=} {self.phase=} {self._turn_on=}

{self._turn_off=}>"

class PulseGroup:

 def __init__(

 self,

 first_pin,

 pin_count,

 period=0.02,

 maxval=65535,

 stagger=False,

 auto_update=True,

): # pylint: disable=too-many-arguments

 """Create a pulse group with the given characteristics"""

 self._frequency = round(1 / period)

 pio_frequency = round((1 + maxval) * _cycle_count / period)

 self._sm = rp2pio.StateMachine(

 _program.assembled,

 frequency=pio_frequency,

 first_out_pin=first_pin,

 out_pin_count=pin_count,

 auto_pull=True,

 pull_threshold=32,

 **_program.pio_kwargs,

)

 self._auto_update = auto_update

 self._items = [

 PulseItem(self, i, round(maxval * i / pin_count) if stagger else 0,

maxval)

 for i in range(pin_count)

]

 self._maxval = maxval

 @property

 def frequency(self):

 return self._frequency

 def __enter__(self):

 return self

 def __exit__(self, exc_type, exc_value, traceback):

 self.deinit()

 def deinit(self):

 self._sm.deinit()

 del self._items[:]

 def __getitem__(self, i):

 """Get an individual pulse generator"""

 return self._items[i]

 def __len__(self):

©Adafruit Industries Page 41 of 44

 return len(self._items)

 def update(self):

 changes = {0: [0, 0]}

 for i in self._items:

 turn_on = i._turn_on # pylint: disable=protected-access

 turn_off = i._turn_off # pylint: disable=protected-access

 mask = i._mask # pylint: disable=protected-access

 if turn_on is not None:

 this_change = changes.get(turn_on)

 if this_change:

 this_change[0] |= mask

 else:

 changes[turn_on] = [mask, 0]

 # start the cycle 'on'

 if turn_off is not None and turn_off < turn_on:

 changes[0][0] |= mask

 if turn_off is not None:

 this_change = changes.get(turn_off)

 if this_change:

 this_change[1] |= mask

 else:

 changes[turn_off] = [0, mask]

 def make_sequence():

 sorted_changes = sorted(changes.items())

 # Note that the first change time is always 0! Loop over range(len) is

 # to reduce allocations

 old_time = 0

 value = 0

 for time, (turn_on, turn_off) in sorted_changes:

 if time != 0: # never occurs on the first iteration

 yield time - old_time - 1

 old_time = time

 value = (value | turn_on) & ~turn_off

 yield value

 # the final delay value

 yield self._maxval - old_time

 buf = array.array("L", make_sequence())

 self._sm.background_write(loop=buf)

 def _maybe_update(self):

 if self._auto_update:

 self.update()

 @property

 def auto_update(self):

 return self.auto_update

 @auto_update.setter

 def auto_update(self, value):

 self.auto_update = bool(value)

 def __str__(self):

 return f"<PulseGroup({len(self)})>"

class CyclicSignal:

 def __init__(self, data, phase=0):

 self._data = data

 self._phase = 0

©Adafruit Industries Page 42 of 44

 self.phase = phase

 self._scale = len(self._data) - 1

 @property

 def phase(self):

 return self._phase

 @phase.setter

 def phase(self, value):

 self._phase = value % 1

 @property

 def value(self):

 idxf = self._phase * len(self._data)

 idx = int(idxf)

 frac = idxf % 1

 idx1 = (idx + 1) % len(self._data)

 val = self._data[idx]

 val1 = self._data[idx1]

 return val + (val1 - val) * frac

 def advance(self, delta):

 self._phase = (self._phase + delta) % 1

if __name__ == "__main__":

 pulsers = PulseGroup(board.SERVO_1, 18, auto_update=False)

 # Set the phase of each servo so that servo 0 starts at offset 0ms, servo 1

 # at offset 2.5ms, ...

 # For up to 8 servos, this means their duty cycles do not overlap. Otherwise,

 # servo 9 is also at offset 0ms, etc.

 for j, p in enumerate(pulsers):

 p.phase = 8192 * (j % 8)

 servos = [servo.Servo(p) for p in pulsers]

 sine = np.sin(np.linspace(0, 2 * np.pi, 50, endpoint=False)) * 0.5 + 0.5

 print(sine)

 signals = [CyclicSignal(sine, j / len(servos)) for j in range(len(servos))]

 t0 = adafruit_ticks.ticks_ms()

 while True:

 t1 = adafruit_ticks.ticks_ms()

 for servo, signal in zip(servos, signals):

 signal.advance((t1 - t0) / 8000)

 servo.fraction = signal.value

 pulsers.update()

 print(adafruit_ticks.ticks_diff(t1, t0), "ms")

 t0 = t1

The key technique, which the author became aware of through Pimoroni's open

source code, is to organize the PIO's data as pairs of numbers: First, 32 bits to give

the new value of up to 32 output pins; Second, an additional 32 bits to give the length

of time the pins should be held with this value.

The Python code simply needs to consider all the individual PWM signals in turn, and

assemble a list of steps that mean something like "Turn off everything. Wait 1.5ms,

then turn on output 1. Wait 1 ms, then turn off output 1 and turn on output 2. Wait

1.75ms", and so on. In order to meet the requirements of servo motors, the whole list

of steps is carefully controlled to take exactly 20 milliseconds to follow. Then, Python

©Adafruit Industries Page 43 of 44

sends the list of steps to the PIO module to be looped "forever", or until the next list of

steps is calculated and sent.

Note that the "list of steps" are sent as data to the PIO. This is distinct from the pio

program, which in effect interprets the list of steps.

_program = adafruit_pioasm.Program(

 """

.wrap_target

 out pins, 32 ; Immediately set the pins to their new state

 out y, 32 ; Set the counter

count_check:

 jmp y-- delay ; Check if the counter is 0, and if so wrap around.

 ; If not decrement the counter and jump to the delay

.wrap

delay:

 jmp count_check [1] ; Wait a few cycles then jump back to the loop

"""

)

To try out the code, simply copy it to a Pimoroni Servo 2040 board loaded with

CircuitPython 7.3.0 or newer (or other RP2040 board, just change the code to use a

different starting pin instead of board.SERVO_1) and hook up some RC servo motors

to the appropriate headers.

The code is quite lengthy, but provides a class that can be useful in other code. A

PulseGroup acts like a collection of PWM objects, each of which behaves similarly

enough to pulseio.PWMOut to work with the Adafruit-CircuitPython-Motor library.

Even better, by setting the phase of each PWM output separately, the overlap of the

pulses for different motors can be minimized or eliminated, which may decrease peak

current usage.

PulseGroup could be used for other tasks as well, like controlling the brightness of

multiple LEDs.

There are bound to be other uses for the background write capability. Why not code

one up and submit a new example on our GitHub ()?

API Documentation: adafruit_pioasm

API Documentation: adafruit_pioasm ()

API Documentation: rp2pio

API Documentation: rp2pio ()

©Adafruit Industries Page 44 of 44

https://github.com/adafruit/Adafruit_CircuitPython_PIOASM
https://circuitpython.readthedocs.io/projects/pioasm/en/latest/
https://circuitpython.readthedocs.io/en/latest/shared-bindings/rp2pio/index.html

	An Introduction to RP2040 PIO with CircuitPython
	Table of Contents
	Overview
	Installing CircuitPython
	Installing the Mu Editor
	Installing Libraries
	Using PIO to turn an LED on and off
	Using PIO to control LED brightness
	Using PIO to blink a LED quickly or slowly
	Using PIO to drive a NeoPixel
	Advanced: Generating Morse Code with Background Writes
	Advanced: Driving 7-segment displays with Background Writes
	Advanced: Using PIO to drive NeoPixels "in the background"
	Advanced: Using PIO to control Servos with Background Writes
	API Documentation: adafruit_pioasm
	API Documentation: rp2pio

	Overview
	Major differences between pio in CircuitPython compared to standard pioasm
	mov operator restrictions
	Expressions are not supported
	Interrupts are not supported
	Products

	Installing CircuitPython
	CircuitPython Quickstart
	Flash Resetting UF2

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Installing Libraries
	Using PIO to turn an LED on and off
	Code Walkthrough

	Using PIO to control LED brightness
	Code Walkthrough

	Using PIO to blink a LED quickly or slowly
	Code Walkthrough

	Using PIO to drive a NeoPixel
	Parts
	Full Code Listing
	Code Walk-through

	Advanced: Generating Morse Code with Background Writes
	Advanced: Driving 7-segment displays with Background Writes
	Parts
	Wiring

	Advanced: Using PIO to drive NeoPixels "in the background"
	Advanced: Using PIO to control Servos with Background Writes
	API Documentation: adafruit_pioasm
	API Documentation: rp2pio

