
Introducing Adafruit PyGamer
Created by Kattni Rembor

Last updated on 2021-05-19 05:48:19 PM EDT



2
7

12
12
12
12
13
15
15
17
19
19
20
20
25
26
27
28
29
30
31
32
32
33
35
36
36
38
39
39
40
40
40
43
43
43
45
45
47
48
48
49
49
50
51
51
51
52
52
53

Guide Contents

Guide Contents
Overview
Which Board?
Similarities
Differences between PyGamer and PyBadge/PyBadge LC
Differences between PyBadge & PyBadge LC
Comparison Table
Update the PyGamer Bootloader

Updating Your PyGamer Bootloader
Oh no, I updated MacOS already and I can't see the boot drive!

Pinouts
Microcontroller and Flash
Power
Display

Build the PyGamer Case
Prep
Paper Protection
Speaker
Battery
Button Caps
Case Layers
Spacers
Backing
Fasteners

Load a MakeCode Game on PyGamer/PyBadge
Board Definition
Change Board screen
Bootloader Mode
Drag and Drop
Play!

CircuitPython
Set up CircuitPython Quick Start!
Further Information

Installing Mu Editor
Download and Install Mu
Using Mu
Creating and Editing Code

Creating Code
Editing Code

Your code changes are run as soon as the file is done saving.
1. Use an editor that writes out the file completely when you save it.
2. Eject or Sync the Drive After Writing
Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Back to Editing Code...
Exploring Your First CircuitPython Program

Imports & Libraries
Setting Up The LED
Loop-de-loops
What Happens When My Code Finishes Running?
What if I don't have the loop?

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 2 of 153



54
54
55
55
56
57
58
62
66
67
68
69
70
70
71
72
73
73
73
74
75
76
77
78
78
78
79
81
81
83
84
87
87
88
89
90
92
92
92
93
94
95
96
96
97
97
97
97
98
98

More Changes
Naming Your Program File
Connecting to the Serial Console
Are you using Mu?

Setting Permissions on Linux
Using Something Else?
Interacting with the Serial Console
The REPL
Returning to the serial console
CircuitPython Libraries

Installing the CircuitPython Library Bundle
Example Files

Copying Libraries to Your Board
Example: ImportError Due to Missing Library
Library Install on Non-Express Boards
Updating CircuitPython Libraries/Examples

CircuitPython Pins and Modules
CircuitPython Pins

import board
I2C, SPI, and UART
What Are All the Available Names?
Microcontroller Pin Names

CircuitPython Built-In Modules
Advanced Serial Console on Windows
Windows 7 Driver
What's the COM?
Install Putty
Advanced Serial Console on Mac and Linux
What's the Port?
Connect with screen
Permissions on Linux
Welcome to the Community!

Adafruit Discord
Adafruit Forums
Adafruit Github
ReadTheDocs

Frequently Asked Questions
I have to continue using an older version of CircuitPython; where can I find compatible libraries?
Is ESP8266 or ESP32 supported in CircuitPython? Why not?
How do I connect to the Internet with CircuitPython?
Is there asyncio support in CircuitPython?
My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
What is a MemoryError?
What do I do when I encounter a MemoryError?
Can the order of my import statements affect memory?
How can I create my own .mpy files?
How do I check how much memory I have free?
Does CircuitPython support interrupts?
Does Feather M0 support WINC1500?
Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 3 of 153



98
99
99

99
99

100
100
100
100
100

101
102
102
102
102
103
104
104
105
105
107

107
107
107
108
108
108
109
110

111
112
112

112
113
116
117

119
119
120
121
123
124
125
125
126
127
127

Commonly Used Acronyms
Troubleshooting
Always Run the Latest Version of CircuitPython and Libraries
I have to continue using CircuitPython 5.x, 4.x, 3.x or 2.x, where can I find compatible
libraries?
CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present

You may have a different board.
MakeCode
MacOS
Windows 10
Windows 7 or 8.1

Windows Explorer Locks Up When Accessing boardnameBOOT Drive
Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
CIRCUITPY Drive Does Not Appear
Windows 7 and 8.1 Problems
Serial Console in Mu Not Displaying Anything
CircuitPython RGB Status Light
ValueError: Incompatible .mpy file.
CIRCUITPY Drive Issues

Easiest Way: Use storage.erase_filesystem()
Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger,
Arduino Zero):

Running Out of File Space on Non-Express Boards
Delete something!
Use tabs
MacOS loves to add extra files.
Prevent & Remove MacOS Hidden Files
Copy Files on MacOS Without Creating Hidden Files
Other MacOS Space-Saving Tips

Device locked up or boot looping
Uninstalling CircuitPython

Backup Your Code
Moving Circuit Playground Express to MakeCode
Moving to Arduino
Arduino IDE Setup

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json
Using with Arduino IDE
Install SAMD Support
Install Adafruit SAMD
Install Drivers (Windows 7 & 8 Only)
Blink
Successful Upload
Compilation Issues
Manually bootloading
Ubuntu & Linux Issue Fix
Arcada Libraries
Install Libraries

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 4 of 153



127
127
128

128
128
128
128
129
129
129
129
130

130
130
130
131
131
131

131
132
134
135
135
135
135
136
137
138
138
138
138
139
140
140
140
141
141
141
142
142
142
143
143
144
144
144

145
146

Adafruit Arcada
If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!
Adafruit NeoPixel

Adafruit FreeTouch
Adafruit Touchscreen

Adafruit SPIFlash
Adafruit Zero DMA
Adafruit GFX
Adafruit ST7735
Adafruit ILI9341
Adafruit LIS3DH
Adafruit Sensor

Adafruit ImageReader
ArduinoJson
Adafruit ZeroTimer
Adafruit TinyUSB
Adafruit WavePlayer

SdFat (Adafruit Fork)
Audio - Adafruit Fork
Arduino Test
Graphics Demos
Arcada Library
Initialization
Joystick & Buttons
Backlight, Speaker and Sensors
Alert Boxes
Arcada Library Docs
Adapting Sketches to M0 & M4
Analog References
Pin Outputs & Pullups
Serial vs SerialUSB
AnalogWrite / PWM on Feather/Metro M0
analogWrite() PWM range
analogWrite() DAC on A0
Missing header files
Bootloader Launching
Aligned Memory Access
Floating Point Conversion
How Much RAM Available?
Storing data in FLASH
Pretty-Printing out registers
M4 Performance Options

CPU Speed (overclocking)
Optimize
Cache
Max SPI and Max QSPI

Enabling the Buck Converter on some M4 Boards
Downloads

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 5 of 153



146
146
146
147
148
149
149
149

Files:
Fab Print
Schematic
Laser Cut Acrylic Case
3D Model
Troubleshooting

Digi-Key x Adafruit Order Shipper Game
Screen Adhesive Fix

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 6 of 153



Overview

What fits in your pocket, is fully Open Source, and can run CircuitPython, MakeCode Arcade or Arduino

games you write yourself? That's right, it's the Adafruit PyGamer! We wanted to make an entry-level

gaming handheld for DIY gaming, and maybe a little retro-emulation. It's not the fastest and best of

everything but it is an all-in-one dev board with a lot of possibilities!

The PyGamer is powered by our favorite chip, the ATSAMD51, with 512KB of flash and 192KB of RAM. We

add 8 MB of QSPI flash for file storage, handy for images, fonts, sounds, or game assets.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 7 of 153



On the front you get a 1.8" 160x128 color TFT display with dimmable backlight - we have fast DMA support

for drawing so updates are incredibly fast. A dual-potentiometer analog stick gives you great control, with

easy diagonal movement - or really any direction you like. There's also 4 square-top buttons, which fit our

square top button caps (https://adafru.it/ET7). The buttons are arranged to mimic a gaming handheld, with

2 menu-select buttons and 2 fire-action buttons. There's also 5 NeoPixel LEDs to dazzle or track activity.

On the back we have a full Feather-compatible header socket set, so you can plug in any FeatherWing to

expand the capabilities of the PyGamer. There's also 3 STEMMA connectors - two 3-pin with ADC/PWM

capability and one 4-pin that connects to I2C - you can use this for Grove sensors as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 8 of 153

https://www.adafruit.com/product/4228


For built in sensors, there's a light sensor that points out the front, and a 3-axis accelerometer that can

detect taps and free-fall. To make bleeps and bloops, plug in any set of stereo headphones. For projects

where you need more volume, you can plug in one of our 8 ohm speakers (https://adafru.it/CEv). The

PyGamer will auto-switch to speakers when they're plugged in.

You can power the PyGamer from any of our LiPoly batteries  (https://adafru.it/waX), but we like this

350mAh one (https://adafru.it/kBj) which will fit into the acrylic case. An on-off switch will save battery

power when not in use. Or power from the Micro USB port - it will also charge up the battery if one is

attached.

Now, how to program it? Well you've got a lot of options!

MakeCode Arcade is the easiest to start for making games , you can drag-and-drop blocks and load

games over the disk-drive bootloader (https://adafru.it/DCY)

CircuitPython (https://adafru.it/FxM) lets you draw graphics, play wave files and print out text in any

fonts - all in Python! There's tons of sensor support as well.

Arduino is low level, powerful, but a little more challenging. You can use Adafruit

Arcada (https://adafru.it/EF5) to interface with the hardware and it will abstract some of the nitty-gritty

details like reading buttons for you.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 9 of 153

https://www.adafruit.com/product/3923
https://www.adafruit.com/category/574
https://www.adafruit.com/product/2750
https://arcade.makecode.com/
https://circuitpython.org/board/pygamer/
https://github.com/adafruit/Adafruit_Arcada


Here's a list of everything you get

ATSAMD51J19 @ 120MHz with 3.3V logic/power - 512KB of FLASH + 192KB of RAM

8 MB of QSPI Flash  for storing images, sounds, animations, whatever!

Micro SD Card Slot for storing even more stuff when the QSPI flash isn't enough

1.8" 160x128 Color TFT Display  connected to its own SPI port

1 x Analog Thumbstick with X and Y analog inputs

4 x Game/Control Buttons with square tops

5 x NeoPixels for dazzle, or game score-keeping

Triple-axis accelerometer (motion sensor)

Light sensor, reverse-mount so that it points out the front

Stereo headphone jack

Mono Class-D speaker driver  for 4-8 ohm speakers, up to 2 Watts

LiPoly battery port with built in recharging capability

USB port for battery charging, programming and debugging

Two female header strips with Feather-compatible pinout so you can plug any FeatherWings in

JST ports for NeoPixels, sensor input, and I2C (you can fit I2C Grove connectors in here)

Reset button

On-Off switch

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 10 of 153



 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 11 of 153



Which Board?

We have a few very similar boards in the PyGamer/PyBadge family - you may wonder which one you want!

Well here will will outline it for you.

Basically, PyGamer has the most stuff and is more expensive. PyBadge is in the middle, has a lot of stuff,

and PyBadge LC is low cost, very minimal!

Similarities
All the boards use the SAMD51 microcontroller, which runs at 120MHz (but we often overclock to

200MHz)

All the boards have onboard QSPI storage of some size

All the boards have a display

All the boards have an on/off switch and reset button

All the boards can run Arduino, CircuitPython and Microsoft MakeCode Arcade

All have some way to control direction (X & Y) as well as 4 buttons

All have at least one NeoPixel

All have a light sensor

Differences between PyGamer and
PyBadge/PyBadge LC

PyGamer has an Analog Joystick instead of PyBadge's 4x D-Pad buttons, which makes it easier to

use for gaming

PyGamer has a stereo headphone jack - the PyBadges do not

PyGamer has a connector for a loud speaker but does not have a simple buzzer built in  (we expect

you to use the nicer loud speaker or headphone jack)

PyGamer has an SD card slot - the PyBadges do not

PyGamer has an 8 MB QSPI  Flash chip - the PyBadges have the smaller 2MB

Differences between PyBadge & PyBadge LC
PyBadge LC does not have a connector for a loudspeaker , both have a simple buzzer.

PyBadge LC does not have a Feather Header set on the back

PyBadge LC does not have STEMMA connectors for quick hardware addition

PyBadge LC does not have an accelerometer

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 12 of 153



Comparison Table

Adafruit PyGamer for MakeCode Arcade, CircuitPython or Arduino
What fits in your pocket, is fully Open Source, and can run CircuitPython, MakeCode Arcade or Arduino games you write yourself? That's

right, it's the Adafruit...

$39.95
In Stock

Feature PyGamer PyBadge PyBadge LC

Processor SAMD51J19 SAMD51J19 SAMD51J19

FLASH/RAM 512KB / 192KB 512KB / 192KB 512KB / 192KB

QSPI FLASH 8MB 2MB 2MB

On/Off & Reset Switches Yes Yes Yes

LiPoly Battery Charging Yes Yes Yes

X & Y Controls Analog Thumbstick 4 Button D-Pad 4 Button D-Pad

A / B / Select / Start Yes Yes Yes

Built-in buzzer/beeper No Yes Yes

Connection for Speaker Yes Yes No

Stereo Headphone Jack Yes No No

Display 160x128 Color TFT 160x128 Color TFT 160x128 Color TFT

NeoPixels 5 5 1

Micro-SD Card Yes No No

Light Sensor Yes Yes Yes

Accelerometer Yes Yes No

FeatherWing Headers Yes Yes No

STEMMA Connectors Yes Yes No

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 13 of 153

https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4242


Adafruit PyBadge for MakeCode Arcade, CircuitPython, or Arduino
What's the size of a credit card and can run CircuitPython, MakeCode Arcade or Arduino? That's right, its the Adafruit PyBadge! We

wanted to see how much we...

$34.95
In Stock

Adafruit PyBadge LC - MakeCode Arcade, CircuitPython, or Arduino
What's the size of a credit card and can run CircuitPython, MakeCode Arcade or Arduino even when you're on a budget? That's right, it's

the Adafruit...

$24.95
In Stock

 

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 14 of 153

https://www.adafruit.com/product/4200
https://www.adafruit.com/product/4200
https://www.adafruit.com/product/3939
https://www.adafruit.com/product/3939


Update the PyGamer Bootloader

Your PyGamer may need its bootloader updated for several reasons.

Bootloaders earlier than v3.9.0 do not protect against a rare problem in which part of internal flash is

erased on startup.

Starting with MacOS 10.14.4, Apple changed how USB devices are recognized on certain Macs. This

caused a timing problem with boards that were loaded with a MakeCode program, preventing

the PYGAMERBOOT  drive from appearing. Also the A and B buttons will be reversed in MakeCode if your

bootloader is too old.

Updating Your PyGamer Bootloader

To see if you need to update your bootloader, get the UF2 boot drive to appear on your board. If you're

running MakeCode, click the reset button once. If you're running CircuitPython or an Arduino program,

double-click the reset button.

When you see PYGAMERBOOT , click the PYGAMERBOOT  drive in the Finder and then double-click the

INFO_UF2.TXT  file to see what's inside.

The bootloader version is listed in INFO_UF2.TXT . In this example, the version is v3.6.0.

Update the PyGamer Bootloader to prevent a problem with MacOS 10.14.4 and to fix button 

problems, and to prevent occasional damage to the loaded program.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 15 of 153



If the bootloader version you see is smaller than "v3.9.0", you need to update. For instance, the bootloader

above needs to be upgraded.

Download the latest version of the PyGamer bootloader updater from the circuitpython.org Downloads

page.

https://adafru.it/FxM

The bootloader updater will be named update-bootloader-arcade_pygamer-v3.9.0.uf2  or some later version.

Drag that file from your Downloads  folder onto the bootloader drive: ARCADE-D5 , GAMERBOOT , or

PYGAMERBOOT .

https://adafru.it/FxM

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 16 of 153

https://circuitpython.org/board/pygamer/


After you drag the updater onto the boot drive, the red LED on the board will flicker and then blink slowly

about five times. A few seconds later, PYGAMERBOOT  will appear in the Finder. After that, you can click

on PYGAMERBOOT  and double-click INFO_UF2.TXT  again to confirm you've updated the bootloader.

Oh no, I updated MacOS already and I can't see the boot drive!

If your Mac has already been updated to MacOS 10.14.4 and now you can't see a boot drivein the Finder,

you need to find another computer that will work. Not all upgraded Macs will fail to show the boot drive:

older ones can work. Or find a Mac that hasn't been upgraded yet. Any Windows 10 or Linux computer

should work for upgrading your bootloader. Windows 7 computers will need drivers

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 17 of 153

https://learn.adafruit.com/adafruit-circuit-playground-express/adafruit2-windows-driver-installation


installed (https://adafru.it/Bf7), but then can work.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 18 of 153



Pinouts

The PyGamer is a DIY handheld gaming development platform, and it's loaded with all sorts of goodies.

The front features a display, buttons, a joystick, RGB LEDs, and a light sensor.

The back features a speaker connector, headphone jack, SD card slot, battery connector, peripheral

connectors, an accelerometer and more. Let's take a look!

Microcontroller and Flash

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 19 of 153



The main processor chip is the ATSAMD51J19

Cortex M4 running at 120MHz with 3.3v logic/power.

It has 512KB of Flash and 192KB of RAM.

We also include 8 MB of QSPI Flash for storing

images, sounds, animations, whatever.

Power

The On/Off switch is located on the top.

There is one USB port on the board. On the left side,

towards the bottom, is a USB Micro port, which is

used for powering and programming the board.

There's two ways to power your PyBadge. The best

way is to plug in a 3.7/4.2V Lipoly battery into the

JST 2-PH port. You can then recharge the battery

over the Micro USB jack. You can also just run the

board directly from Micro USB, it will automatically

'switch over' to USB power when that's plugged in.

Pin A6 is connected to a voltage divider which gives

half the current battery voltage. You can read the

battery voltage by using the Arcada library function

readBatterySensor() (it multiplies by two to give the

actual voltage), by using analogRead(A6) in Arduino,

or by using analogio.AnalogIn(board.A6) in

CircuitPython.

Display

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 20 of 153

https://learn.adafruit.com//assets/75947
https://learn.adafruit.com//assets/75950


1.8" TFT display - The front features a 160x128 pixel

color display.

On/Off switch - Powers off the board. Even if

plugged in, the board won't work if switched to off.

You can charge the battery when the board is off,

but the USB device will not be active or any other

electronics

The reset button is located on the top to the right of

center. Click it once to re-start your firmware. Click

twice to enter bootloader mode.

Light sensor (A7)  - There is an ambient light sensor

on the top, which points through to the front. The

light sensor is an analog input, connected to

board.LIGHT  (CircuitPython) or A7  (Arduino) you can

read it as any analog value ranging from 0 (dark) to

1023 (in Arduino) or 65535 (CircuitPython) when

bright.

NeoPixels (D8) - There are also 5 individually

addressable RGB NeoPixel LEDs located on the

front of the board along the bottom middle. The are

connected to board.NEOPIXEL  (CircuitPython) or 8
(Arduino)

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 21 of 153

https://learn.adafruit.com//assets/75955
https://learn.adafruit.com//assets/75952
https://learn.adafruit.com//assets/75951


Accelerometer - There is an accelerometer located

near the middle, above the I2C connector. It is an

LIS3DH.

Light sensor (A7)  - There is also an ambient light

sensor on the top, which points through to the front.

The light sensor is an analog input, connected to

board.LIGHT  (CircuitPython) or A7  (Arduino) you can

read it as any analog value ranging from 0 (dark) to

1023 (in Arduino) or 65535 (CircuitPython) when

bright.

There is a speaker connector on the left side of the

back, which is a Molex

PicoBlade (https://adafru.it/C8p). You can attach one

of the speakers available in the Adafruit shop.

There is also a stereo headphone jack on the left

top.

For gaming interface, there are 4 buttons and an analog

thumbstick

There is a thumb joystick on the left side of the board. The thumb joystick is a dual potentiometer, one pot

for X axis and one for Y axis. You can read the two analog values to determine the position of the joystick.

For example, the reading will be at 0V (ground) when the X axis is all the way to the left and 3.3V (analog-

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 22 of 153

https://learn.adafruit.com//assets/75946
https://learn.adafruit.com//assets/75949
https://www.digikey.com/product-detail/en/molex-llc/0532610271/WM7620CT-ND/699107
https://learn.adafruit.com//assets/75954


max) when the stick is all the way to the right. Arduino A11  is joystick X, and Y is A10 .

uint16_t joyy = analogRead(A10);
uint16_t joyx = analogRead(A11);

In CircuitPython they are just named JOYSTICK_X  and JOYSTICK_Y

joystick_x = analogio.AnalogIn(board.JOYSTICK_X) 
joystick_y = analogio.AnalogIn(board.JOYSTICK_Y)

For information on reading the values, check out the Reading Analog Pin Values section of the

CircuitPython Essentials Analog In page (https://adafru.it/Bep).

There are four buttons: A, B, select and start. These four pads are not connected to GPIO pins. Instead,

they are connected to a latch via 3 digital pins that will read up to 8 inputs and send the data over one bit

at a time. If using Arduino, this psuedo-code snippet will read the 8 bits for you. A 0 bit indicates no press.

A 1 bit indicates a press.

#define BUTTON_CLOCK   48
#define BUTTON_DATA    49
#define BUTTON_LATCH   50

uint8_t read_buttons() {
    uint8_t result = 0;

    pinMode(BUTTON_CLOCK, OUTPUT);
    digitalWrite(BUTTON_CLOCK, HIGH);
    pinMode(BUTTON_LATCH, OUTPUT);
    digitalWrite(BUTTON_LATCH, HIGH);
    pinMode(BUTTON_DATA, INPUT);
  
    digitalWrite(BUTTON_LATCH, LOW);
    digitalWrite(BUTTON_LATCH, HIGH);

    for(int i = 0; i < 8; i++) {
      result <<= 1;
      //Serial.print(digitalRead(BUTTON_DATA)); Serial.print(", ");
      result |= digitalRead(BUTTON_DATA);
      digitalWrite(BUTTON_CLOCK, HIGH);
      digitalWrite(BUTTON_CLOCK, LOW);
    }
    Serial.println();
    return result;
}

But we would recommend using Arcada instead, where a lot of this abstraction is handled for

you (https://adafru.it/EF5)

In CircuitPython, use the GamePadShift library to read the button presses for you:

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 23 of 153

https://learn.adafruit.com/circuitpython-essentials/circuitpython-analog-in#reading-analog-pin-values-5-15
https://github.com/adafruit/Adafruit_Arcada


pad = GamePadShift(digitalio.DigitalInOut(board.BUTTON_CLOCK),
                   digitalio.DigitalInOut(board.BUTTON_OUT),
       digitalio.DigitalInOut(board.BUTTON_LATCH))
pressed = pad.get_pressed()

More info on GamePadShift is here (https://adafru.it/F9O)

There is a 4-pin JST I2C connector in the center on

the bottom, that is STEMMA and Grove compatible.

You can access VCC power and ground as well as a

level-shifted SDA  & SCL  connection. You can

change VCC from 5V (default) to 3V by

cutting/soldering the solder jumper to the right of

the D3 connector.

On the bottom are two connectors labeled D2  and

D3 . These are 3-pin JST digital or analog

connectors for sensors or NeoPixels. These pins can

be analog inputs or digital I/O. D2 is also known as

A8 , D3 is also known as A9  for analog reads.

You can easily attach FeatherWings to the back of

your PyBadge using the convenient "Feather

Headers" on the back. Located in the middle, they

break out all the same pins you have access to on a

Feather board, allowing use of any of our wide range

of FeatherWings. Easily add all kinds of functionality

to your PyBadge! The GPIO is all 3.3V logic.

On the back, there is a micro SD card slot. Insert a

micro SD card for even more storage for more

games, images, sounds, etc.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 24 of 153

https://circuitpython.readthedocs.io/en/latest/shared-bindings/gamepadshift/GamePadShift.html
https://learn.adafruit.com//assets/75938
https://learn.adafruit.com//assets/75936
https://learn.adafruit.com//assets/75994


Build the PyGamer Case

Here's how to assemble the laser cut acrylic case for the PyGamer. The kit comes with seven pieces of

acrylic, and four screws and nuts. You've got ten button caps to pick from (you'll pick four), and you'll also

want to connect the speaker and battery for the full portable experience.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 25 of 153



Prep
If you haven't already, remove the clear plastic screen

protector film from the PyGamer display.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 26 of 153

https://learn.adafruit.com//assets/76822
https://learn.adafruit.com//assets/76823


Paper Protection
Remove the protective paper backing from both sides of

all the acrylic pieces.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 27 of 153

https://learn.adafruit.com//assets/76826
https://learn.adafruit.com//assets/76827
https://learn.adafruit.com//assets/76828


Speaker
Plug the speaker into the speaker port on the PyGamer.

Then, remove the white oval plastic ring to expose the

adhesive and press the speaker to the PyGamer where

the silkscreen oval outline indicates.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 28 of 153

https://learn.adafruit.com//assets/76829
https://learn.adafruit.com//assets/76830
https://learn.adafruit.com//assets/76831


Battery
Plug the battery into the on-board connector. Very

carefully, bend the wires so that the battery fits the spot

shown.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 29 of 153

https://learn.adafruit.com//assets/76832
https://learn.adafruit.com//assets/76833
https://learn.adafruit.com//assets/76834


Button Caps
Pick four of the button caps and click them into place on

the square shafts of the buttons. Which color combo will

you choose?!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 30 of 153

https://learn.adafruit.com//assets/76835
https://learn.adafruit.com//assets/76836
https://learn.adafruit.com//assets/76837


Case Layers
The case assembly is pretty simple. Place the clear top

side piece on as shown.

Next, place the smoked gray piece on.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 31 of 153

https://learn.adafruit.com//assets/76838
https://learn.adafruit.com//assets/76839


Spacers
Flip the board over, then place the four spacer pieces onto

the back as shown.

Backing
The last piece to go on is the thin bottom layer with the

Feather header cutouts.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 32 of 153

https://learn.adafruit.com//assets/76840
https://learn.adafruit.com//assets/76841
https://learn.adafruit.com//assets/76842


Fasteners
Push the four screws through from front to back, being

sure they go through the holes in all layers and the

PyGamer.

Screw on the nuts to secure things. Hand tight is fine --

you don't want to crack anything by using excessive force.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 33 of 153

https://learn.adafruit.com//assets/76843
https://learn.adafruit.com//assets/76844


That's all there is to it -- you're ready to play with your PyGamer in its excellent, stylish case!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 34 of 153



Load a MakeCode Game on PyGamer/PyBadge

Let's load a game! For example, here's a link to Run, Blinka, Run! To open the game in the MakeCode

Arcade editor, first, click the share link below. This will allow you to play the game in the browser right

away.

https://adafru.it/Fqf

Then, click on the Show Code button in the upper left

corner. The shows the code for the game, and by clicking

the Edit button in the upper right corner, it'll open into the

editor where you can upload it to your PyGamer/PyBadge.

Once you have a game working on the MakeCode Arcade

web editor, it's time to download it and flash it onto your

board.

https://adafru.it/Fqf

Please only use the Google Chrome browser with MakeCode! It has WebUSB support and seems 

to work best
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 35 of 153

https://makecode.com/_Y90aTaiHfh41
https://learn.adafruit.com//assets/78777
https://learn.adafruit.com//assets/78778


Board Definition
In order to load a game made in MakeCode Arcade onto

the PyBadge, first choose the proper board definition

inside of MakeCode. Click the gear icon and then the

Change Board item.

Change Board screen

Click on the image of your board, either the

PyBadge/PyBadge LC or the PyGamer

This will cause the game .uf2 file for your particular board to be saved to your hard drive. You only need to

do this the first time you use a new board. Thereafter you can simply click the Download button on the

MakeCode Arcade editor page.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 36 of 153

https://learn.adafruit.com//assets/74941
https://learn.adafruit.com//assets/78781


A HUUUUUUGE number of people have problems because they pick a 'charge only' USB cable 

rather than a "Data/Sync" cable. Make 100% sure you have a good quality syncing cable. Srsly, I 

can't even express how many times people have nearly given up due to a flakey USB cable!
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 37 of 153



Bootloader Mode
Now, we'll put the board into bootloader mode so we can

drag on the saved .uf2 file. On the back side of the board

you'll see a reset button at the top. Make sure the board is

plugged into your computer via USB with a USB micro B to

A data cable. Also, be sure the board is turned on.

 

Then, press the reset button. This will initiate bootloader

mode.

 

When the board is in bootloader mode you'll see a screen

similar to this one show up.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 38 of 153

https://learn.adafruit.com//assets/74945
https://learn.adafruit.com//assets/74991
https://learn.adafruit.com//assets/74992


Drag and Drop
Now that the board is in bootloader mode, you should see

a BADGEBOOT drive show up on your computer as a USB

flash drive. Simply drag the arcade game .uf2 file onto the

drive.

Play!

That's all there is to it! Once the file is copied over the board will restart and launch the game!

Keep an eye on Adafruit.com for additional game related content.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 39 of 153

https://learn.adafruit.com//assets/74944


CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to simplify

experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping

by requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY flash

drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already installed

CircuitPython but are looking to update it or reinstall it, the same steps work for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

https://adafru.it/FxM

Further Information

For more detailed info on installing CircuitPython, check out Installing CircuitPython (https://adafru.it/Amd).

Click the link above and download the latest UF2 file.

Download and save it to your desktop (or wherever is

handy).

https://adafru.it/FxM

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 40 of 153

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pygamer/
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com//assets/76054


Plug your PyGamer into your computer using a known-

good USB cable.

A lot of people end up using charge-only USB cables and

it is very frustrating! So make sure you have a USB cable

you know is good for data sync.

Double-click the Reset button on the top of your board

(indicated by the red arrow in the first image). You will see

an image on the display instructing you to drag a UF2 file

to your board, and the row of NeoPixel RGB LEDs on the

front will turn green (indicated by the green arrow and

square in the image). If they turn red, check the USB

cable, try another USB port, etc.

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

You will see a new disk drive appear called

PYGAMERBOOT.

 

Drag the adafruit_circuitpython_etc.uf2 file to

PYGAMERBOOT.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 41 of 153

https://learn.adafruit.com//assets/76055
https://learn.adafruit.com//assets/76056
https://learn.adafruit.com//assets/76057


The LEDs will flash. Then, the PYGAMERBOOT drive will

disappear and a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 42 of 153

https://learn.adafruit.com//assets/76058


Installing Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and

works on Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get

immediate feedback from your board's serial output!

Download and Install Mu

Download Mu

from https://codewith.mu (https://adafru.it/Be6). Click

the Download or Start Here links there for downloads and

installation instructions. The website has a wealth of other

information, including extensive tutorials and and how-

to's.

 

Using Mu

The first time you start Mu, you will be prompted to select

your 'mode' - you can always change your mind later. For

now please select CircuitPython!

The current mode is displayed in the lower right corner of

the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click the Mode button in the

upper left, and then choose "CircuitPython" in the dialog

box that appears.

Mu is our recommended editor - please use it (unless you are an experienced coder with a 

favorite editor already!)
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 43 of 153

https://learn.adafruit.com//assets/74974
https://codewith.mu/
https://learn.adafruit.com//assets/49641


Mu attempts to auto-detect your board, so please plug in

your CircuitPython device and make sure it shows up as

a CIRCUITPY drive before starting Mu

You can now explore Mu! The three main sections of the window are labeled below; the button bar, the

text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 44 of 153

https://learn.adafruit.com//assets/49642


Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and running. In this section,

we're going to cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend

using Mu! It's designed for CircuitPython, and it's really simple and easy to use, with a built in serial

console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad

on Windows, TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back

changes immediately to files that you edit. That can cause problems when using CircuitPython. See the

Editing Code (https://adafru.it/id3) section below. If you want to skip that section for now, make sure you

do "Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you aren't using Mu. (This

is not a problem on MacOS.)

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
    led.value = True
    time.sleep(0.5)
    led.value = False
    time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 45 of 153

https://learn.adafruit.com//assets/49645


If you're using QT Py or a Trinkey, please download the NeoPixel blink example (https://adafru.it/PE0).

For Adafruit CLUE, you'll need to use board.D17  instead of board.LED . The rest of the code remains the

same. Make the following change to the led =  line:

led = digitalio.DigitalInOut(board.D17)

For Adafruit ItsyBitsy nRF52840, you'll need to use board.BLUE_LED  instead of board.LED . The rest of the

code remains the same. Make the following change to the led =  line:

led = digitalio.DigitalInOut(board.BLUE_LED)

It will look like this - note that under the while True:  line,

the next four lines have spaces to indent them, but they're

indented exactly the same amount. All other lines have no

spaces before the text.

The QT Py and the Trinkeys not have a built-in little red LED! There is an addressable RGB 

NeoPixel LED. The above example will NOT work on the QT Py or the Trinkeys!
�

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the same. You can 

use the linked NeoPixel Blink example to follow along with this guide page.
�

If you are using Adafruit CLUE, you will need to edit the code to use board.D17 as shown below!�

If you are using Adafruit ItsyBitsy nRF52840, you will need to edit the code to use 

board.BLUE_LED as shown below!
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 46 of 153

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/QT_Py_blink.py
https://learn.adafruit.com//assets/49646


Save this file as code.py on your CIRCUITPY drive.

On each board (except the ItsyBitsy nRF52840) you'll find a tiny red LED. On the ItsyBitsy nRF52840, you'll

find a tiny blue LED.

The little LED should now be blinking. Once per second.

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

 

Make the desired changes to your code. Save the file.

That's it!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 47 of 153

https://learn.adafruit.com//assets/49649
https://learn.adafruit.com//assets/49650
https://learn.adafruit.com//assets/49651


Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically

re-start your code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board!  On

Windows using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds

to complete because the text editor does not save the file completely. Mac OS does not seem to have this

delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose the code you've

written, so it's important to backup your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu (https://adafru.it/Be6) is an editor that safely writes all changes (it's also our recommended editor!)

emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save  (https://adafru.it/Be7)

Sublime Text (https://adafru.it/xNB) safely writes all changes

Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes

gedit on Linux appears to safely write all changes

IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://adafru.it/IWD) to write all changes

immediately

thonny (https://adafru.it/Qb6) fully writes files on save

Recommended only with particular settings or with add-ons:

vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not write

swapfiles (https://adafru.it/ELO) (.swp files: temporary records of your edits) to CIRCUITPY. Run vim

with vim -n , set the no swapfile  option, or set the directory  option to write swapfiles elsewhere.

Otherwise the swapfile writes trigger restarts of your program.

The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in Settings->System

Settings->Synchronization (true by default).

If you are using Atom (https://adafru.it/fMG), install the  fsync-on-save

package (https://adafru.it/E9m) so that it will always write out all changes to files on CIRCUITPY .

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (https://adafru.it/ven).

Don't Click Reset or Unplug!�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 48 of 153

https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290


�

We don't recommend these editors:

notepad (the default Windows editor) and Notepad++ can be slow to write, so we recommend the

editors above! If you are using notepad, be sure to eject the drive (see below)

IDLE in Python 3.8.0 or earlier does not force out changes immediately

nano (on Linux) does not force out changes

geany (on Linux) does not force out changes

Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force

the operating system to save your file to disk. On Linux, use the sync command in a terminal to force the

write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file manager to drag a file onto

CIRCUITPY

Oh No I Did Something Wrong and Now The CIRCUITPY Drive
Doesn't Show Up!!!
Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the

steps found on the Troubleshooting (https://adafru.it/Den) page of every board guide to get your board

up and running again.

If you are dragging a file from your host computer onto the CIRCUITPY drive, you still need to do 

step 2. Eject or Sync (below) to make sure the file is completely written.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 49 of 153

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting


Back to Editing Code...
Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll

make a simple change. Change the first 0.5  to 0.1 . The code should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
    led.value = True
    time.sleep(0.1)
    led.value = False
    time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 50 of 153



Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something

changed! Do you know why? Let's find out! 

Exploring Your First CircuitPython Program
First, we'll take a look at the code we're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
    led.value = True
    time.sleep(0.5)
    led.value = False
    time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython

is so simple to use is that most of that information is stored in other files and works in the background. The

files built into CircuitPython are called modules, and the files you load separately are called libraries.

Modules are built into CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import  statements tells the board that you're going to use a particular library in your code. In this

example, we imported three modules: board , digitalio , and time . All three of these modules are built into

CircuitPython, so no separate library files are needed. That's one of the things that makes this an excellent

first example. You don't need any thing extra to make it work! board  gives you access to the hardware on

your board, digitalio  lets you access that hardware as inputs/outputs and time  let's you pass time by

'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 51 of 153



led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, we initialise that pin, and we set it to output. We set led  to

equal the rest of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a  while  statement. while True:  essentially means, "forever do the following:".

while True:  creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True  is never

False, the code will loop forever. All code that is indented under while True:  is "inside" the loop.

Inside our loop, we have four items:

while True:
    led.value = True
    time.sleep(0.5)
    led.value = False
    time.sleep(0.5)

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) .

This line is telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the

led on and off, the led will be on for 0.5 seconds.

The next two lines are similar. led.value = False  tells the LED to turn off, and time.sleep(0.5)  tells

CircuitPython to pause for another 0.5 seconds. This occurs between turning the led off and back on so

the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5  to 0.1 , you decreased the amount of time that the code leaves the

LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to prepare it for the next

run of code. That means any set up you did earlier no longer applies, and the pin states are reset.

For example, try reducing the above example to led.value = True . The LED will flash almost too quickly to

see, and turn off. This is because the code finishes running and resets the pin state, and the LED is no

longer receiving a signal.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 52 of 153



�

To that end, most CircuitPython programs involve some kind of loop, infinite or otherwise

What if I don't have the loop?
If you don't have the loop, the code will run to the end and exit. This can lead to some unexpected

behavior in simple programs like this since the "exit" also resets the state of the hardware. This is a

different behavior than running commands via REPL. So if you are writing a simple program that doesn't

seem to work, you may need to add a loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

    pass

And remember - you can press to exit the loop.

See also the Behavior section in the docs (https://adafru.it/Bvz).

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 53 of 153

https://circuitpython.readthedocs.io/en/latest/README.html#behavior


More Changes
We don't have to stop there! Let's keep going. Change the second 0.5  to 0.1  so it looks like this:

while True:
    led.value = True
    time.sleep(0.1)
    led.value = False
    time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1  to 1 . Your LED will blink much more slowly because you've increased

the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what

happens! These were simple changes, but major changes are done using the same process. Make your

desired change, save it, and get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt

and main.py. CircuitPython looks for those files, in that order, and then runs the first one it finds. While we

suggest using code.py as your code file, it is important to know that the other options exist. If your

program doesn't seem to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 54 of 153



Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called a "print statement".

This is a line you include in your code that causes your code to output text. A print statement in

CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can

see it. This is necessary when you've included a print statement in your code and you'd like to see what

you printed. It is also helpful for troubleshooting errors, because your board will send errors and the serial

console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based

interface to perform various tasks.

sudo apt purge modemmanager

Are you using Mu?
If so, good news! The serial console is built into Mu  and will autodetect your board making using the

REPL really really easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to

the next section for details on using a terminal program.

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are 

seeing "AT" and other gibberish when you connect, then the modemmanager service might be 

interfering. Just remove it; it doesn't have much use unless you're still using dial-up modems. To 

remove, type this command at a shell:

�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 55 of 153



First, make sure your CircuitPython board is plugged in. If

you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

Once in Mu, look for the Serial button in the menu and click it.

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the Serial button, you

need to add yourself to a user group to have permission to connect to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group. On other Linux

distributions, the group you need may be different. See Advanced Serial Console on Mac and

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 56 of 153

https://learn.adafruit.com//assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux


Linux (https://adafru.it/AAI) for details on how to add yourself to the right group.

Using Something Else?
If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not

a fan of the built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more

details (https://adafru.it/AAH)

Mac and Linux both have one built in, though other options are available for download, check this page for

more details (https://adafru.it/AAI)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 57 of 153

file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux


Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some

output.

Open your code.py file into your editor, and include a print  statement. You can print anything you like!

Just include your phrase between the quotation marks inside the parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
    print("Hello, CircuitPython!")
    led.value = True
    time.sleep(1)
    led.value = False
    time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something

else.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 58 of 153



Keep your serial console window where you can see it. Save your file. You'll see what the serial console

displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last):  is telling you the last thing your board was doing before you saved

your file. This is normal behavior and will happen every time the board resets. This is really handy for

troubleshooting. Let's introduce an error so we can see how it is used.

Delete the e  at the end of True  from the line led.value = True  so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED

blinking at you. This is because the code is no longer correct and can no longer run properly. We need to

fix it!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 59 of 153



Usually when you run into errors, it's not because you introduced them on purpose. You may have 200

lines of code, and have no idea where your error could be hiding. This is where the serial console can

help. Let's take a look!

The Traceback (most recent call last):  is telling you that the last thing it was able to run was line 10 in your

code. The next line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to

you, but combined with knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if

you didn't, you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling

the error to get some help. In this case, you know what to look for. You spelled True wrong. Fix the typo

and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 60 of 153



sensor or a thermistor, receive data and you can use print statements to display that information. You can

also use print statements for troubleshooting. If your code isn't working, and you want to know where it's

failing, you can put print statements in various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 61 of 153



The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you

to enter individual lines of code and have them run immediately. It's really handy if you're running into

trouble with a particular program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been

established, you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload.
Follow those instructions, and press any key on your keyboard.

The Traceback (most recent call last):  is telling you the last thing your board was doing before you pressed

Ctrl + C and interrupted it. The KeyboardInterrupt  is you pressing Ctrl + C. This information can be handy

when troubleshooting, but for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no

information about what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>>  prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 62 of 153



If you have trouble getting to the >>>  prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the

type of board you're using and the type of microcontroller the board uses. Each part of this may be

different for your board depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This

will tell us where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help()  next to the prompt in the REPL.

Then press enter. You should then see a message.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 63 of 153



First part of the message is another reference to the version of CircuitPython you're using. Second, a URL

for the CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do
`help("modules")`.  Remember the libraries you learned about while going through creating code? That's

exactly what this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules")  into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the

pins on the board that you can use in your code. From the REPL, you are able to see that list!

Type import board  into the REPL and press enter. It'll go to a new prompt. It might look like nothing

happened, but that's not the case! If you recall, the import  statement simply tells the code to expect to do

something with that module. In this case, it's telling the REPL that you plan to do something with that

module.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 64 of 153



Next, type dir(board)  into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list

will differ slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to

blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved

anywhere. If you're testing something new that you'd like to keep, make sure you have it saved

somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World."

We're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL

to test them. As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines

of code will work. It's fantastic for troubleshooting code by entering it one line at a time and finding out

where it fails. It lets you see what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 65 of 153



Returning to the serial console
When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D . This will

reload your board and reenter the serial console. You will restart the program you had running before

entering the REPL. In the console window, you'll see any output from the program you had running. And if

your program was affecting anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 66 of 153



CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython

is so simple to use is that most of that information is stored in other files and works in the background.

These files are called libraries. Some of them are built into CircuitPython. Others are stored on your

CIRCUITPY drive in a folder called lib. Part of what makes CircuitPython so awesome is its ability to store

code separately from the firmware itself. Storing code separately from the firmware makes it easier to

update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If not, simply create the

folder yourself. When you first install CircuitPython, an empty lib directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are a great reference for how it all should work. In Python terms, we can place

our library files in the lib directory because its part of the Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to

copy them to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our

As we continue to develop CircuitPython and create new releases, we will stop supporting older 

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython 

for your board. You must download the CircuitPython Library Bundle that matches your version of 

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to 

download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 67 of 153

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html


libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension.

These files take less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython

boards with the full library bundle. Instead, you can find example code in the guides for your board that

depends on external libraries. Some of these libraries may be available from us at Adafruit, some may be

written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython Bundle release by clicking the button below.

Note: Match up the bundle version with the version of CircuitPython you are running - 3.x library for

running any version of CircuitPython 3, 4.x for running any version of CircuitPython 4, etc. If you mix

libraries with major CircuitPython versions, you will most likely get errors due to changes in library

interfaces possible during major version changes.

https://adafru.it/ENC

If you need another version, you can also visit the bundle release page  (https://adafru.it/Ayy) which will let

you select exactly what version you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython firmware version.  If you don't know

the version, look at the initial prompt in the CircuitPython REPL, which reports the version. For example, if

you're running v4.0.1, download the 4.x library bundle. There's also a py bundle which contains the

uncompressed python files, you probably don't want that unless you are doing advanced work on libraries.

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac

OSX, it places the file in the same directory as the zip.

https://adafru.it/ENC

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 68 of 153

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/


Open the bundle folder. Inside you'll find two information files, and two folders. One folder is the lib bundle,

and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of mpy files and folders

Example Files

All example files from each library are now included in the bundles, as well as an examples-only bundle.

These are included for two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized purposes.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 69 of 153



Copying Libraries to Your Board
First you'll want to create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the

option to create a new folder, and call it lib. Then, open the lib folder you extracted from the downloaded

zip. Inside you'll find a number of folders and .mpy files. Find the library you'd like to use, and copy it to the

lib folder on CIRCUITPY.

This also applies to example files. They are only supplied as raw .py files, so they may need to be

converted to .mpy using the mpy-cross utility if you encounter MemoryErrors . This is discussed in the

CircuitPython Essentials Guide (https://adafru.it/CTw). Usage is the same as described above in the

Express Boards section. Note: If you do not place examples in a separate folder, you would remove the

examples from the import  statement.

Example: ImportError  Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you

haven't yet loaded.  We're going to demonstrate what happens when you try to utilise a library that you

don't have loaded on your board, and cover the steps required to resolve the issue.

This demonstration will only return an error if you do not have the required library loaded into the lib folder

on your CIRCUITPY drive.

Let's use a modified version of the blinky example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
    led.value = True
    time.sleep(0.5)
    led.value = False
    time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

If a library has multiple .mpy files contained in a folder, be sure to copy the entire folder to 

CIRCUITPY/lib.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 70 of 153

https://learn.adafruit.com/circuitpython-essentials/circuitpython-expectations#how-can-i-create-my-own-mpy-files-18-6


We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our

code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file.

Scroll down to find simpleio.mpy. This is the library file we're looking for! Follow the steps above to load an

individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that

matches the one you're missing.

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to

install libraries as you need them. You don't always need to wait for an ImportError  as you probably know

what library you added to your code. Simply open the lib folder you downloaded, find the library you need,

and drag it to the lib folder on your CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as

you need them. There are a number of steps you can use to try to resolve this issue. You'll find them in the

Troubleshooting page in the Learn guides for your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 71 of 153



Updating CircuitPython Libraries/Examples

Libraries and examples are updated from time to time, and it's important to update the files you have on

your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag the library file to your

lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates include things like bug

fixes and new features. It's important to check in every so often to see if the libraries you're using have

been updated.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 72 of 153



CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with all kinds of sensors,

inputs and other hardware peripherals. There are tons of guides showing how to wire up a circuit, and use

CircuitPython to, for example, read data from a sensor, or detect a button press. Most CircuitPython code

includes hardware setup which requires various modules, such as board  or digitalio . You import these

modules and then use them in your code. How does CircuitPython know to look for hardware in the

specific place you connected it, and where do these modules come from?

This page explains both. You'll learn how CircuitPython finds the pins on your microcontroller board,

including how to find the available pins for your board and what each pin is named. You'll also learn about

the modules built into CircuitPython, including how to find all the modules available for your board.

CircuitPython Pins
When using hardware peripherals with a CircuitPython compatible microcontroller, you'll almost certainly

be utilising pins. This section will cover how to access your board's pins using CircuitPython, how to

discover what pins and board-specific objects are available in CircuitPython for your board, how to use the

board-specific objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller board, the import list

in your code will include import board . The board  module is built into CircuitPython, and is used to provide

access to a series of board-specific objects, including pins. Take a look at your microcontroller board.

You'll notice that next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL ( >>> ) and run the

following commands:

import board
dir(board)

Here is the output for the QT Py.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL, TX, RX, SCK, MISO,

and MOSI. You see that there are many more entries available in board  than the labels on the QT Py.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 73 of 153



You can use the pin names on the physical board, regardless of whether they seem to be specific to a

certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py, pin A0 is labeled on

the physical board silkscreen, but it is available in CircuitPython as both A0  and D0 . For more information

on finding all the names for a given pin, see the What Are All the Available Pin

Names? (https://adafru.it/QkA) section below.

The results of dir(board)  for CircuitPython compatible boards will look similar to the results for the QT Py in

terms of the pin names, e.g. A0, D0, etc. However, some boards, for example, the Metro ESP32-S2, have

different styled pin names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins on the physical

board are labeled only with a number, so an easy way to know how to access them in CircuitPython, is to

run those commands in the REPL and find the pin naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects included: I2C , SPI ,

and UART  - each one is for the default pin-set used for each of the three common protocol busses they

are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating ('creating') it.

Instantiating an object means you are creating an instance of the object with the unique values that are

provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio  module, it expects two pins: clock and

data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

If your code is failing to run because it can't find a pin name you provided, verify that you have the 

proper pin name by running these commands in the REPL.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 74 of 153

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14


Then, you pass the I2C object to a driver for the hardware you're using. For example, if you were using the

TSL2591 light sensor and its CircuitPython library, the next line of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C  singleton in the board  module. Instead of

the two lines of code above, you simply provide the singleton as the I2C object. So if you were using the

TSL2591 and its CircuitPython library, the two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio  module, and simplifies the code. Behind the scenes, the

board.I2C()   object is instantiated when you call it, but not before, and on subsequent calls, it returns the

same object. Basically, it does not create an object until you need it, and provides the same object every

time you need it. You can call board.I2C()  as many times as you like, and it will always return the same

object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names, however, typically,

there's only one name labeled on the physical board. So how do you find out what the other available pin

names are? Simple, with the following script! Each line printed out to the serial console contains the set of

names for a particular pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then, save the following

as code.py on your CIRCUITPY drive.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often labeled as 

RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your board documentation/pinout 

for the default busses.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 75 of 153



"""CircuitPython Essentials Pin Map Script"""
import microcontroller
import board

board_pins = []
for pin in dir(microcontroller.pin):
    if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):
        pins = []
        for alias in dir(board):
            if getattr(board, alias) is getattr(microcontroller.pin, pin):
                pins.append("board.{}".format(alias))
        if len(pins) > 0:
            board_pins.append(" ".join(pins))
for pins in sorted(board_pins):
    print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled on the physical

board, and you'll find the other names available for that pin. For example, the first pin on the board is

labeled A0. The first line in the output is board.A0 board.D0 . This means that you can access pin A0 with

both board.A0  and board.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the list: board.NEOPIXEL
and board.NEOPIXEL_POWER . Many boards have several of these special pins that give you access to

built-in board hardware, such as an LED or an on-board sensor. The Qt Py only has one on-board extra

piece of hardware, a NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible microcontroller board in

CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board  module are not the same as the names of the

pins on the microcontroller itself. The board pin names are aliases to the microcontroller pin names. If you

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 76 of 153



look at the datasheet for your microcontroller, you'll likely find a pinout with a series of pin names, such as

"PA18" or "GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython, you'll need

the microcontroller.pin  module. As with board , you can run dir(microcontroller.pin)  in the REPL to receive a

list of the microcontroller pin names.

CircuitPython Built-In Modules
There is a set of modules used in most CircuitPython programs. One or more of these modules is always

used in projects involving hardware. Often hardware requires installing a separate library from the Adafruit

CircuitPython Bundle. But, if you try to find board  or digitalio  in the same bundle, you'll come up lacking.

So, where do these modules come from? They're built into CircuitPython! You can find an comprehensive

list of built-in CircuitPython modules and the technical details of their functionality from CircuitPython

here (https://adafru.it/QkB) and the Python-like modules included here (https://adafru.it/QkC). However, not

every module is available for every board due to size constraints or hardware limitations. How do you find

out what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/N2a), and search for your

board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for your compatible

microcontroller board.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 77 of 153

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#


Advanced Serial Console on Windows

Windows 7 Driver
If you're using Windows 7, use the link below to download the driver package. You will not need to install

drivers on Mac, Linux or Windows 10.

https://adafru.it/AB0

What's the COM?
First, you'll want to find out which serial port your board is using. When you plug your board in to USB on

your computer, it connects to a serial port. The port is like a door through which your board can

communicate with your computer using USB.

We'll use Windows Device Manager to determine which port the board is using. The easiest way to

determine which port the board is using is to first check without the board plugged in. Open Device

Manager. Click on Ports (COM & LPT). You should find something already in that list with (COM#) after it

where # is a number.

Now plug in your board. The Device Manager list will refresh and a new item will appear under Ports (COM

& LPT). You'll find a different (COM#) after this item in the list.

https://adafru.it/AB0

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 78 of 153

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers*.exe


Sometimes the item will refer to the name of the board. Other times it may be called something like USB

Serial Device, as seen in the image above. Either way, there is a new (COM#) following the name. This is

the port your board is using.

Install Putty
If you're using Windows, you'll need to download a terminal program. We're going to use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1). You'll want to download

the Windows installer file. It is most likely that you'll need the 64-bit version. Download the file and install

the program on your machine. If you run into issues, you can try downloading the 32-bit version instead.

However, the 64-bit version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is using.

In the box under Speed, enter 115200. This called the baud rate, which is the speed in bits per

second that data is sent over the serial connection. For boards with built in USB it doesn't matter so

much but for ESP8266 and other board with a separate chip, the speed required by the board is

115200 bits per second. So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete a stored session.

Enter a name in the box under Saved Sessions, and click the Save button on the right.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 79 of 153

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html


Once your settings are entered, you're ready to connect to the serial console. Click "Open" at the bottom

of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window above. Now you're ready

to see the results of your code.

Great job! You've connected to the serial console!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 80 of 153



Advanced Serial Console on Mac and Linux

Connecting to the serial console on Mac and Linux uses essentially the same process. Neither operating

system needs drivers installed. On MacOSX, Terminal comes installed. On Linux, there are a variety such

as gnome-terminal (called Terminal) or Konsole on KDE.

What's the Port?
First you'll want to find out which serial port your board is using. When you plug your board in to USB on

your computer, it connects to a serial port. The port is like a door through which your board can

communicate with your computer using USB.

We're going to use Terminal to determine what port the board is using. The easiest way to determine

which port the board is using is to first check without the board plugged in. On Mac, open Terminal and

type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/  directory. It has a name that starts with tty. . The command

ls  shows you a list of items in a directory. You can use *  as a wildcard, to search for files that start with

the same letters but end in something different. In this case, we're asking to see all of the listings in /dev/
that start with tty.  and end in anything. This will show us the current serial connections.

For Linux, the procedure is the same, however, the name is slightly different. If you're using Linux, you'll

type:

ls /dev/ttyACM*

The concept is the same with Linux. We are asking to see the listings in the /dev/  folder, starting with

ttyACM  and ending with anything. This will show you the current serial connections. In the example below,

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 81 of 153



the error is indicating that are no current serial connections starting with ttyACM .

Now, plug your board. Using Mac, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

Using Mac, a new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem141441  part of

this listing is the name the example board is using. Yours will be called something similar.

Using Linux, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 82 of 153



Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0  part of this listing is the name

the example board is using. Yours will be called something similar.

Connect with screen
Now that you know the name your board is using, you're ready connect to the serial console. We're going

to use a command called screen . The screen  command is included with MacOS. Linux users may need to

install it using their package manager. To connect to the serial console, use Terminal. Type the following

command, replacing board_name  with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells screen the name of the

board you're trying to use. The third part tells screen what baud rate to use for the serial connection. The

baud rate is the speed in bits per second that data is sent over the serial connection. In this case, the

speed required by the board is 115200 bits per second.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 83 of 153



Press enter to run the command. It will open in the same window. If no code is running, the window will be

blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux
If you try to run screen  and it doesn't work, then you may be running into an issue with permissions. Linux

keeps track of users and groups and what they are allowed to do and not do, like access the hardware

associated with the serial connection for running screen . So if you see something like this:

then you may need to grant yourself access. There are generally two ways you can do this. The first is to

just run screen  using the sudo  command, which temporarily gives you elevated privileges.

Once you enter your password, you should be in:

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 84 of 153



The second way is to add yourself to the group associated with the hardware. To figure out what that

group is, use the command ls -l  as shown below. The group name is circled in red.

Then use the command adduser  to add yourself to that group. You need elevated privileges to do this, so

you'll need to use sudo . In the example below, the group is adm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some cases, reboot your

machine. After you log in again, verify that you have been added to the group using the command groups .

If you are still not in the group, reboot and check again.

And now you should be able to run screen  without using sudo .

And you're in:

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 85 of 153



The examples above use screen , but you can also use other programs, such as putty  or picocom , if you

prefer.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 86 of 153



Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It

runs on microcontrollers and works out of the box. You can plug it in and get started with any text editor.

The best part? CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy

and improve upon. This also means CircuitPython becomes better because of you being a part of it. It

doesn't matter whether this is your first microcontroller board or you're a computer engineer, you have

something important to offer the Adafruit CircuitPython community. We're going to highlight some of the

many ways you can be a part of it!

Adafruit Discord

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 87 of 153



The Adafruit Discord server is the best place to start. Discord is where the community comes together to

volunteer and provide live support of all kinds. From general discussion to detailed problem solving, and

everything in between, Discord is a digital maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your needs. Each channel is

shown on Discord as "#channelname". There's the #help-with-projects channel for assistance with your

current project or help coming up with ideas for your next one. There's the #showandtell channel for

showing off your newest creation. Don't be afraid to ask a question in any channel! If you're unsure,

#general is a great place to start. If another channel is more likely to provide you with a better answer,

someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions. #help-with-

circuitpython is there for new users and developers alike so feel free to ask a question or post a comment!

Everyone of any experience level is welcome to join in on the conversation. We'd love to hear what you

have to say! The #circuitpython channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't

always mean answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just

hearing that someone else has gone through a similar struggle can be enough to keep a maker moving

forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord  ()to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving you issues or your

code doesn't seem to be working, the forums are always there for you to ask. You need an Adafruit

account to post to the forums. You can use the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable

source of information. If you want to be certain you're getting an Adafruit-supported answer, the forums

are the best place to be.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 88 of 153

https://adafru.it/discord
https://forums.adafruit.com


There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit

CircuitPython and MicroPython (https://adafru.it/xXA) category under "Supported Products & Projects" is

the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your

code is giving you trouble, include your code in your post! These are great ways to make sure that there's

enough information to help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't.

The great thing about the forums is that you can help others too! Everyone is welcome and encouraged to

provide constructive feedback to any of the posted questions. This is an excellent way to contribute to the

community and share your knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for

everyone to be a part of building CircuitPython. GitHub is the best source of ways to contribute to

CircuitPython (https://adafru.it/tB7) itself. If you need an account, visit https://github.com/

 (https://adafru.it/d6C)and sign up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to

adafruit/circuitpython (https://adafru.it/tB7) on GitHub, click on "Issues (https://adafru.it/Bee)", and you'll find

a list that includes issues labeled "good first issue (https://adafru.it/Bef)". These are things we've identified

as something that someone with any level of experience can help with. These issues include options like

updating documentation, providing feedback, and fixing simple bugs.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 89 of 153

https://forums.adafruit.com/viewforum.php?f=60
https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%253Aissue+is%253Aopen
https://github.com/adafruit/circuitpython/issues?q=is%253Aissue+is%253Aopen+label%253A%2522good+first+issue%2522


Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty

of ways to contribute. You'll find everything from new driver requests to core module updates. There's

plenty of opportunities for everyone at any level!

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs!

Posting a detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to

include the steps to replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a

library onto your CircuitPython hardware, and use it. Let us know about any problems you find by posting a

new issue to GitHub. Software testing on both current and beta releases is a very important part of

contributing CircuitPython. We can't possibly find all the problems ourselves! We need your help to make

CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you

have questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs (https://adafru.it/Beg) is a an excellent resource for a more in depth look at CircuitPython.

This is where you'll find things like API documentation and details about core modules. There is also a

Design Guide that includes contribution guidelines for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core

modules (https://adafru.it/Beh). Each module lists the available libraries. Each module library page lists the

available parameters and an explanation for each. In many cases, you'll find quick code examples to help

you understand how the modules and parameters work, however it won't have detailed explanations like

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 90 of 153

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html


the Learn Guides. If you want help understanding what's going on behind the scenes in any CircuitPython

code you're writing, ReadTheDocs is there to help!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 91 of 153



�

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython microcontrollers.

I have to continue using an older version of CircuitPython; where can I
find compatible libraries?

We are no longer building or supporting library bundles for older versions of CircuitPython. We highly

encourage you to update CircuitPython to the latest version  (https://adafru.it/Em8) and use the current

version of the libraries (https://adafru.it/ENC). However, if for some reason you cannot update, here are

points to the last available library bundles for previous versions:

2.x (https://adafru.it/FJA)

3.x (https://adafru.it/FJB)

4.x (https://adafru.it/QDL)

5.x (https://adafru.it/QDJ)

Is ESP8266 or ESP32 supported in CircuitPython? Why not?
We dropped ESP8266 support as of 4.x - For more information please read about it here!

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266 (https://adafru.it/CiG)

We do not support ESP32 because it does not have native USB. We do support ESP32-S2, which does.

As we continue to develop CircuitPython and create new releases, we will stop supporting older 

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython 

for your board. You must download the CircuitPython Library Bundle that matches your version of 

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to 

download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 92 of 153

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266


� How do I connect to the Internet with CircuitPython?
If you'd like to add WiFi support, check out our guide on ESP32/ESP8266 as a co-

processor. (https://adafru.it/Dwa)

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 93 of 153

https://learn.adafruit.com/adding-a-wifi-co-processor-to-circuitpython-esp8266-esp32


� Is there asyncio support in CircuitPython?
We do not have asyncio support in CircuitPython at this time. However, async  and await  are turned on

in many builds, and we are looking at how to use event loops and other constructs effectively and

easily.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 94 of 153



� My RGB NeoPixel/DotStar LED is blinking funny colors - what does it
mean?
The status LED can tell you what's going on with your CircuitPython board.  Read more here for what the

colors mean! (https://adafru.it/Den)

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 95 of 153

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-20-18


What is a MemoryError ?

Memory allocation errors happen when you're trying to store too much on the board. The CircuitPython

microcontroller boards have a limited amount of memory available. You can have about 250 lines of code

on the M0 Express boards. If you try to import  too many libraries, a combination of large libraries, or run a

program with too many lines of code, your code will fail to run and you will receive a MemoryError  in the

serial console (REPL).

What do I do when I encounter a MemoryError ?

Try resetting your board. Each time you reset the board, it reallocates the memory. While this is unlikely to

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 96 of 153



resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries are available in the

bundle in a .mpy format which takes up less memory than .py format. Be sure that you're using the latest

library bundle (https://adafru.it/uap) for your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments, remove extraneous or

unneeded code, or any other clean up you can do to shorten your code. If you're using a lot of functions,

you could try moving those into a separate library, creating a .mpy  of that library, and importing it into your

code.

You can turn your entire file into a .mpy  and import  that into code.py . This means you will be unable to

edit your code live on the board, but it can save you space.

Can the order of my import  statements affect memory?

It can because the memory gets fragmented differently depending on allocation order and the size of

objects. Loading .mpy  files uses less memory so its recommended to do that for files you aren't editing.

How can I create my own .mpy  files?

You can make your own .mpy  versions of files with mpy-cross .

You can download  mpy-cross  for your operating system from https://adafruit-circuit-

python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/ (https://adafru.it/QDK). Almost any version

will do. The format for .mpy files has not changed since CircuitPython 4.x.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py  to create a yourfile.mpy  in the same directory as the

original file.

How do I check how much memory I have free?
import gc
gc.mem_free()

Will give you the number of bytes available for use.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an estimated time for when they

will be included.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 97 of 153

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/


Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/cpy-welcome)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

CPX = Circuit Playground Express (https://adafru.it/wpF)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 98 of 153

https://learn.adafruit.com/welcome-to-circuitpython
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333


Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are a few things you may

encounter and how to resolve them.

Always Run the Latest Version of CircuitPython and
Libraries
As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.

You need to update to the latest CircuitPython.  (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please

update CircuitPython and then download the latest bundle  (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically

created downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an

earlier version, you can still download the appropriate version of mpy-cross  from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library files. However, it is

best to update to the latest for both CircuitPython and the library bundle.

I have to continue using CircuitPython 5.x, 4.x, 3.x or
2.x, where can I find compatible libraries?
We are no longer building or supporting the CircuitPython 2.x, 3.x, 4.x or 5.x library bundles. We highly

encourage you to update CircuitPython to the latest version  (https://adafru.it/Em8) and use the current

version of the libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can

find the last available 2.x build here (https://adafru.it/FJA), the last available 3.x build

here (https://adafru.it/FJB), the last available 4.x build here (https://adafru.it/QDL), and the last available 5.x

build here (https://adafru.it/QDJ).

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or
GEMMABOOT Drive Not Present

As we continue to develop CircuitPython and create new releases, we will stop supporting older 

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython 

for your board. You must download the CircuitPython Library Bundle that matches your version of 

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to 

download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 99 of 153

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip


You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader

 (https://adafru.it/zbX)installed. Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular

Arduino-compatible bootloader, which does not show a boardnameBOOT  drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT  drive to show up. Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the BOOT drive. See this

forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade to Windows 10 with

the driver package installed? You don't need to install this package on Windows 10 for most Adafruit

boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps and

uninstall all the "Adafruit" driver programs.

Windows 7 or 8.1

Version 2.5.0.0 or later of the Adafruit Windows Drivers will fix the missing boardnameBOOT  drive problem

on Windows 7 and 8.1. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a

program), uninstall everything named "Windows Driver Package - Adafruit Industries LLC ...".

We recommend (https://adafru.it/Amd) that you upgrade to Windows 10 if possible; an upgrade is probably

still free for you: see the link.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 100 of 153

file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9


Now install the new 2.5.0.0 (or higher) Adafruit Windows Drivers Package:

https://adafru.it/AB0

When running the installer, you'll be shown a list of drivers to choose from. You can check and

uncheck the boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY
drive, and when you double-click the reset button (single click on Circuit Playground Express running

MakeCode), you should see the appropriate boardnameBOOT  drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit Discord () if this does not

work for you!

Windows Explorer Locks Up When Accessing
boardnameBOOT  Drive
On Windows, several third-party programs we know of can cause issues. The symptom is that you try to

access the boardnameBOOT  drive, and Windows or Windows Explorer seems to lock up. These programs

are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64. They acquired

hardware to test, and released a beta version that fixes the problem. This may have been

incorporated into the latest release. Please let us know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely. Disabling some aspects

of Kaspersky does not always solve the problem. This problem has been reported to Kaspersky.

ESET NOD32 anti-virus: We have seen problems with at least version 9.0.386.0, solved by

https://adafru.it/AB0

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 101 of 153

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe
https://forums.adafruit.com
https://adafru.it/discord


uninstallation.

Copying UF2 to boardnameBOOT  Drive Hangs at 0%
Copied
On Windows, a Western DIgital (WD) utility  that comes with their external USB drives can interfere with

copying UF2 files to the boardnameBOOT  drive. Uninstall that utility to fix the problem.

CIRCUITPY Drive Does Not Appear
Kaspersky anti-virus can block the appearance of the CIRCUITPY  drive. We haven't yet figured out a

settings change that prevents this. Complete uninstallation of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY . A user has reported this problem on Windows 7. The user

turned off both Smart Firewall and Auto Protect, and CIRCUITPY  then appeared.

Windows 7 and 8.1 Problems
Windows 7 and 8.1 can become confused about USB device installations. We

recommend (https://adafru.it/Amd) that you upgrade to Windows 10 if possible; an upgrade is probably still

free for you: see the link. If not, try cleaning up your USB devices with your board unplugged. Use Uwe

Sieber's Device Cleanup Tool (https://adafru.it/RWd), which you must run as Administrator.

Serial Console in Mu Not Displaying Anything
There are times when the serial console will accurately not display anything, such as, when no code is

currently running, or when code with no serial output is already running before you open the console.

However, if you find yourself in a situation where you feel it should be displaying something like an error,

consider the following.

Depending on the size of your screen or Mu window, when you open the serial console, the serial console

panel may be very small. This can be a problem. A basic CircuitPython error takes 10 lines to display!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 102 of 153

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.uwe-sieber.de/misc_tools_e.html


Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
  File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.
 

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank lines or blank lines

followed by Press any key to enter the REPL. Use CTRL-D to reload.. If this is the case, you need to either

mouse over the top of the panel to utilise the option to resize the serial panel, or use the scrollbar on the

right side to scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print statements. So before you

start trying to debug your problem on the hardware side, be sure to check that you haven't simply missed

the serial messages due to serial output panel height.

CircuitPython RGB Status Light
Nearly all Adafruit CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED on the board

that indicates the status of CircuitPython. A few boards designed before CircuitPython existed, such as the

Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs, but do NOT have a

status LED. The LEDs are all green when in the bootloader. They do NOT indicate any status while

running CircuitPython.

Here's what the colors and blinking mean:

steady GREEN: code.py  (or  code.txt , main.py , or main.txt ) is running

pulsing GREEN: code.py  (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for a reset to indicate

that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 103 of 153



Colors with multiple flashes following indicate a Python exception and then indicate the line number of the

error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are

thousands' place, BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for

example, an error on line 32 would flash YELLOW three times and then CYAN two times. Zeroes are

indicated by an extra-long dark gap.

ValueError: Incompatible .mpy  file.
This error occurs when importing a module that is stored as a mpy  binary file that was generated by a

different version of CircuitPython than the one its being loaded into. In particular, the mpy  binary format

changed between CircuitPython versions 2.x and 3.x, as well as between 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 3.x from 2.x you’ll need to download a newer version of

the library that triggered the error on import . They are all available in the Adafruit

bundle (https://adafru.it/y8E).

Make sure to download a version with 2.0.0 or higher in the filename if you're using CircuitPython version

2.2.4, and the version with 3.0.0 or higher in the filename if you're using CircuitPython version 3.0.

CIRCUITPY Drive Issues
You may find that you can no longer save files to your CIRCUITPY  drive. You may find that your

CIRCUITPY  stops showing up in your file explorer, or shows up as NO_NAME . These are indicators that

your filesystem has issues.

First check - have you used Arduino to program your board? If so, CircuitPython is no longer able to

provide the USB services. Reset the board so you get a boardnameBOOT  drive rather than a CIRCUITPY
drive, copy the latest version of CircuitPython ( .uf2 ) back to the board, then Reset. This may restore

CIRCUITPY  functionality.

If still broken - When the CIRCUITPY  disk is not safely ejected before being reset by the button or being

disconnected from USB, it may corrupt the flash drive. It can happen on Windows, Mac or Linux.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 104 of 153

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest


In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

Easiest Way: Use storage.erase_filesystem()

Starting with version 2.3.0, CircuitPython includes a built-in function to erase and reformat the filesystem. If

you have an older version of CircuitPython on your board, you can update to the newest

version (https://adafru.it/Amd) to do this.

1. Connect to the CircuitPython REPL  (https://adafru.it/Bec) using Mu or a terminal program.

2. Type:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Old Way: For the Circuit Playground Express, Feather M0 Express, and
Metro M0 Express:

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want

to upgrade, you can do this.

       1.  Download the correct erase file:

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/EVK

https://adafru.it/AdK

You WILL lose everything on the board when you complete the following steps. If possible, make 

a copy of your code before continuing.
�

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/EVK

https://adafru.it/AdK

https://adafru.it/EoM

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 105 of 153

file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937


https://adafru.it/EoM

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Gnc

https://adafru.it/GAN

https://adafru.it/GAO

https://adafru.it/Jat

https://adafru.it/Q5B

       2.  Double-click the reset button on the board to bring up the boardnameBOOT  drive.

       3.  Drag the erase .uf2  file to the boardnameBOOT  drive.

       4.  The onboard NeoPixel will turn yellow or blue, indicating the erase has started.

       5.  After approximately 15 seconds, the mainboard NeoPixel will light up green. On the NeoTrellis M4

this is the first NeoPixel on the grid

       6.  Double-click the reset button on the board to bring up the boardnameBOOT  drive.

       7.  Drag the appropriate latest release of CircuitPython (https://adafru.it/Amd) .uf2  file to

the boardnameBOOT  drive.

It should reboot automatically and you should see CIRCUITPY  in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Gnc

https://adafru.it/GAN

https://adafru.it/GAO

https://adafru.it/Jat

https://adafru.it/Q5B

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 106 of 153

https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%2528QSPI%2529.UF2?1611076081
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython


installation page (https://adafru.it/Amd). You'll also need to install your libraries and code!

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0,
Trinket M0):

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want

to upgrade, you can do this.

       1.  Download the erase file:

https://adafru.it/AdL

       2.  Double-click the reset button on the board to bring up the boardnameBOOT  drive.

       3.  Drag the erase .uf2  file to the boardnameBOOT  drive.

       4.  The boot LED will start flashing again, and the boardnameBOOT  drive will reappear.

       5.  Drag the appropriate latest release CircuitPython (https://adafru.it/Amd) .uf2  file to the

boardnameBOOT  drive.

It should reboot automatically and you should see CIRCUITPY  in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the

installation page (https://adafru.it/Amd) You'll also need to install your libraries and code!

Old Way: For non-Express Boards without a UF2 bootloader (Feather
M0 Basic Proto, Feather Adalogger, Arduino Zero):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get

to the REPL, you can do this.

Just follow these directions to reload CircuitPython using bossac  (https://adafru.it/Bed), which will erase

and re-create CIRCUITPY .

Running Out of File Space on Non-Express Boards
The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of

space but don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have

already installed it. Its ~12KiB or so.

Delete something!

https://adafru.it/AdL

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 107 of 153

https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/non-uf2-installation


The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib
folder that you aren't using anymore or test code that isn't in use. Don't delete the lib  folder completely,

though, just remove what you don't need.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to

indent code with four spaces for every indent. In general, we recommend that too. However, one trick to

storing more human-readable code is to use a single tab character for indentation. This approach uses 1/4

of the space for indentation and can be significant when we're counting bytes.

MacOS loves to add extra files.

Luckily you can disable some of the extra hidden files that MacOS adds by running a few commands to

disable search indexing and create zero byte placeholders. Follow the steps below to maximize the

amount of space available on MacOS:

Prevent & Remove MacOS Hidden Files

First find the volume name for your board.  With the board plugged in run this command in a terminal to list

all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY  (the default for CircuitPython).  The full path to the volume

is the /Volumes/CIRCUITPY  path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal commands that stop

hidden files from being created on the board:

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 108 of 153

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135


mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY  in the commands above with the full path to your board's volume if it's

different.  At this point all the hidden files should be cleared from the board and some hidden files will be

prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders mentioned above will be

created automatically if you erase and reformat the filesystem. WARNING: Save your files first!  Do this in

the REPL:

>>> import storage
>>> storage.erase_filesystem

However there are still some cases where hidden files will be created by MacOS.  In particular if you copy

a file that was downloaded from the internet it will have special metadata that MacOS stores as a hidden

file.  Luckily you can run a copy command from the terminal to copy files without this hidden metadata file.

 See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on MacOS you need to be

careful to copy files to the board with a special command that prevents future hidden files from being

created.  Unfortunately you cannot use drag and drop copy in Finder because it will still create these

hidden extended attribute files in some cases (for files downloaded from the internet, like Adafruit's

modules).

To copy a file or folder use the -X option for the cp command in a terminal.  For example to copy a

foo.mpy  file to the board use a command like:

    cp -X foo.mpy /Volumes/CIRCUITPY
  

(Replace foo.mpy  with the name of the file you want to copy.) Or to copy a folder and all of its child

files/folders use a command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib  folder, or another folder, make sure it exists before copying.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 109 of 153



# if lib does not exist, you'll create a file named lib !
cp -X foo.mpy /Volumes/CIRCUITPY/lib
# This is safer, and will complain if a lib folder does not exist.
cp -X foo.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to

do so.  First list the amount of space used on the CIRCUITPY  drive with the df command:

Lets remove the ._  files first.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 110 of 153



Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

Device locked up or boot looping
In rare cases, it may happen that something in your code.py or boot.py files causes the device to get

locked up, or even go into a boot loop. These are not your everyday Python exceptions, typically it's the

result of a deeper problem within CircuitPython. In this situation, it can be difficult to recover your device if

CIRCUITPY is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery option.

When the device boots up in safe mode it will not run the code.py or boot.py scripts, but will still connect

the CIRCUITPY drive so that you can remove or modify those files as needed.

The method used to manually enter safe mode can be different for different devices. It is also very similar

to the method used for getting into bootloader mode, which is a different thing. So it can take a few tries to

get the timing right. If you end up in bootloader mode, no problem, you can try again without needing to

do anything else.

For most devices:

Press the reset button, and then when the RGB status LED is yellow, press the reset button again.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4 of a second later.

Refer to the following diagram for boot sequence details:

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 111 of 153



Uninstalling CircuitPython

A lot of our boards can be used with multiple programming languages. For example, the Circuit

Playground Express can be used with MakeCode, Code.org CS Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a problem

You can always remove/re-install CircuitPython whenever you want! Heck, you can change your mind

every day!

Backup Your Code

Before uninstalling CircuitPython, don't forget to make a backup of the code you have on the little disk

drive. That means your main.py or code.py any other files, the lib folder etc. You may lose these files when

you remove CircuitPython, so backups are key! Just drag the files to a folder on your laptop or desktop

computer like you would with any USB drive.

Moving Circuit Playground Express to MakeCode
On the Circuit Playground Express (this currently does NOT apply to Circuit Playground Bluefruit ), if you

want to go back to using MakeCode, it's really easy. Visit makecode.adafruit.com (https://adafru.it/wpC)

and find the program you want to upload. Click Download to download the .uf2 file that is generated by

MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn green and the ...BOOT

directory shows up.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 112 of 153

https://makecode.adafruit.com


Then find the downloaded MakeCode .uf2 file and drag it to the ...BOOT drive.

Your MakeCode is now running and CircuitPython has been removed. Going forward you only have to

single click the reset button

Moving to Arduino
If you want to change your firmware to Arduino, it's also pretty easy.

Start by plugging in your board, and double-clicking reset until you get the green onboard LED(s) - just like

with MakeCode

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 113 of 153



Within Arduino IDE, select the matching board, say Circuit Playground Express

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board
void setup() {
  // initialize digital pin 13 as an output.
  pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
  digitalWrite(13, HIGH);   // turn the LED on (HIGH is the voltage level)
  delay(1000);              // wait for a second
  digitalWrite(13, LOW);    // turn the LED off by making the voltage LOW
  delay(1000);              // wait for a second
}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has uploaded successfully,

the serial Port will change so re-select the new Port !

Once Blink is uploaded you should no longer need to double-click to enter bootloader mode, Arduino will

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 114 of 153



automatically reset when you upload

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 115 of 153



Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be

using version 1.8 or higher for this guide

https://adafru.it/f1P

After you have downloaded and installed  the latest version of Arduino IDE , you will need to start the

IDE and navigate to the Preferences menu. You can access it from the File menu in Windows or Linux, or

the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

https://adafru.it/f1P

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 116 of 153

http://www.arduino.cc/en/Main/Software


We will be adding a URL to the new Additional Boards Manager URLs  option. The list of URLs is comma

separated, and you will only have to add each URL once.  New Adafruit boards and updates to existing

boards will automatically be picked up by the Board Manager each time it is opened. The URLs point to

index files that the Board Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the

Arduino IDE wiki (https://adafru.it/f7U). We will only need to add one URL to the IDE in this example, but

you can add multiple URLS by separating them with commas . Copy and paste the link below into

the Additional Boards Manager URLs  option in the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 117 of 153

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls


Here's a short description of each of the Adafruit supplied packages that will be available in the Board

Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.

Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and M4, ItsyBitsy M0 and

M4, Circuit Playground Express, Gemma M0 and Trinket M0

Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4,

Micro and Leonardo using the arcore project (https://adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text

box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the

Board Manager.

Now continue to the next step to actually install the board support package!

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 118 of 153

https://github.com/rkistner/arcore


Using with Arduino IDE

The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51 chip, and you can

pretty easily get it working with the Arduino IDE. Most libraries (including the popular ones like NeoPixels

and display) will work with the M0 and M4, especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the previous page, you

can open the Boards Manager by navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the

window and select All. You will then be able to select and install the boards supplied by the URLs added to

the preferences.

Install SAMD Support
First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click Install

Remember you need SETUP the Arduino IDE to support our board packages - see the previous 

page on how to add adafruit's URL to the preferences
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 119 of 153



Install Adafruit SAMD
Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click Install

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE  to ensure that all of the boards are properly installed. You should now be

able to select and upload to the new boards listed in the Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 120 of 153



Feather M0 Express

Metro M0 Express

Circuit Playground Express

Gemma M0

Trinket M0

QT Py M0

ItsyBitsy M0

Hallowing M0

Crickit M0 (this is for direct programming of the Crickit, which is probably not what you want! For

advanced hacking only)

Metro M4 Express

Grand Central M4 Express

ItsyBitsy M4 Express

Feather M4 Express

Trellis M4 Express

PyPortal M4

PyPortal M4 Titano

PyBadge M4 Express

Metro M4 Airlift Lite

PyGamer M4 Express

MONSTER M4SK

Hallowing M4

MatrixPortal M4

BLM Badge

Install Drivers (Windows 7 & 8 Only)
When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

https://adafru.it/EC0

https://adafru.it/EC0

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 121 of 153

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.3.4/adafruit_drivers_2.3.4.0.exe


Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the

license

Select which drivers you want to install, the defaults will set you up with just about every Adafruit board!

Click Install to do the installin'

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 122 of 153



Blink
Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a few seconds). It will

create a serial/COM port, you can now select it from the drop-down, it'll even be 'indicated' as

Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

Please note, the QT Py and Trellis M4 Express are two of our very few boards that does not have an

onboard pin 13 LED so you can follow this section to practice uploading but you wont see an LED blink!

Now load up the Blink example

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 123 of 153



// the setup function runs once when you press reset or power the board
void setup() {
  // initialize digital pin 13 as an output.
  pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
  digitalWrite(13, HIGH);   // turn the LED on (HIGH is the voltage level)
  delay(1000);              // wait for a second
  digitalWrite(13, LOW);    // turn the LED off by making the voltage LOW
  delay(1000);              // wait for a second
}

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

Successful Upload
If you have a successful upload, you'll get a bunch of red text that tells you that the device was found and

it was programmed, verified & reset

After uploading, you may see a message saying "Disk Not Ejected Properly" about the ...BOOT drive. You

can ignore that message: it's an artifact of how the bootloader and uploading work.

If you are having issues, make sure you selected the matching Board in the menu that matches 

the hardware you have in your hand.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 124 of 153



Compilation Issues
If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Arduino & Adafruit

SAMD board packages

Manually bootloading
If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't

auto-reboot into the bootloader, click the RST button twice (like a double-click)to get back into the

bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want to use the normal

upload.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 125 of 153



Ubuntu & Linux Issue Fix
 Follow the steps for installing Adafruit's udev rules on this page.  (https://adafru.it/iOE)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 126 of 153

file:///adafruit-arduino-ide-setup/linux-setup#udev-rules


Arcada Libraries

OK now that you have Arduino IDE set up, drivers installed if necessary and you've practiced uploading

code, you can start installing all the Libraries we'll be using to program it.

There's a lot of libraries!

Install Libraries
Open up the library manager...

And install the following libraries:

Adafruit Arcada

This library generalizes the hardware for you so you can read the joystick, draw to the display, read files,

etc. without having to worry about the underlying methods

If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all
of the following!

If you use Arduino 1.8.10 or later, the IDE will automagically install all the libraries you need to run 

all the Arcada demos when you install Arcada. We strongly recommend using the latest IDE so 

you don't miss one of the libraries!
�

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 127 of 153



 

Adafruit NeoPixel

This will let you light up the status LEDs on the front/back

Adafruit FreeTouch
This is the open source version of QTouch for SAMD21 boards

Adafruit Touchscreen
Used by Adafruit Arcada for touchscreen input (required even if your Arcada board does not have a

touchscreen)

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI support

Adafruit Zero DMA

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 128 of 153



This is used by the Graphics Library if you choose to use DMA

Adafruit GFX

This is the graphics library used to draw to the screen

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer versions do this one

automatically).

Adafruit ST7735

The display on the PyBadge/PyGamer & other Arcada boards

Adafruit ILI9341

The display on the PyPortal & other Arcada boards

Adafruit LIS3DH

For reading the accelerometer data, required even if one is not on the board

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 129 of 153



Adafruit Sensor

Needed by the LIS3DH Library, required even if one is not on the board

Adafruit ImageReader
For reading bitmaps from SPI Flash or SD and displaying

ArduinoJson
We use this library to read and write configuration files

Adafruit ZeroTimer
We use this library to easily set timers and callbacks on the SAMD processors

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 130 of 153



Adafruit TinyUSB
This lets us do cool stuff with USB like show up as a Keyboard or Disk Drive

Adafruit WavePlayer
Helps us play .WAV sound files.

SdFat (Adafruit Fork)

The Adafruit fork of the really excellent SD card library that gives a lot more capability than the default SD

library

Audio - Adafruit Fork
Our fork of the Audio library  provides a toolkit for building streaming audio projects.

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 131 of 153



Arduino Test

Once you've got the IDE installed and libraries in place you can run our test sketch. This will check all the

hardware, and display it on the screen, its sort of a universal test because every part is checked. It's also a

great reference if you want to know how to read the light sensor or read the buttons.

You can find it as an example in the Adafruit Arcada library (check the previous page for all the libraries

you need to install!)

The test code

1. Checks the QSPI flash chip initialised correctly, and displays the manufacturer/device ID if so

2. Checks if the QPI flash has a filesystem on it (if not, try loading CircuitPython which will create a

filesystem). It will print the # of files found in the root directory

3. Tests if an accelerometer was found & print out the X, Y, Z gravitational tuple.

4. Display the light sensor value, which ranges from 0 (dark) to 1023 (bright)

5. Display the detected battery voltage, from ~3.3V to 4.2V (charged). If no battery, this will float around

4.1V and is normal (there's no way to detect a battery is connected)

6. D3/A8  and D4/A9  measure the analog voltages on the 3 pin JST connectors. They'll be floating until

some voltage is applied to them, so ~0.4V is normal

7. Draw a 'virtual' joystick for the thumbstick and 4 buttons on the front of the Gamer, when buttons are

pressed

If the PyGamer accelerometer is shaked or tapped, it will play a 'coin' sound from the speaker or

headphones if they are plugged in

To test Arcada's callback functionality, we pulse pin #13 red LED so you'll see it ramp up 4 times a second.

https://adafru.it/ETU

https://adafru.it/ETU

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 132 of 153

https://cdn-learn.adafruit.com/assets/assets/000/076/075/original/PYGAMER_TEST.UF2?1558829487


 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 133 of 153



Graphics Demos

PyBadge & PyGamer uses a 1.8" 160x128 to display graphics, messages, games what have you!

We use a wrapper library called Arcada to let you draw to the display, read buttons and sensors, manage

the audio, etc. It also handles things like allocating a framebuffer and then drawing it on command, either

as a blocking function (waits until drawing is complete to return) or non-blocking (returns immediately,

DMA will draw in the background)

Arcada is a direct subclass of Adafruit_GFX, so if you want to use it to draw shapes and text, check out the

GFX guide here first!

https://adafru.it/doL

If you want to try out all the shapes and drawing

capabilities, check out the Adafruit_Arcada->graphicstest

example in the library.

The Adafruit_Arcada->mandelbrot example is a good

demo to show how we allocate a full display buffer, do all

our calculations, then draw it all at once.

Call arcada.createFrameBuffer(ARCADA_TFT_WIDTH,
ARCADA_TFT_HEIGHT)  to allocate a framebuffer in the

arcada object, then request the pointer with framebuffer =
arcada.getFrameBuffer();

Fill it up with data and call arcada.blitFrameBuffer(x, y,
blocking);  when its ready to draw all at once.

 

https://adafru.it/doL

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 134 of 153

https://learn.adafruit.com/adafruit-gfx-graphics-library
https://learn.adafruit.com//assets/76062
https://learn.adafruit.com//assets/76064


Arcada Library

This is a quickstart explaination of what Adafruit Arcada library provides, see the detailed Doxygen

documents for arguments & return values

Initialization
arcadaBegin()  must be called first, it will set pin directions, turn off NeoPixels, and check for

connected hardware

filesysBeginMSD()  will initialize the storage method (SD or SPI flash) and check if a proper filesystem

exists. On SD cards that's a FAT filesystem (so make sure its formatted). On SPI Flash we use

CircuitPython's FAT filesystem, the best way to format is to load CircuitPython on once. If you're using

TinyUSB as your USB stack, this will also make the disk drive appear on a computer

displayBegin()  initializes the display, you will need to turn on the backlight after this is done - we don't

do it for you!

Joystick & Buttons
readJoystickX  and readJoystickY  read the analog joystick (if there is one) and returns -512 to 511 with

0 being 'center' (approximately)

readButtons  returns a 32 bit mask for each button pressed at the moment of the function call - right

now only the bottom 8 bits are used. Check Adafruit_Arcada_Def.h  for the button mask names. Analog

joysticks are checked against a threshold and 'emulate' a button press

Some boards, like the MONSTER M4SK and HalloWings, do not have a proper joystick - instead we will

return the capacitive touch pads or buttons as if there was a joystick. For example, the M4SK's three

buttons will return 'up', 'A' and 'down' respectively.

After readButtons  is called, justPressedButtons  will tell you buttons were pressed as of the

readButtons  call

Ditto for justReleasedButtons

Backlight, Speaker and Sensors
Enable/disable speaker amplifier (if there is one) with enableSpeaker  - this doesn't affect headphones

if there are any

readBatterySensor  returns the battery voltage detected. You cannot detect whether a battery is being

charged, only the voltage.

readLightSensor  will return 0 for dark, 1023 for bright surrounding light.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 135 of 153



setBacklight  can set the backlight from 0 (off) to 255 (all the way on)

Alert Boxes
These info boxes and alert display on the screen to let the user know something they need to do, get

ready for, or went wrong. You can have the alert wait for a button press or have it return immediately (then

you can delay or wait for something else to occur)

alertBox  is the generic, you can set the message, box and text color, as well as button press

infoBox  is an alertBox  where the default button is A and the box color is white, text color is black

warnBox  is an alertBox  where the default button is A and the box color is yellow, text color is black

errorBox  is an alertBox  where the default button is A and the box color is red, text color is white

haltBox  is an alertBox  where the box color is red, text color is white. It will sit in a busy loop and

never return

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 136 of 153



Arcada Library Docs
Arcada Library Docs (https://adafru.it/RiE)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 137 of 153

https://adafruit.github.io/Adafruit_Arcada/html/index.html


Adapting Sketches to M0 & M4

The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible cores go. Most

sketches & libraries will work but here’s a collection of things we noticed.

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will apply to every board

(e.g. Trinket and Gemma M0 do not have ARef, so you can skip the Analog References note!).

Analog References
If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is

analogReference(AR_EXTERNAL)  (it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups
The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)
digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the output-selection

register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR. You don’t need

separate versions for the different board types.

Serial vs SerialUSB
99.9% of your existing Arduino sketches use Serial.print to debug and give output. For the Official Arduino

SAMD/M0 core, this goes to the Serial5 port, which isn't exposed on the Feather. The USB port for the

Official Arduino M0 core is called SerialUSB instead.

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will automatically work just fine .

However, on the off chance you are using the official Arduino SAMD core and not the Adafruit version

(which really, we recommend you use our version because it’s been tuned to our boards), and you want

your Serial prints and reads to use the USB port, use SerialUSB instead of Serial in your sketch.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 138 of 153



If you have existing sketches and code and you want them to work with the M0 without a huge find-

replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)
  // Required for Serial on Zero based boards
  #define Serial SERIAL_PORT_USBVIRTUAL
#endif

right above the first function definition in your code. For example:

AnalogWrite / PWM on Feather/Metro M0
After looking through the SAMD21 datasheet, we've found that some of the options listed in the

multiplexer table don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The Timer/Counter (TC)

and Timer/Counter for Control Applications (TCC). Each SAMD21 has multiple copies of each, called

'instances'.

Each TC instance has one count register, one control register, and two output channels. Either channel can

be enabled and disabled, and either channel can be inverted. The pins connected to a TC instance can

output identical versions of the same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and output channels. There

are options for different kinds of waveform, interleaved switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two 'waveform output' (WO)

channels, and three TCC instances with eight WO channels:

TC[0-4],WO[0-1]

TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output channels, and three

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 139 of 153



TCC instances with eight output channels:

TC[3-5],WO[0-1]

TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as the SPI, I2C, and

UART pins keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13

Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the following pins:

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range
On AVR, if you set a pin's PWM with analogWrite(pin, 255)  it will turn the pin fully HIGH. On the ARM cortex,

it will set it to be 255/256 so there will be very slim but still-existing pulses-to-0V. If you need the pin to be

fully on, add test code that checks if you are trying to analogWrite(pin, 255)  and, instead, does a
digitalWrite(pin, HIGH)

analogWrite() DAC on A0
If you are trying to use analogWrite()  to control the DAC output on A0, make sure you do not have a line

that sets the pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files
There might be code that uses libraries that are not supported by the M0 core. For example if you have a

line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory
  #include <util/delay.h>

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 140 of 153



                         ^
compilation terminated.
Error compiling.

In which case you can simply locate where the line is (the error will give you the file name and line

number) and 'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !defined(ESP8266) && 
!defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching
For most other AVRs, clicking reset while plugged into USB will launch the bootloader manually, the

bootloader will time out after a few seconds. For the M0/M4, you'll need to double click the button. You

will see a pulsing red LED to let you know you're in bootloader mode. Once in that mode, it wont time out!

Click reset again if you want to go back to launching code.

Aligned Memory Access
This is a little less likely to happen to you but it happened to me! If you're used to 8-bit platforms, you can

do this nice thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];
float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer might not be aligned to

a 2 or 4-byte boundary. The ARM Cortex-M0 can only directly access data on 16-bit boundaries (every 2 or

4 bytes). Trying to access an odd-boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop

the MCU. Thankfully, there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];
float f;
memcpy(&f, mybuffer, 4)

Floating Point Conversion
Like the AVR Arduinos, the M0 library does not have full support for converting floating point numbers to

ASCII strings. Functions like sprintf will not convert floating point.  Fortunately, the standard AVR-LIBC

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 141 of 153



library includes the dtostrf function which can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf.  You may see some references to using

#include <avr/dtostrf.h> to get dtostrf in your code.  And while it will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in your code:

http://forum.arduino.cc/index.php?topic=368720.0 (https://adafru.it/lFS)

How Much RAM Available?
The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some reason. You can do so

with this handy function:

extern "C" char *sbrk(int i);

int FreeRam () {
  char stack_dummy = 0;
  return &stack_dummy - sbrk(0);
}

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 (https://adafru.it/m6D)

for the tip!

Storing data in FLASH
If you're used to AVR, you've probably used PROGMEM to let the compiler know you'd like to put a

variable or string in flash memory to save on RAM. On the ARM, its a little easier, simply add const before

the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the compiler will

automatically read from FLASH so you dont need special progmem-knowledgeable functions.

You can verify where data is stored by printing out the address:

Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000 and $3FFFF Then it is

in FLASH

Pretty-Printing out registers
There's a lot of registers on the SAMD21, and you often are going through ASF or another framework to

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 142 of 153

http://forum.arduino.cc/index.php?topic=368720.0
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879


get to them. So having a way to see exactly what's going on is handy. This library from drewfish will help a

ton!

https://github.com/drewfish/arduino-ZeroRegs (https://adafru.it/Bet)

M4 Performance Options
As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards Manager, some options

are available to wring extra performance out of M4-based devices. These are in the Tools menu.

All of these performance tweaks involve a degree of uncertainty.  There’s no guarantee of improved

performance in any given project, and some may even be detrimental, failing to work in part or in whole. If

you encounter trouble, select the default performance settings  and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it processes instructions…

beyond the official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed for harsh industrial

environments…if a system crashes, someone could lose a limb or worse. But most creative tasks are less

critical and operate in more comfortable settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run  entirely. If this happens, try dialing

back the speed by one notch and re-upload, see if it’s more stable.

Much more likely, some code or libraries may not play well  with the nonstandard CPU speed. For

example, currently the NeoPixel library assumes a 120 MHz CPU speed and won’t issue the correct data at

other settings (this will be worked on). Other libraries may exhibit similar problems, usually anything that

strictly depends on CPU timing…you might encounter problems with audio- or servo-related code

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 143 of 153

https://github.com/drewfish/arduino-ZeroRegs


depending how it’s written. If you encounter such code or libraries, set the CPU speed to the default 120

MHz and re-upload.

Optimize

There’s usually more than one way to solve a problem, some more resource-intensive than others. Since

Arduino got its start on resource-limited AVR microcontrollers, the C++ compiler has always aimed for the

smallest compiled program size. The “Optimize” menu gives some choices for the compiler to take

different and often faster approaches, at the expense of slightly larger program size…with the huge flash

memory capacity of M4 devices, that’s rarely a problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the smallest compiled

program size.

The “Fast” setting invokes various speed optimizations. The resulting program should produce the same

results, is slightly larger, and usually (but not always) noticably faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger still, faster still, but

there’s a possibility these optimizations could cause unexpected behaviors. Some code may not work the
same as before. Hence the name. Maybe you’ll discover treasure here, or maybe you’ll sail right off the

edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings. If you do encounter

problems, dial it back one notch and re-upload .

Cache

This option allows a small collection of instructions and data to be accessed more quickly than from flash

memory, boosting performance. It’s enabled by default and should work fine with all code and libraries. But

if you encounter some esoteric situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults.  They’re present mostly for our own experiments and can

cause serious headaches.

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal circumstances this allows

transfers up to 24 MHz, and should usually be left at that setting. But…if you’re using write-only SPI devices

(such as TFT or OLED displays), this option lets you drive them faster (we’ve successfully used 60 MHz

with some TFT screens). The caveat is, if using any read/write devices (such as an SD card), this will not
work at all…SPI reads absolutely max out at the default 24 MHz setting, and anything else will fail. Write =

OK. Read = FAIL. This is true even if your code is using a lower bitrate setting… just having the different

clock source prevents SPI reads.

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 144 of 153



Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few Arduino sketches

access this storage at all, let alone in a bandwidth-constrained context, so this will benefit next to nobody.

Additionally, due to the way clock dividers are selected, this will only provide some benefit when certain

“CPU Speed” settings are active. Our PyPortal Animated GIF Display  (https://adafru.it/EkO) runs marginally

better with it, if using the QSPI flash.

Enabling the Buck Converter on some M4 Boards
If you want to reduce power draw, some of our boards have an inductor so you can use the 1.8V buck

converter instead of the built in linear regulator. If the board does have an inductor (see the schematic)

you can add the line SUPC->VREG.bit.SEL = 1;  to your code to switch to it. Note it will make ADC/DAC

reads a bit noisier so we don't use it by default. You'll save ~4mA (https://adafru.it/F0H).

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 145 of 153

https://learn.adafruit.com/pyportal-animated-gif-display
https://github.com/adafruit/ArduinoCore-samd/issues/128


Downloads

Files:

ATSAMD51J19 Product page w/datasheets (https://adafru.it/Bf8)

LIS3DH Datasheet (https://adafru.it/uBy)

EagleCAD PCB files on GitHub (https://adafru.it/ETc)

Fritzing object in the Adafruit Fritzing Library  (https://adafru.it/ETd)

3D Model on GitHub (https://adafru.it/EVr)

Fab Print

Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 146 of 153

https://www.microchip.com/wwwproducts/en/ATSAMD51J19A
https://cdn-shop.adafruit.com/datasheets/LIS3DH.pdf
https://github.com/adafruit/Adafruit-PyGamer-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PyGamer.fzpz
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4242%20Adafruit%20PyGamer


Laser Cut Acrylic Case

https://adafru.it/ETW

https://adafru.it/ETX

https://adafru.it/ETY

https://adafru.it/ETW

https://adafru.it/ETX

https://adafru.it/ETY

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 147 of 153

https://cdn-learn.adafruit.com/assets/assets/000/076/078/original/PyGamer-Clear-1mm.ai?1558830304
https://cdn-learn.adafruit.com/assets/assets/000/076/079/original/PyGamer-Smoke-3mm.ai?1558830305
https://cdn-learn.adafruit.com/assets/assets/000/076/080/original/PyGamer-Clear-3mm.ai?1558830306


3D Model

https://adafru.it/EVr

 

https://adafru.it/EVr

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 148 of 153

https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4242%20Adafruit%20PyGamer


Troubleshooting

Digi-Key x Adafruit Order Shipper Game

If you need to re-load the Digi-Key Shipping game, here's the .uf2 file below. Download this to your

computer.

https://adafru.it/Fdg

Plug in your PyGamer to your computer with a known good USB data cable (not a "charge-only" cable

which should be killed and burned with fire) then turn on the PyGamer and press the reset button to bring

up the bootloader. (Also, try both with and without a USB hub if you have one, sometimes they help,

sometimes not.)

Drag the .uf2 file onto the PYGAMERBOOT drive that shows up on your computer.

Screen Adhesive Fix

The screen can become un-adhered pretty easily -- these screens were originally designed to be secured

with a bezel. Your PyGamer case does a good job of holding it in place, but if you have it out of a case, it

can become unstuck.

Luckily, it's easy to fix! Just use two strips of double stick adhesive tape to hold the screen down to the

backing plastic.

The small bits of adhesive may have given up the fight. Go

ahead and lift the screen away from the backing, being

careful to go gentle on the ribbon connector!

Get some good double stick tape, as shown.

Cut off two short lengths of the tape, you can even use

one piece and cut it in half length-wise to make narrow

strips.

Place a piece of tape across the bottom and top edges of

the backing.

Press the screen down firmly and hold for 30 seconds to

ensure good adhesion.

 

https://adafru.it/Fdg

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 149 of 153

https://cdn-learn.adafruit.com/assets/assets/000/077/755/original/pygamer_Digi-Key_shipping_game.UF2?1562204407
https://learn.adafruit.com//assets/78026


© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 150 of 153

https://learn.adafruit.com//assets/78027
https://learn.adafruit.com//assets/78028
https://learn.adafruit.com//assets/78029
https://learn.adafruit.com//assets/78030


Your PyGamer should be better than ever now, and ready to play!

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 151 of 153

https://learn.adafruit.com//assets/78031


 

© Adafruit Industries https://learn.adafruit.com/adafruit-pygamer Page 152 of 153



© Adafruit Industries Last Updated: 2021-05-19 05:48:18 PM EDT Page 153 of 153


	Guide Contents
	Overview
	Which Board?
	Similarities
	Differences between PyGamer and PyBadge/PyBadge LC
	Differences between PyBadge & PyBadge LC
	Comparison Table
	Update the PyGamer Bootloader
	Updating Your PyGamer Bootloader
	Oh no, I updated MacOS already and I can't see the boot drive!

	Pinouts
	Microcontroller and Flash
	Power
	Display

	Build the PyGamer Case
	Prep
	Paper Protection
	Speaker
	Battery
	Button Caps
	Case Layers
	Spacers
	Backing
	Fasteners

	Load a MakeCode Game on PyGamer/PyBadge
	Board Definition
	Change Board screen
	Bootloader Mode
	Drag and Drop
	Play!

	CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	Installing Mu Editor
	Download and Install Mu
	Using Mu
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I don't have the loop?

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Example Files

	Copying Libraries to Your Board
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries/Examples

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Advanced Serial Console on Windows
	Windows 7 Driver
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac and Linux
	What's the Port?
	Connect with screen
	Permissions on Linux
	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	Frequently Asked Questions
	I have to continue using an older version of CircuitPython; where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython?
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x, 4.x, 3.x or 2.x, where can I find compatible libraries?
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Windows 7 and 8.1 Problems
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	ValueError: Incompatible .mpy file.
	CIRCUITPY Drive Issues
	Easiest Way: Use storage.erase_filesystem()
	Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
	Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger, Arduino Zero):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	MacOS loves to add extra files.
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device locked up or boot looping
	Uninstalling CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Arcada Libraries
	Install Libraries
	Adafruit Arcada
	If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!
	Adafruit NeoPixel

	Adafruit FreeTouch
	Adafruit Touchscreen
	Adafruit SPIFlash
	Adafruit Zero DMA
	Adafruit GFX
	Adafruit ST7735
	Adafruit ILI9341
	Adafruit LIS3DH
	Adafruit Sensor

	Adafruit ImageReader
	ArduinoJson
	Adafruit ZeroTimer
	Adafruit TinyUSB
	Adafruit WavePlayer
	SdFat (Adafruit Fork)

	Audio - Adafruit Fork
	Arduino Test
	Graphics Demos
	Arcada Library
	Initialization
	Joystick & Buttons
	Backlight, Speaker and Sensors
	Alert Boxes
	Arcada Library Docs
	Adapting Sketches to M0 & M4
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	analogWrite() DAC on A0
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Pretty-Printing out registers
	M4 Performance Options
	CPU Speed (overclocking)
	Optimize
	Cache
	Max SPI and Max QSPI

	Enabling the Buck Converter on some M4 Boards
	Downloads
	Files:

	Fab Print
	Schematic
	Laser Cut Acrylic Case
	3D Model
	Troubleshooting
	Digi-Key x Adafruit Order Shipper Game
	Screen Adhesive Fix


