MOSFET - Symmetrical Dual N-Channel 60 V, 9 mΩ, 38 A

NTTFD9D0N06HL

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q2) and synchronous (Q1) have been designed to provide optimal power efficiency.

Features

Q1: N-Channel

- Max $r_{DS(on)} = 9.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)}$ = 13 m Ω at V_{GS} = 4.5, I_D = 8.0 A

Q2: N-Channel

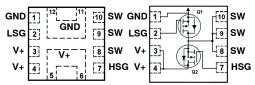
- Max $r_{DS(on)} = 9.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)} = 13 \text{ m}\Omega$ at $V_{GS} = 4.5$, $I_D = 8.0 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- RoHS Compliant

Typical Applications

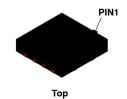
- Computing
- Communications
- General Purpose Point of Load

PIN DESCRIPTION

Pin	Name	Description
1, 11, 12	GND (LSS)	Low Side Source
2	LSG	Low Side Gate
3, 4, 5, 6	V + (HSD)	High Side Drain
7	HSG	High Side Gate
8, 9, 10	SW	Switching Node, Low Side Drain



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	9 mΩ @ 10 V	38 A
	13 mΩ @ 4.5 V	36 A

ELECTRICAL CONNECTION

Dual N-Channel MOSFET

Bottom

WQFN12, 3x3 CASE 510CJ

MARKING DIAGRAM

O D9D0 AYWWZZ

D9D0 = Specific Device Code
A = Assembly Plant Code
Y = Numeric Year Code
WW = Work Week Code
ZZ = Assembly Lot Code

ORDERING INFORMATION

Device	Package	Shipping†
NTTFD9D0N06HLTWG	WQFN12 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

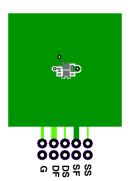
MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter			Q1	Q2	Units
V _{DS}	Drain-to-Source Voltage	60	60	V		
V _{GS}	Gate-to-Source Voltage			±20	±20	V
I _D	Drain Current -Continuous	T _C = 25°C	(Note 4)	38	38	Α
	-Continuous	T _C = 100°C	(Note 4)	23	23	
	-Continuous	T _A = 25°C		9 (Note 1a)	9 (Note 1b)	
	-Pulsed	T _A = 25°C		349	349	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	46	46	mJ
P_{D}	Power Dissipation for Single Oper	ration $T_C = 25^{\circ}C$		26	26	W
	Power Dissipation for Single Oper	ration $T_A = 25^{\circ}C$		1.7 (Note 1a)	1.7 (Note 1b)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to	+150	°C

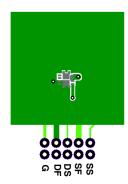
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

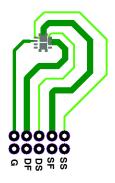
Symbol	Parameter	Q1	Q2	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	4.8	4.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a), max copper	70 (Note 1a)	70 (Note 1b)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1c), min copper	135 (Note 1a)	135 (Note 1b)	

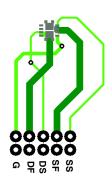

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
OFF CHAF	ACTERISTICS						
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1	60			V
		$I_D = 250 \mu A, V_{GS} = 0 V$	Q2	60			
ΔBV_{DSS}	Breakdown Voltage Temperature	I _D = 250 μA, referenced to 25°C	Q1		37.38		mV/°C
ΔT_{J}	Coefficient	I _D = 250 μA, referenced to 25°C	Q2		37.38		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V	Q1			10	μΑ
		V _{DS} = 60 V, V _{GS} = 0 V	Q2			10	
I _{GSS}	Gate-to-Source Leakage Current,	$V_{GS} = +20/-16 \text{ V}, V_{DS} = 0 \text{ V}$	Q1			±100	nA
	Forward	V _{GS} = +20/-16 V, V _{DS} = 0 V	Q2			±100	1
ON CHAR	ACTERISTICS						
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 50 \mu A$	Q1	1.2	1.6	2.0	V
		$V_{GS} = V_{DS}, I_{D} = 50 \mu A$	Q2	1.2	1.6	2.0	1
$\Delta V_{GS(th)}$	Gate-to-Source Threshold Voltage	$I_D = 50 \mu A$, referenced to $25^{\circ}C$	Q1		-6.19		mV/°C
ΔT_{J}	Temperature Coefficient	I _D = 50 μA, referenced to 25°C	Q2		-6.19		1
r _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 10 A	Q1		7.3	9.0	mΩ
		V _{GS} = 4.5 V, I _D = 8 A			9.8	13	1
		V _{GS} = 10 V, I _D = 10 A, T _J = 125°C			12.7		1
r _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 10 A	Q2		7.3	9.0	mΩ
		V _{GS} = 4.5 V, I _D = 8 A			9.8	13	1
		$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}, T_J = 125^{\circ}\text{C}$			12.7]
9FS	Forward Transconductance	V _{DS} = 15 V, I _D = 10 A	Q1		53		S
		V _{DS} = 15 V, I _D = 10 A	Q2		53		1


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
DYNAMIC	CHARACTERISTICS		1		•	1	
C _{ISS}	Input Capacitance	Q1:	Q1		948		pF
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$	Q2		948		
C _{OSS}	Output Capacitance	Q2:	Q1		188		pF
		V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz	Q2		188		
C _{RSS}	Reverse Transfer Capacitance	1	Q1		12.3		pF
			Q2		12.3		
R_{G}	Gate Resistance	T _A = 25°C	Q1		2.0		Ω
			Q2		2.0		
WITCHIN	IG CHARACTERISTICS					•	
td _(ON)	Turn-On Delay Time	Q1:	Q1		9.4		ns
		V_{DD} = 48 V, I_{D} = 19 A, V_{GS} = 4.5 V, R_{GEN} = 2.5 Ω	Q2		9.4		
t _r	Rise Time	Q2:	Q1		5.8		ns
		$V_{DD} = 48 \text{ V}, I_D = 19 \text{ A},$	Q2		5.8		
t _{D(OFF)}	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 2.5 \Omega$	Q1		12.8		ns
			Q2		12.8		
t _f	Fall Time		Q1		4.4		ns
			Q2		4.4		1
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	Q1		13.5		nC
			Q2		13.5		
Qg	Total Gate Charge	V _{GS} = 0 V to 4.5 V	Q1		6.4		nC
		Q1:	Q2		6.4		
Q_{gs}	Gate-to-Source Gate Charge	$V_{DD} = 48 \text{ V},$	Q1		2.6		nC
		I _D = 19 A Q2:	Q2		2.6		
Q_{gd}	Gate-to-Drain "Miller" Charge	$V_{DD} = 48 \text{ V},$	Q1		2.8		nC
		I _D = 19 A	Q2		2.8		
RAIN-SO	DURCE DIODE CHARACTERISTICS						
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 10 A (Note 2)	Q1		0.79	1.2	V
		V _{GS} = 0 V, I _S = 10 A (Note 2)	Q2		0.79	1.2	
t _{rr}	Reverse Recovery Time	Q1:	Q1		29		ns
		I _F = 19 A, di/dt = 100 A/μs Q2:	Q2		29		1
Q _{rr}	Reverse Recovery Charge	I _F = 19 A, di/dt = 100 A/μs	Q1		14		nC
		1	Q2		14		1


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
 R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{θCA} is determined by the user's board design.


a) 70°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 70°C/W when mounted on a 1 in² pad of 2 oz copper.

c) 135°C/W when mounted on a minimum pad of 2 oz copper.

d) 135°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μs , Duty cycle < 2.0%.
- Q1: E_{AS} of 46 mJ is based on starting T_J = 25°C; N-ch: L = 1 mH, I_{AS} = 9.6 A, V_{DD} = 60 V, V_{GS} = 10 V. 100% test at L = 1 mH, I_{AS} = 9.6 A. Q2: E_{AS} of 46 mJ is based on starting T_J = 25°C; N-ch: L = 1 mH, I_{AS} = 9.6 A, V_{DD} = 60 V, V_{GS} = 10 V. 100% test at L = 1 mH, I_{AS} = 9.6 A.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal
- & electro-mechanical application board design.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TYPICAL CHARACTERISTICS

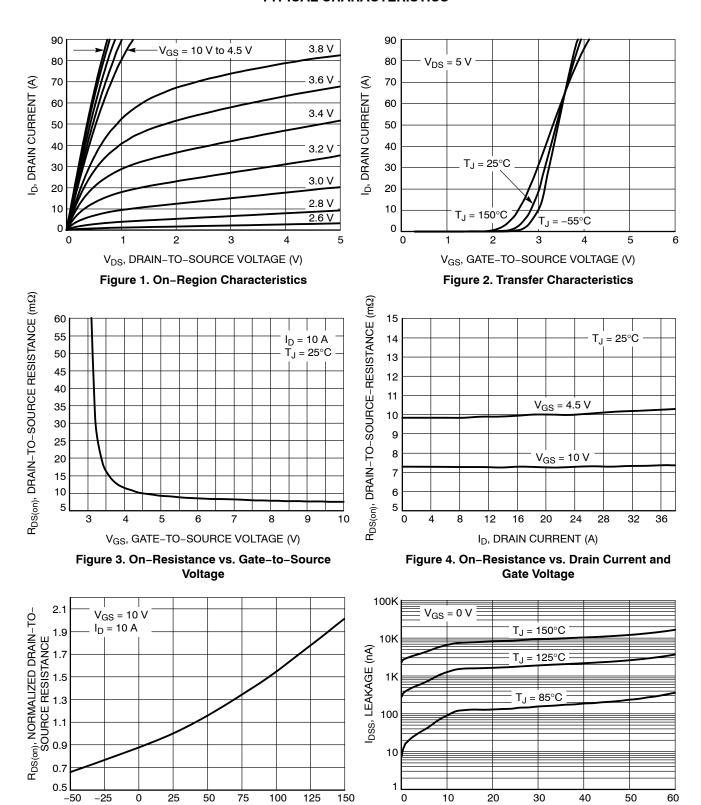


Figure 5. On–Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

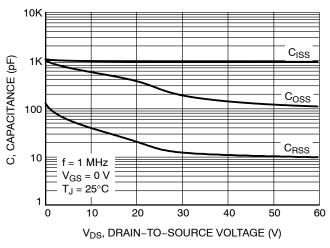


Figure 7. Capacitance Variation

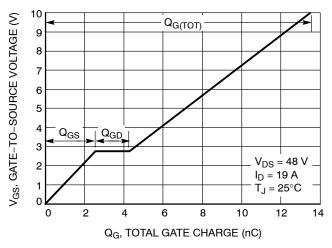


Figure 8. Gate-to-Source vs. Total Charge

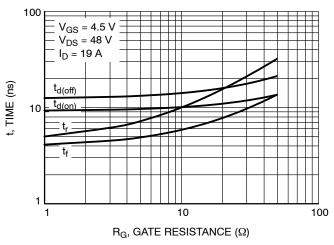


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

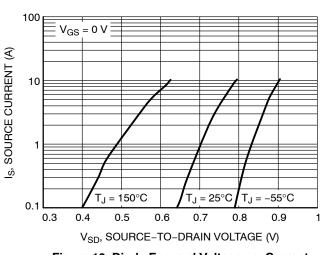


Figure 10. Diode Forward Voltage vs. Current

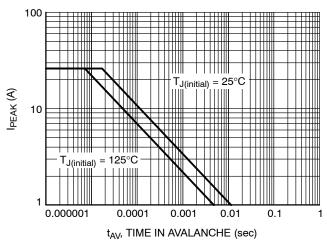


Figure 11. Unclamped Inductive Switching Capability

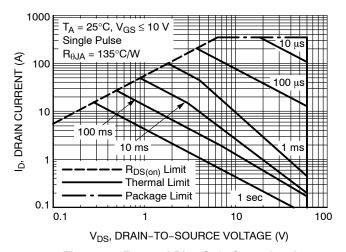


Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

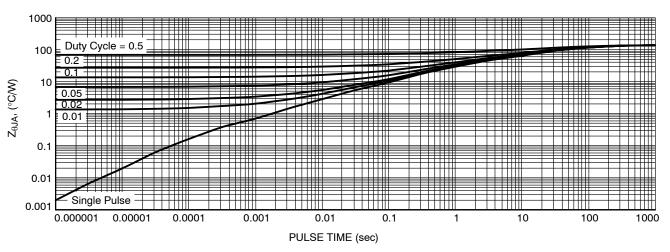


Figure 13. Transient Thermal Impedance

WQFN12 3.3X3.3, 0.65P CASE 510CJ **ISSUE A**

DATE 08 AUG 2022

MAX

0.80

0.05

0.37

3.40

1.54

0.30

3.40

1.29

0.40

0.64

0.39

0.35

MILLIMETERS

NOM

0.75

0.20 REF

0.32

3.30

1.44

0.20

3.30

1.19

0.30

0.65 BSC

0.325 BSC

1.24 BSC

0.33 REF

0.43 REF

0.54

0.29

0.25

DIM

Α

A1

АЗ

b

D

D2

D3

Ε

F2

E3

е

e/2

е1

k

k1

L

L1

L3

MIN

0.70

0.00

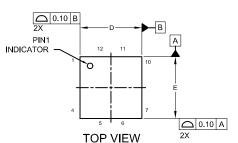
0.27

3.20

1.34

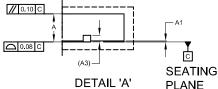
0.10

3.20

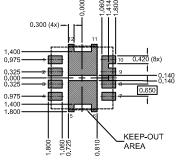

1.09

0.20

0.44

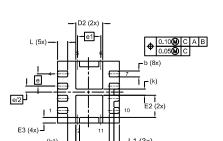

0.19

0.15



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- COPLANARITY APPLIES TO THE EXPOSED
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 5. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.



SCALE 2:1

LAND PATTERN RECOMMENDATION *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location = Year

WW = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13806G	Electronic versions are uncontrolled except when accessed directly from the Document Repr Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WQFN12 3.3X3.3, 0.65P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales