

www.sensirion.com Version 1 – April 2013 – Restricted D2 1/9

Application Note for Liquid Flow Sensors

Performing Basic Measurements using the RS485 Sensor Cable

Summary

This document describes the program sequences required
to perform basic measurements with the RS485 Sensor
Cable and how to interpret the obtained results. The

modes of operation discussed in this document include
Single Flow Rate Measurement, Continuous Flow Rate
Measurement, and Total Volume Measurement.

Introduction

The general working principle of the Sensirion Liquid Flow Sensors is described in the Operating Guidelines to the
FlowMeterKit for Liquid Flow Products (LQ_DS_FlowMeterKit_OperatingGuidelines_EN_xx_D1).

Communication Hardware

Typical hardware configurations for use with the RS485 Sensor Cable include:
 PC with RS485 PCI board
 PC with USB to RS485 converter
 PC with RS232 to RS485 converter
 Microcontroller with UART (Universal Asynchronous Receiver/Transmitter) interface and RS485 transceiver
 PC with USB slot (when using the cable with the integrated USB-to-RS485 converter)

The RS485 Sensor Cable is available with 3 different connector options:
 RS485 side with open wire ends, article code 1-100804-01
 RS485 side with D-sub DE-9 connector and external power supply, article code 1-100839-01
 Cable with integrated USB-to-RS485 converter, article code TBD

RS485 Interface

The RS485 Interface uses the Sensirion High-Level Data Link Control (SHDLC) protocol for communication.

For details on how to implement the low-level SHDLC protocol (e.g. on a microcontroller) see the following documents:
 Implementation Guide to the SHDLC Protocol for the RS485 Sensor Cable

(LQ_AN_RS485SensorCable_ImplementationGuideToSHDLC_EN_xx_D2)
 SHDLC Command Reference for the RS485 Sensor Cable (RS485_Sensor_Cable_SHDLC_Commands_EN_xx_D1).

For high-level implementation on Microsoft Windows Systems, Sensirion provides C driver DLLs for the RS485 Sensor Cable
which may be referenced from standard programming languages. See the RS485 Sensor Cable DLL Documentation
(LQ_CO_RS485_SensorCable_DLL_Documentation) for details. The DLL is available for 32 bit and 64 bit operating systems.
(LQ_CO_RS485_SensorCable_DLL_Driver_EN_xx_D2, LQ_CO_RS485_SensorCable_DLL_Driver-64bit_EN_xx_D2)

Separate programming examples are available for C++, C#, and Python. Additionally, examples for LabVIEW are available,
including a library which implements the most important commands.

This document describes the program sequences in a generalized form, regardless of the specific implementation.

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 2/9

Single Measurement Mode

A single flow rate measurement consists of two steps: 1) starting the measurement on the sensor and 2) retrieving the
measured flow rate from the sensor. The sensor output is a 16 bit (2 byte) integer, either signed (-32768...32767) or unsigned
(0...65535), depending on the sensor and the measurement type. This integer linear flow data is referred to as flow_ticks. To
obtain a flow rate value in physical units the flow_ticks need to be divided by sensor-specific scale factor. See also the
Operating Guidelines to the FlowMeterKit for details.

Collecting Measurement Data

Initialization:

 Reset the cable and sensor (recommended):
 DeviceReset()
 wait 250 milliseconds (ms) to let the reset finish

 Initialize the cable and sensor (necessary once after every power-up or device reset)

only for SLQ-QTxxx sensors:
 SetHeaterMode(Heatermode = 1) # set the heater mode to 1 (always on)

(SLI-xxx and SLG64-xxx sensors are shipped with 'heater mode = always on' as default setting.)

For all sensors (optional):
 SetResolution(resolution) # set bit resolution of measurement (from 9 to 16bit)

 Read the scale factor, the flow unit and the measurement data type from the sensor and store them in variables
(necessary once for each sensor)
 scalefactor = GetScaleFactor() # read the scale factor from the sensor and store it

 flowunit = GetFlowUnitString() # read the flow unit frrom the sensor and store it

 measurementdatatype = GetMeasurementDataType() # read the measurement data type

(signed or unsigned) from the sensor and store it.

Perform a single measurement:
 StartSingleMeasurement() # starts the measurement on the Sensor

 wait for the measurement to finish (1 to 80 ms, depending on the selected resolution)
 sensor_output = GetSingleMeasurement()

Use the variable sensor_output according to your needs, see below.

Converting Sensor Output to Physical Flow Rate

For the interpretation of the sensor output it is necessary to distinguish the different types of implementation.

 If the low-level SHDLC protocol is implemented directly (e.g. on a microcontroller), the value returned by the function
GetSingleMeasurement() needs to be interpreted as a signed or unsigned 16bit integer, depending on the

measurementdatatype.

 If the windows DLL is used, the interpretation as signed or unsigned integer is handled by the DLL if the correct
function GetSingleMeasurementSigned() or GetSingleMeasurementUnsigned() is used,

depending on the measurementdatatype being signed or unsigned, respectively.

SHDLC:

The sensor_output needs to be converted to flow_ticks by the two's complement convention if necessary. For

details, see the Implementation Guide to SHDLC.

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 3/9

Windows DLL:

Call the corresponding functions to obtain the flow_ticks:

 if measurementdatatype == 0: # signed

 flow_ticks = GetSingleMeasurementSigned()

 else: # unsigned

 flow_ticks = GetSingleMeasurementUnsigned()

The next step is converting the flow_ticks to a physical flow rate:

 physical_flow = flow_ticks / scalefactor

where physical_flow is in the flow rate in the flow units of the sensor.

Examples:

Let's consider an SLQ-QT105 sensor. The scale factor of the SLQ-QT105 is '13' (subject to change), the flow unit is 'ul/s'
(microliters per second) and the measurement data type is 'signed'.

 DLL implementation, measured flow rate 1000 ul/s:
 flow_ticks = GetSingleMeasurementSigned()
 flow_ticks = 13000

 physical_flow = 13000 / 13 = 1000

 DLL implementation, measured flow rate -500 ul/s:
 flow_ticks = GetSingleMeasurementSigned()
 flow_ticks = -6500

 physical_flow = -6500 / 13 = -500

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 4/9

Continuous Measurement Mode

The RS485 Sensor Cable can autonomously perform single measurements at a configurable sampling time. The results of
these single measurements are stored in the measurement buffer.

Flow Chart of the Continuous Measurement Mode

The internal sequence of the continuous measurement mode is depicted in the flow chart of Fig. 1:

Fig. 1: Flow Chart of Continuous Measurement Mode

Resolution duration of one single measurement

9 bit 1 ms

10 bit 2 ms

11 bit 3 ms

12 bit 6 ms

13 bit 10 ms

14 bit 20 ms

15 bit 40 ms

16 bit 80 ms

Tab. 1: Resolution vs. measurement time

The duration of the measurement depends on the selected bit resolution, see Tab. 1. Obviously, the sampling time cannot be
shorter than the duration of the measurement at the selected resolution. When a single measurement is complete, the sensor
cable waits in an idle state until it starts the next single measurement. The sampling time is specified in milliseconds, the
maximum value being 65535. (slightly more than a minute). A sampling time of 0 (zero) may be specified. In this case the
sensor measures as fast as is possible for the given data resolution, which will be slightly faster than the values stated in Tab.
1, but not as well-defined.

Example: Assume the resolution is 13 bit and the sampling time is 20 ms. The sensor will measure for 10ms and wait idle for
another 10 ms, before starting the next single measurement.

While the measurement is running, the continuous measurement mode cannot be stopped. The sensor may therefore stay
busy after receiving the StopContinuousMeasurement() command for up to 80 ms (in the case of 16 bit resolution),

until the running single measurement is complete. If the command StopContinuousMeasurement() is received during

the idle phase the continuous measurement mode is stopped immediately.

The data collected in Continuous Measurement Mode is stored in two ways on the RS485 Sensor Cable:

 The latest measurement is stored in a variable, 'last measurement'

 All measurements are stored in a buffer, 'measurement buffer'

Both of these may be accessed independently.

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 5/9

Collecting Measurement Data

Initialization:

 Initialize the sensor in the same way as for a single measurement.

Start the continuous measurement mode:
 StartContinuousMeasurement(samplingtime) # starts measurement with desired sampling time

Read the flow rate data from the sensor:

Read only the latest measured flow value (e.g. for a live display of the flow rate) and store it in the variable lastflow

 lastflow = GetLastMeasurementWithoutClear()

or (recommended):

read the measurement buffer (to store the complete flow rate profile) and append it to the array flowbuffer

 flowbuffer.append(GetMeasurementBuffer())

Stop Measurement:
 StopContinuousMeasurement()

Use the variables lastflow and flowbuffer according to your needs.

Converting Sensor Output to Physical Flow Rate

The variable lastflow and each entry in the array flowbuffer is the result of a single measurement. Hence, the

interpretation as signed / unsigned integers in case of the SHDLC implementation (or the use of the functions with suffixes
...Signed and ...Unsigned in the case of the DLL implementation) is the same as discussed above for the single

measurement. Also the conversion of the flow ticks to physical flow rate values is the same.

Working with the Last Measurement

The latest measurement is stored in a separate variable on the RS485 Sensor Cable. This variable is independent of the
measurement buffer (see below). It can be accessed by two different functions:

 GetLastMeasurement(). If the last measurement is read out with this function, its value is cleared after readout.

If the function is called another time before a new measurement has been acquired, the function will return no value.

and

 GetLastMeasurementWithoutClear(). The last measurement can be read out at any time with this

function. After read out, the variable on the Sensor Cable is not cleared. Calling the
GetLastMeasurementWithoutClear() function repeatedly will return the same measurement value until a new
measurement is available.

The last measurement can be used to get the flow rate currently measured by the flow meter.

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 6/9

Working with the Measurement Buffer

The measurement buffer is a first-in-first-out (FIFO) buffer on the RS485 Sensor Cable in which the single measurement
results collected in continuous measurement mode are stored. In normal operation, the buffer can hold up to 127 entries. (A
more complicated extended buffer mode allows handling up to 1000 entries. For most applications 127 entries are sufficient.
Contact Sensirion if your application requires working with the extended buffer.)

The command GetMeasurementBuffer() reads all available measurements from the measurement buffer and clears

the measurement buffer on the RS485 Sensor Cable. If 127 values are returned, the buffer was full and probably
measurements have been lost since the last call to GetMeasurementBuffer(). If this happens, read the buffer more

frequently.

In the array returned by GetMeasurementBuffer() the first entry corresponds to the oldest measurement in the data

packet, the last entry corresponds to the newest measurement. The data packets may be concatenated on the controller
system to reproduce the entire flow rate profile.

Example:

 flowbuffer = [] # initialize an array to store the measurement values

 measbuffer = GetMeasurementBuffer()
 measbuffer = [11, 22, 33, 44] # example
 flowbuffer.extend(measbuffer) # append measbuffer to flow buffer

 flowbuffer = [11, 22, 33, 44]

 measbuffer = GetMeasurementBuffer()
 measbuffer = [55, 66, 77] # example
 flowbuffer.extend(measbuffer) # append measbuffer to flow buffer

 flowbuffer = [11, 22, 33, 44, 55, 66, 77]

 measbuffer = GetMeasurementBuffer()

 measbuffer = [88, 99, 1010, 1111] # example
 flowbuffer.extend(measbuffer) # append measbuffer to flow buffer

 flowbuffer = [11, 22, 33, 44, 55, 66, 77, 88, 99,1010, 1111]

Timing Information in Continuous Measurement Mode

In continuous measurement mode, the sensor cable performs single measurements to the measurement buffer at a regular
time interval, defined as the sampling time. However, the on-board electronics of the RS485 Sensor Cable do not include a
very precise internal clock, therefore clock speeds vary slightly from cable to cable. Although these variations are typically
below 0.1%, when running the continuous measurement mode for a prolonged time (several minutes, hours, or days) the total
number of samples acquired within a fixed amount of time will therefore vary from cable to cable.

If an absolute time stamp is required for each entry in the measurement buffer, it is recommended to reference each reading
of the measurement buffer to the controller system time by the following procedure:

 measurementtimes = [] # initialize an array to store the time stamps

 flowbuffer = [] # initialize an array to store the measurement values

then on each reading of the measurement buffer do the following:
 currentsystemtime = ... # get the current system time of the controller

 measbuffer = GetMeasurementBuffer() # immediately after, read the measurement buffer

 measbufferlength = length(measbuffer) # get the number of entries in measbuffer

compute the timestamp of the first entry in the measurement buffer:
 timestamp = currentsystemtime – (measbufferlength * samplingtime)
where samplingtime is the sampling time of the continuous measurement mode.

then fill the measuretimes array based on this first timestamp:

 for i from 1 to measbufferlength:
 measuretimes.append(timestamp)

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 7/9

 timestamp = timestamp + samplingtime

 flowbuffer.extend(measbuffer) # append the measbuffer to the flowbuffer

The above procedure is illustrated by the following example:

Example:

 samplingtime = 0.02 # 20 milliseconds = 0.02 seconds

 # first reading of the measurement buffer
 currentsystemtime = 1.163 # system time in seconds with milliseconds, example
 measbuffer = GetMeasurementBuffer()

 measbuffer = [11, 22, 33, 44, 55, 66] # example

 measbufferlength = 6

 first timestamp = 1.163 – 6*0.02 = 1.043

 measuretimes = [1.043, 1.060, 1.083, 1.103, 1.123, 1.143]

 flowbuffer = [11, 22, 33, 44, 55, 66]

 # second reading of the measurement buffer
 currentsystemtime = 1.227 # system time in seconds with milliseconds, example
 measbuffer = GetMeasurementBuffer()

 measbuffer = [77, 88, 99] # example

 measbufferlength = 3

 first timestamp = 1.227 – 3*0.02 = 1.167

 measuretimes = [1.043, 1.060, 1.083, 1.103, 1.123, 1.143, 1.167, 1.187, 1.207]

 flowbuffer = [11, 22, 33, 44, 55, 66, 77, 88, 99]

The timestamps in measuretimes correspond to the entries in the flowbuffer as follows:

measurement 11 22 33 44 55 66 77 88 99

timestamp 1.043 1.063 1.083 1.103 1.123 1.143 1.167 1.187 1.207

difference of timestamps 0.020 0.020 0.020 0.020 0.020 0.024 0.020 0.020

As can be seen from the above table, the procedure suggested in this section introduces a jitter of up to ±1 sampling time
between data packets corresponding to different readings of the measurement buffer. On the other hand it ensures that the
absolute timing information remains correct with respect to the controller system clock (to within ±1 sampling time).

As a general rule it is recommended that the sampling time should be less than half of the time scale of signal variations which
are of interest. The jitter of ±1 sampling period is therefore generally acceptable. For instance, if typical flow rate variations are
expected on the time scale of 50 ms, a sampling period of 20 ms is reasonable and an absolute timing error of ±20 ms is
acceptable.

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 8/9

Total Volume Measurement using the Totalizator

The RS485 Sensor cable provides an internal Totalizator (Totalizer) which allows adding the flow rate values measured in
continuous measurement mode. In combination with a fixed sampling time, the value of the Totalizator can be used to
compute the total volume measured by the sensor since the last reset of the Totalizator. The Totalizator may be enabled,
disabled or reset by the user at any time. The Totalizator is only available in continuous measurement mode and the sampling
time should be explicitly specified. The totalizator value is stored as an 64 bit integer value which is large enough to avoid any
problems with overflow.

Collecting Measurement Data

Initialization:
 Initialize the sensor in the same way as for a continuous measurement.

At any time, when you want to start integration, enable the Totalizator and reset its value:
 SetTotalizatorStatus(Status = 1) # enable the Totalizator

 ResetTotalizator() # reset the Totalizator value to zero

Start the continuous measurement mode:
 StartContinuousMeasurement(samplingtime) # starts measurement with desired sampling time

At any time you may read the totalizator value:
 totalizator_output = GetTotalizatorValue() # read the Totalizator value and store it

At any time you may reset the totalizator value to zero:
 ResetTotalizator() # reset the Totalizator value to zero

Use the variable totalizator_output according to your needs, see below.

Computing the Physical Volume from the Totalizator Output

SHDLC:

The totalizator_output needs to be converted to totalizator_ticks by the two's complement convention.

See the Implementation Guide to SHDLC.

Windows DLL:

The sign conversion is handled by the DLL, so:

 totalizator_ticks = GetTotalizatorValue()

The signed integer values correspond to the added sensor output values. These need to be converted to physical flow by
dividing through the scale factor, as above for the flow rates:

 totalizator_ticks_scaled = totalizator_ticks / scalefactor

This sum of physical flow values must be converted to a volume by taking into account the time spacing between two
subsequent flow values, see the following viewgraph.

Application Note for Liquid Flow Sensors:Basic Measurements using the RS485 Sensor Cable

www.sensirion.com Version 1 – April 2013 – Restricted D2 9/9

During a dispense, the sensor measures flow rate values qi (green dots) at a specified time interval Δt (the sampling time). In
order to obtain the volume of the dispense, the area under the curve must be determined. This is equivalent to adding the grey
rectangles in the viewgraph. Each rectangle represents a small volume Vi, and has width and height Δt and qi respectively.

The total physical volume is the sum of these physical volumes Vi, where for each volume Vi=qi ·Δti. Therefore the total volume
can be computed as follows: V = ΣVi = ΣqiΔti = ΣqiΔt = Δt Σqi.

The value totalizator_ticks_scaled as computed above from the totalizator_output is a sum of physical

flow rate values: Σqi

The time interval Δt is the time between measurements (the sampling time), in the same time units as the physical flow unit of
the sensor.

Example 1: sampling time 20 ms, flow unit is ul/sec, i.e. Δt = 0.02 sec

Example 2: sampling time 20 ms, flow unit is ml/min, i.e. Δt = 0.000333 min

The physical volume can therefore be calculated as follows:

 physical_volume = totalizator_ticks / scalefactor * sampling_time

Example:

SLQ-QT105 Sensor, measured volume: 300 ul. The scale factor of the SLQ-QT105 is 13 (subject to change), flow unit is ul/s
(microliters per second), measurement interval is 20 ms. When using the DLL, we have

 totalizator_ticks = GetTotalizatorValue()

 totalizator_ticks = 195000 # example

 totalizator_ticks_scaled = 195000 / 13 = 15000

 physical_volume = 15000 * 0.02 = 300

 the measured volume is therefore 300 microliters.

Headquarter and Sales Offices

SENSIRION AG Phone: + 41 (0)44 306 40 00
Laubisruetistr. 50 Fax: + 41 (0)44 306 40 30
CH-8712 Staefa ZH info@sensirion.com
Switzerland www.sensirion.com

SENSIRION Korea Co. Ltd. Phone: +82-31-440-9925~27
#1414, Anyang Construction Tower B/D, Fax: +82-31-440-9927
1112-1, Bisan-dong, Anyang-city, info@sensirion.co.kr
Gyeonggi-Province, South Korea www.sensirion.co.kr

SENSIRION Inc Phone: +1 805-409 4900
Westlake Pl. Ctr. I, suite 204 Fax: +1 805-435 0467
2801 Townsgate Road michael.karst@sensirion.com
Westlake Village, CA 91361 www.sensirion.com
USA

SENSIRION China Co. Ltd. Phone: +86 755 8252 1501
Room 2411, Main Tower Fax: +86 755 8252 1580
Jin Zhong Huan Business Building, info@sensirion.com.cn/
Postal Code 518048 www.sensirion.com.cn
Futian District, Shenzhen, PR China

SENSIRION Japan Phone: +81 3-3444-4940
Sensirion Japan Co. Ltd. Fax: +81 3-3444-4939
Shinagawa Station Bldg. 7F info@sensirion.co.jp
4-23-5 Takanawa www.sensirion.co.jp
Minato-ku, Tokyo, Japan

Find your local representative at: www.sensirion.com

mailto:info@sensirion.com
http://www.sensirion.com/
mailto:info@sensirion.co.kr
http://www.sensirion.co.kr/
mailto:michael.karst@sensirion.com
http://www.sensirion.com/
mailto:info@sensirion.com.cn/
http://www.sensirion.com.cn/
mailto:info@sensirion.co.jp
http://www.sensirion.co.jp/
http://www.sensirion.com/

