Power MOSFET 25 V, 149 A, Single N–Channel, SO–8 FL

Features

- Accurate, Lossless Current Sensing
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

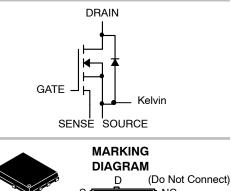
- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

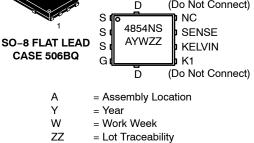
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Para	ameter		Symbol	Value	Unit
Drain-to-Source Vo	ltage		V _{DSS}	25	V
Gate-to-Source Vol	Gate-to-Source Voltage			±16	V
Continuous Drain		T _A = 25°C	I _D	24.4	А
Current R _{θJA} (Note 1)		T _A = 85°C		17.6	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	PD	2.31	W
Continuous Drain		$T_A = 25^{\circ}C$	ID	15.2	А
Current R _{θJA} (Note 2)	Steady State	T _A = 85°C		11	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	$T_A = 25^{\circ}C$	P _D	0.9	W
Continuous Drain		$T_{C} = 25^{\circ}C$	I _D	149	А
Current R _{θJC} (Note 1)		T _C = 85°C		107.5	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	86.2	W
Pulsed Drain Current		T _A = 25°C, t _p = 10 μs		298	A
Operating Junction a Temperature	and Storag	e	T _J , T _{STG}	–55 to +150	°C
Source Current (Boo	Source Current (Body Diode)			71	А
Drain to Source DV/	Drain to Source DV/DT			6	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 30 V, V _{GS} = 10 V, I _L = 20 A _{pk} , L = 1.0 mH, R _G = 25 Ω)			EAS	200	mJ
Lead Temperature for (1/8" from case for 1		g Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.


2. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
	2.5 m Ω @ 10 V	149 A
25 V	3.9 mΩ @ 4.5 V	119 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4854NST1G	SO–8 FL (Pb–Free)	1500 Tape / Reel
NTMFS4854NST3G	SO–8 FL (Pb–Free)	5000 Tape / Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	1.45	
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	54	°C/W
Junction-to-Ambient - Steady State (Note)	$R_{ hetaJA}$	138.7	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				30		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			10	
		V _{DS} = 20 V	T _J = 125°C			200	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±16 V			±100	nA

ON CHARACTERISTICS (Note 5)

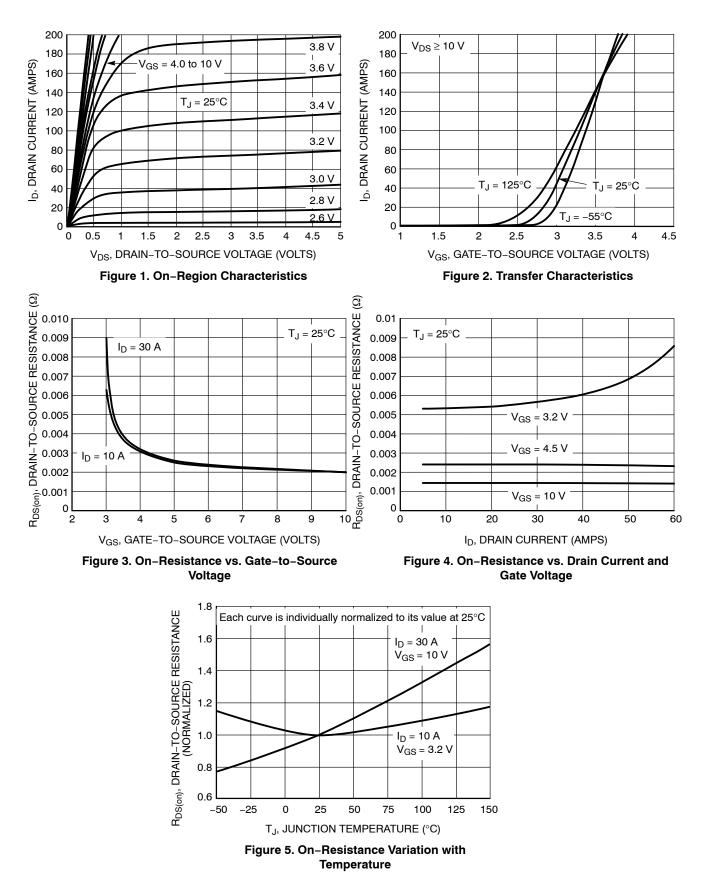
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A		1.0		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 15 A		1.5	2.5	
		V _{GS} = 4.5 V	I _D = 15 A		2.5	3.9	
		V _{GS} = 3.2 V, I _D = 10 A	$T_J = 75^{\circ}C$		6.0	10	mΩ
		$I_{\rm D} = 10 \rm A$	$T_J = 25^{\circ}C$		5.1	8.8	
Forward Transconductance	9 FS	V _{DS} = 15 V, I _D	= 15 A		28		S

CHARGES, CAPACITANCES & GATE RESISTANCE

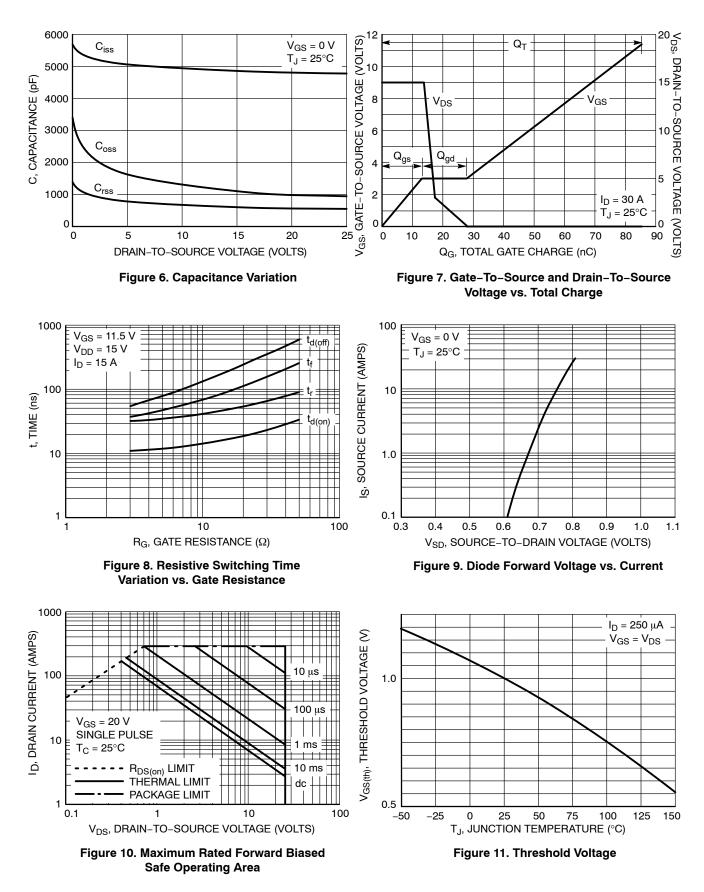
Input Capacitance	C _{ISS}			4830		
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 12 V		1130		pF
Reverse Transfer Capacitance	C _{RSS}			550		
Total Gate Charge	Q _{G(TOT)}			36	66	
Threshold Gate Charge	Q _{G(TH)}			4.7		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$		13		nC
Gate-to-Drain Charge	Q _{GD}			15		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 11.5 V, V_{DS} = 15 V; I_D = 30 A		85		nC

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(ON)}		20	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 15 A,	54	
Turn-Off Delay Time	t _{d(OFF)}	R _G = 3.0 Ω	38	ns
Fall Time	t _f		45	


 $\begin{array}{lll} \text{5. Pulse Test: pulse width } \leq 300 \ \mu\text{s}, \ \text{duty cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \\ \text{7. With 0V potential from sense lead to source lead, i.e. using a virtual ground.} \end{array}$

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note 6)					•		
Turn-On Delay Time	t _{d(ON)}				11		
Rise Time	t _r	V_{GS} = 11.5 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			32		ns
Turn-Off Delay Time	t _{d(OFF)}				54		
Fall Time	t _f				34		
DRAIN-SOURCE DIODE CHARACTERIST	ICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, \\ I_{S} = 30 A \\ T_{J} = 125^{\circ}C \\ T_{J} = 125^{\circ}C$			0.80	1.2	
					0.65		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 30 A			36		
Charge Time	t _a				17		ns
Discharge Time	t _b				19		
Reverse Recovery Charge	Q _{RR}				33		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.65		nH
Drain Inductance	L _D	т осо	_		0.005		nH
Gate Inductance	L _G	T _A = 25°0			1.84		nH
Gate Resistance	R _G				1.4		Ω
CURRENT SENSE CHARACTERISTICS							
Current Sensing Ratio	I _{ratio}	V_{GS} = 5 V, 0-70°C, 5-20 A		374	399	424	
Current Sensing Ratio	I _{ratio}	$V_{GS} = 5 \text{ V}, 0-70^{\circ}\text{C}, 1-5 \text{ A}$		362	399	436	
Current Sense Temperature Coefficient (Note 7)					0.006		%/°C

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.
 With 0V potential from sense lead to source lead, i.e. using a virtual ground.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL CHARACTERISTICS

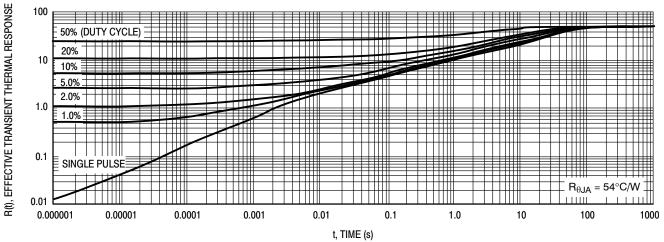


Figure 12. FET Thermal Response

DFN8 5x6, 1.2	
CASE 506B ISSUE C	
SCALE 2:1 2X	DATE 12 APR 2012
$ \begin{array}{c} \bigcirc 0.20 \ C \\ \hline \hline$	 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP. PROFILE TOLERANCE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINAL. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. SEATING PLANE IS DEFINED BY THE TERMINALS. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. A VISUAL INDICATOR FOR PIN 1 MUST BE LOCATED IN THIS AREA.
	A VIOSALINDISALINT OLT INTINO DE LECALE IN THIS ALEX. AX h A A A A A B MILLIMETERS DIM MIN MAX A A 0.90 1.10 A1 C.05 b 0.33 0.51 c 0.20 0.33
	MARKING DIAGRAM* D 5.15 BSC D1 4.50 5.10
0.10 C 0.10 C 0.10 C NOTE 4 SIDE VIEW DETAIL A DETAIL A DETAIL A	1 D2 3.90 4.30 E 6.15 BSC E1 5.50 6.10 AYWZZ E 1.27 BSC G 0.80 1.20 h 12° XXXXXX= Specific Device Code K
$ \begin{array}{c} & & D2 \longrightarrow \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & &$	A = Assembly Location M 0.31 0.71 Y = Year M 3.25 3.75 W = Work Week ZZ = Lot Traceability *This information is generic. Please refer to device data sheet for actual part
	marking.
	SOLDERING FOOTPRINT*
0.99 4x *For additio	^{8X} 0.75 0.75 0.92 0.92 0.92 0.90

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON38888E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DFN8 5X6, 1.27P	PAGE 1 OF				
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit and specifically						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative