

30 W, 13.75 - 14.5 GHz, 40 V GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA1D1E030D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a Silicon Carbide substrate, using a 0.25 μm gate length fabrication process. GaN-on-SiC has superior properties compared to silicon, gallium arsenide or GaN-on-Si, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si, GaAs, and GaN-on-Si transistors.

PN: CMPA1D1E030D

Typical Performance Over 13.75-14.5 GHz ($T_c = 25^{\circ}C$)

Parameter	13.75 GHz	14.0 GHz	14.5 GHz	Units
Small Signal Gain	27	26	25	dB
P _{SAT} @ P _{IN} = 26 dBm	33	34	30	W
P _{3dB} Backoff @ P _{IN} = 20 dBm	20	20	16	W
PAE @ P _{IN} = 26 dBm	24	23	22	%
PAE @ P _{IN} = 20 dBm	22	21	20	%

Note: All data in this table is based on fixtured, CW performance

Features

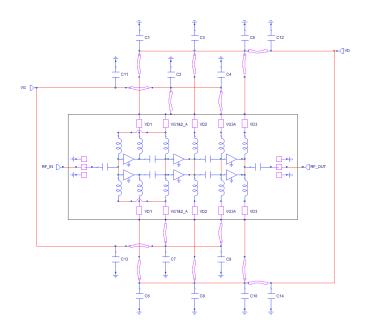
- 27 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 40 V
- High Breakdown Voltage
- High Temperature Operation

Applications

• Satellite Communications Uplink

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V_{DSS}	84	.,	0500
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	10	mA	
Maximum Drain Current Stage 1 ¹		0.6		2500
Maximum Drain Current Stage 2 ¹	I _{DMAX}	0.96	А	25°C
Maximum Drain Current Stage 3 ¹		2.2		
Thermal Resistance, Junction to Case ²	$R_{\theta JC}$	1.5	°C/W	85°C, P _{DISS} = 94W
Mounting Temperature (30 seconds)	T _s	320	°C	30 seconds


Electrical Characteristics (Frequency = 13.75 GHz to 14.5 GHz unless otherwise stated; T_C = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold	V _{TH}	-3.7	-3.2	-2.8	V	V _{DS} = 10 V, I _D = 18.2 mA
Drain-Source Breakdown Voltage	V_{BD}	84	100	_	V	$V_{GS} = -8 \text{ V}, I_D = 18.2 \text{ mA}$
RF Characteristics ¹						
Small Signal Gain at 13.75 GHz	C21	20.75	26	_		V = 40 V L = 200 mA B = 10 dBm
Small Signal Gain at 14.5 GHz	S21	19.9	25	_	-ID	$V_{DD} = 40 \text{ V}, I_{DQ} = 300 \text{ mA}, P_{IN} = 10 \text{ dBm}$
Input Return Loss	S11	_	-16	_	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 300 \text{ mA}$
Output Return Loss	S22	_	-9	_		
Power Output at 13.75 GHz	_	37	42	_	14/	V 40.V.I 200 A B 25 IB
Power Output at 14.5 GHz	Роит	35	40	_	W	$V_{DD} = 40 \text{ V}, I_{DQ} = 300 \text{ mA}, P_{IN} = 25 \text{ dBm}$
D 411 1500 :	DAF	_	30	_	0/	V _{DD} = 40 V, I _{DQ} = 300 mA, CW, P _{IN} = 24 dBm
Power Added Efficiency	PAE	23	25	_	%	V _{DD} = 40 V, I _{DQ} = 300 mA, P _{IN} = 18 dBm
Power Gain	G _P	_	22	_	dB	V _{DD} = 40 V, I _{DQ} = 300 mA
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DS} = 40 \text{ V}$, $I_{DQ} = 300 \text{ mA}$, $P_{OUT} = 25 \text{ W CW}$

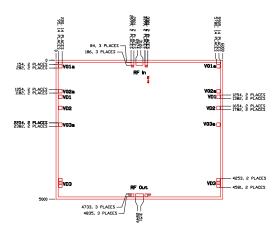
¹ Current limit for long term, reliable operation. Total current when biased from top and bottom drain pads ² Eutectic die attach using 80/20 AuSn solder mounted to a 20 mil thick CuMoCu carrier.

Notes: 1 All data pulse tested on-wafer with Pulse Width = $3\mu s$ from DC pulse 2 RF power and DC current measurements are made $6\mu s$ from start of RF pulse

Block Diagram Showing Additional Capacitors for Operation Over 13.75 to 14.5 GHz

Designator	Description	Qty
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10	CAP, 51pF, +/-10%, SINGLE LAYER, 0.030", Er 3300, 100V, Ni/Au TERMINATION	10
C11, C12, C13, C14	CAP, 680pF, +/-10%, SINGLE LAYER, 0.070", Er 3300, 100V, Ni/Au TERMINATION	4

Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D

Note:

¹ The input, output and decoupling capacitors should be attached as close as possible to the die-typical distance is 5 to 10 mils with a maximum of 15 mils

¹ The MMIC die and capacitors should be connected with 2 mil gold bond wires

Die Dimensions (units in microns)

Overall die size 5000 x 6000 (+0/-50) microns, die thickness 100 (+/-10) microns. All Gate and Drain pads must be wire bonded for electrical connection.

Pad Number	Function	Description	Pad Size (microns)	Note
1	RF_IN	RF-Input pad. Matched to 50 ohm	102x252	5
2	VG1A bottom	Cata and trail for at a set 1 M = 20ta 25 M		
3	VG1A top	Gate control for stage 1. V _G = -2.0 to -3.5 V		1, 2
4	VG2A bottom	Cata control for store 2 V = 20to 2 TV		,
5	VG2A top	Gate control for stage 2. V _G = -2.0 to -3.5 V		
6	VD1 bottom	Duain control for store 1 V = 40 V	128x125	1.2
7	VD1 top	Drain control for stage 1. V _D = 40 V		1, 3
8	VD2 bottom	Drain control for store 2 V = 40 V		1 4
9	VD2 top	─ Drain control for stage 2. V _D = 40 V		1, 4
10	VG3A bottom	Cata control for store 2 V = 20to 2 TV		1.0
11	VG3A top	Gate control for stage 3. V _G = -2.0 to -3.5 V		1, 2
12	VD3 bottom	Drain control for store 2 V = 40 V	220,425	1 4
13	VD3 top	Drain control for stage 3. V _D = 40 V	328x125	1, 4
14	RF_OUT	RF-Output pad. Matched to 50 ohm	102x302	5

Assembly Notes:

- Recommended solder is AuSn (80/20) solder. Refer to Wolfspeed's website for the Eutectic Die Bond Procedure application note at https://www.wolfspeed.com/document-library/?productLine=rf&q=Eutectic+Die+Bond+Procedure+application
- Vacuum collet is the preferred method of pick-up
- The backside of the die is the Source (ground) contact
- Die back side gold plating is 5 microns thick minimum
- Thermosonic ball or wedge bonding are the preferred connection methods
- Gold wire must be used for connections
- Use the die label (XX-YY) for correct orientation

¹ Attach bypass capacitor to pads 2-13 per aplications circuit

² VG1A&2A&3A top and bottom are connected internally, so it would be enough to connect either one for proper operation ³ VD1 top and bottom are not connected internally and have to be biased from both sides for proper operation ⁴ For current handling, it is recommended to bias VD2 and VD3 from both top and bottom sides

⁵ The RF Input and Output pads have a ground-signal-ground with a nominal pitch of 10 mil (250 μm). The RF ground pads are 102 x 102 microns

Part Number System

CMPA1D1E030D

Table 1.

Parameter	Value	Units
Lower Frequency	13.75	GHz
Upper Frequency ¹	14.5	GHz
Power Output	30	W
Package	Bare Die	_

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Note: ¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA1D1E030D	GaN MMIC, Bare Die	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2014-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.