150 mA CMOS Low Iq Low-Dropout Voltage Regulator with Voltage Detector Output

The NCP400 is an integration of a low-dropout regulator and a voltage detector in a very small chip scale package. The voltage regulator is capable of supplying 150 mA with a low dropout of 160 mV at 100 mA. It contains a voltage reference unit, an error amplifier, comparators, PMOS power transistor, current limit and thermal shutdown protection circuits for the regulator portion.

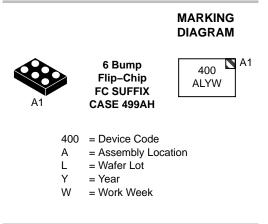
A highly accurate voltage detector with hysteresis and an externally programmable time delay generator are implemented to prevent erratic system reset operation. It features complementary output with active low reset function.

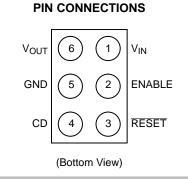
The NCP400 is designed to work with low cost ceramic capacitors and requires only a small 1.0 μ F capacitor at regulator output. Its low quiescent current is ideal for battery powered applications.

Features

- LDO Voltage Regulator and Voltage Detector Together in a Very Small Wafer Level Package, 6 Bump Flip–Chip, 1.0 x 1.5 mm
- Low Quiescent Current of 50 µA Typical
- Internal Current Limit and Thermal Shutdown Protection
- Low Cost and Small Size Ceramic Capacitors
- Input Voltage Range of 1.8 V to 5.0 V
- Voltage Regulator
 - 1.8 V (*) Output with 2% Accuracy
 - Excellent Line and Load Regulation
 - Low Dropout of 160 mV at 100 mA
- Voltage Detector
 - 2.3 V (*) Threshold with 2% Accuracy
 - Externally Programmable Time Delay Generator
 - Excellent Line and Load Regulation
- This is a Pb–Free Device

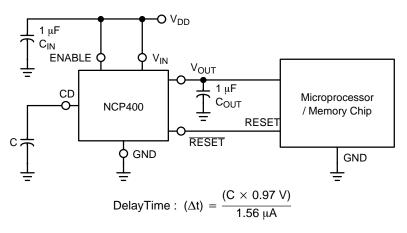
(*) Other voltages can be developed upon request. Please contact your ON Semiconductor representative.


Typical Applications


- Memory Cards
- Cellular Phones
- Digital Still Cameras and Camcorders
- Battery Powered Equipment

ON Semiconductor[®]

http://onsemi.com

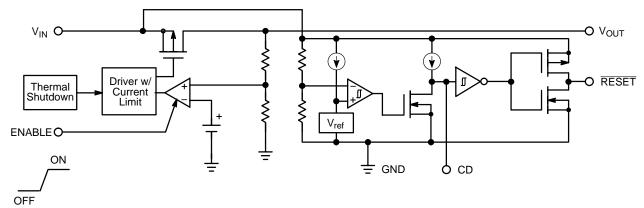

ORDERING INFORMATION

Device	Package	Shipping [†]
NCP400FCT2G	Flip–Chip (Pb–Free)	3000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

TYPICAL OPERATION CIRCUIT



PIN DESCRIPTION

Pin No.	Symbol	Description	
1	V _{IN}	Positive power supply input voltage.	
2	ENABLE	is input is used to place the device into low–power standby. When this input is pulled low, the device is sabled. If this function is not used, ENABLE should be connected to V_{IN} .	
3	RESET	Voltage detect output signal.	
4	CD	Delay capacitor pin.	
5	GND	Power supply ground.	
6	V _{OUT}	Voltage regulator output voltage.	

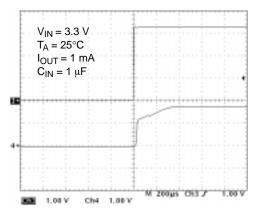
REPRESENTATIVE BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{IN}	0 to 5.5	V
Enable Voltage	ENABLE	–0.3 to V _{IN} +0.3	V
Output Voltage	V _{OUT}	–0.3 to V _{IN} +0.3	V
Delay Capacitor Pin Voltage	V _{CD}	–0.3 to V _{IN} +0.3	V
Reset Pin Voltage	Vreset	–0.3 to V _{IN} +0.3	V
Reset Pin Current	Ireset	70	mA
Power Dissipation and Thermal Characteristics for Microbump–6 Thermal Resistance Junction–to–Air (Note 3)	R _{θJA}	Refer to Figure 22	°C/W
Operating Junction Temperature	ТJ	-40 to +125	°C
Operating Ambient Temperature	T _A	-40 to +85	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

This device contains ESD protection and exceeds the following tests: Human Body Model (HBM) ±2000 V per MIL–STD–883, Method 3015 Machine Model (MM) ±200 V.


Latchup capability (85°C)100 mA DC with trigger voltage.
PCB top layer uses a single copper layer and is tested @ 250 mW.

ELECTRICAL CHARACTERISTICS (V _{IN} = V _{OUT(nom.)} + 1.0 V, ENABLE = V _{IN} , C _{IN} = 1.0 μF, C _{OUT} = 1.0 μF, T _A = 25°C, unless	\$
otherwise noted.)	

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage ($T_A = -40^{\circ}C$ to $85^{\circ}C$)	V _{IN}	1.8	_	5.0	V
Output Voltage (T _A = 25°C, I_{OUT} = 1.0 mA)	V _{OUT}	1.764	1.8	1.836	V
Output Voltage ($T_A = -40^{\circ}$ C to 85°C, $I_{OUT} = 1.0$ mA)	V _{OUT}	1.746	1.8	1.854	V
Line Regulation (I_{OUT} = 10 mA, V_{IN} = 2.8 V to 5.0 V)	Reg line	-	1.0	3.5	mV/V
Load Regulation (I _{OUT} = 1.0 mA to 150 mA)	Reg load	_	0.3	0.8	mV/mA
Maximum Output Current	I _{OUT(nom.)}	-	150	_	mA
Dropout Voltage (I _{OUT} = 100 mA, Measured at V _{OUT} –3.0%)	V _{IN} –V _{OUT}	_	160	200	mV
Quiescent Current (Enable Input = 0V, $I_{OUT} = 0 \text{ mA}$) (Enable Input = V_{IN} , $I_{OUT} = 1.0 \text{ mA}$ to Io(nom.))	I _{Q_SD} I _{Q_EN}	-	0.25 37	1.0 100	μΑ
Enable Input Threshold Voltage (Voltage Decreasing, Output Turns Off, Logic Low) (Voltage Increasing, Output Turns On, Logic High)	V _{TH(EN)}	0.17	0.25 1.25	_ 1.65	V
Output Short Circuit Current ($V_{OUT} = 0 V$, $V_{IN} = 5.0 V$) (Note 4)	I _{OUT(MAX)}	200	400	800	mA
Ripple Rejection (f = 1.0 kHz, Io = 60 mA)	RR	-	50	-	dB
Output Noise Voltage (f = 20 Hz to 100 kHz, I _{OUT} = 60 mA)	V _N	-	110	-	μVrms
Output Voltage Temperature Coefficient	T _C	_	±100	_	ppm°C
Detector Threshold ($T_A = 25^{\circ}C$)	V _{DET}	2.254	2.30	2.346	V
Detector Threshold Hysteresis	V _{HYS}	0.069	0.115	0.161	V
Reset Output Current N–Channel Sink Current (Reset = 0.5 V , $V_{IN} = 1.8 \text{ V}$) P–Channel Source Current (Reset = 2.4 V , $V_{IN} = 4.5 \text{ V}$)	I _{RESET}	1.0 1.0	7.0 5.5		mA
CD Delay Pin Threshold Voltage (Pin 4) (V _{IN} =2.0 V)	V _{TH(CD)}	0.76	0.97	1.14	V
Delay Capacitor Pin Sink Current (Pin 4) $(V_{IN} = 1.8 \text{ V}, \text{VCD} = 0.5 \text{ V})$	I _{CD_SINK}	0.2	39	_	mA
Delay Current Pin Source Current (Pin 4) (VCD = 0, V _{IN} = 2.8 V)	ICD_SOURCE	0.78	1.56	3.12	μΑ

4. Values are guaranteed by design.

TYPICAL CHARACTERISTICS

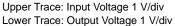
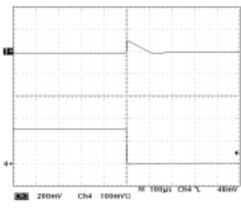
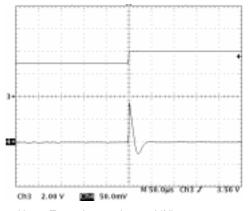
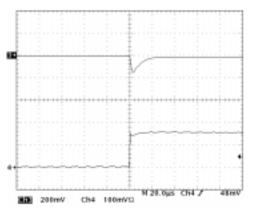
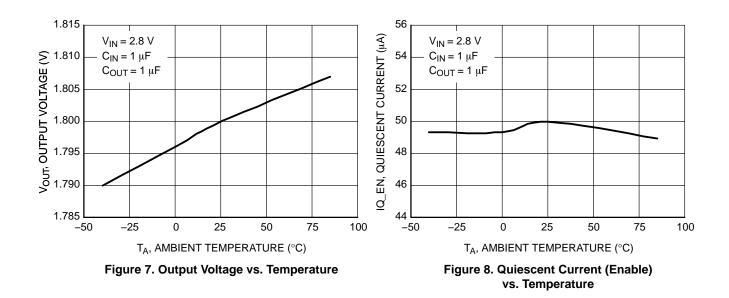
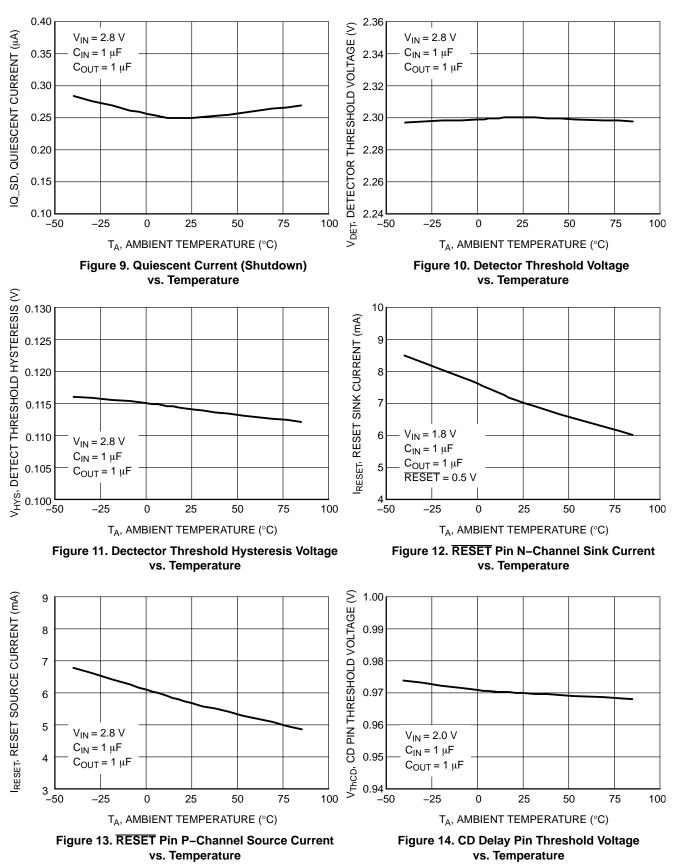




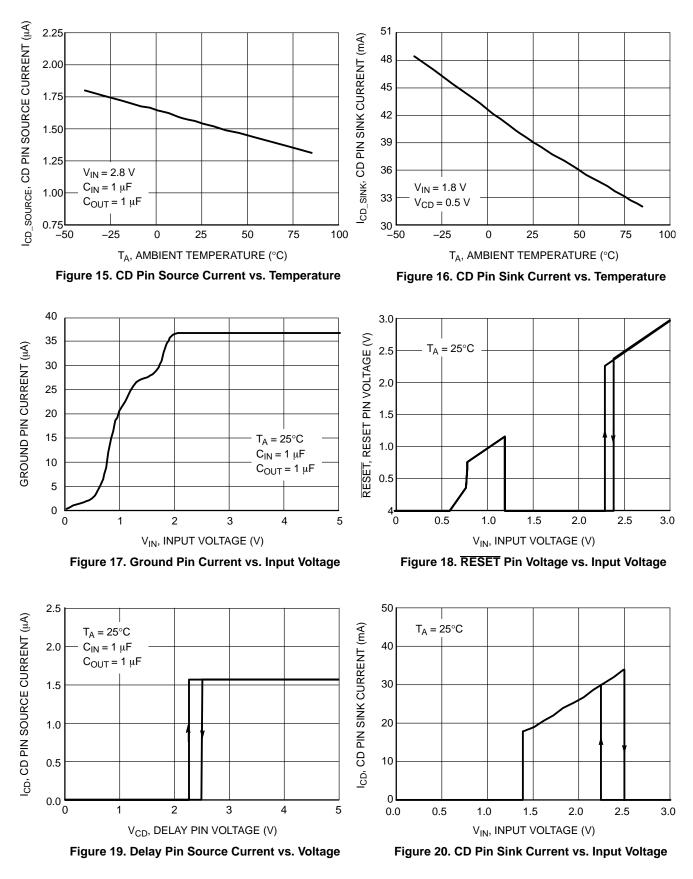
Figure 3. Turn–ON Response

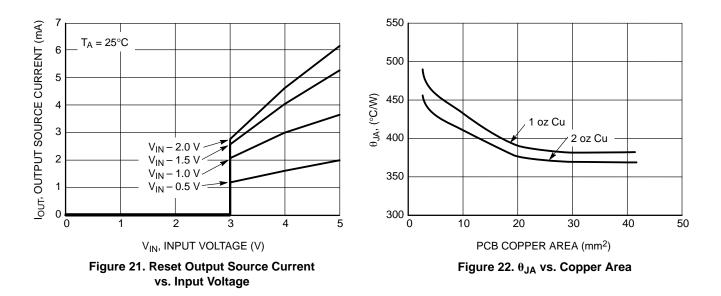

 I_{OUT} = 150 mA to 1 mA,V_{IN} = 3.3 V, C_{IN} = 1 μ F Upper Trace: Output Voltage 200 mV/div Lower Trace: Output Loading Current 100 mA/div


Upper Trace: Input voltage 2 V/div Lower Trace: Output voltage 50 mV/div


Figure 4. Line Transient Response

$$\begin{split} I_{OUT} = 1 \text{ mA to } 150 \text{ mA}, V_{IN} = 3.3 \text{ V}, C_{IN} = 1 \text{ } \mu\text{F} \\ \text{Upper Trace: Output Voltage } 200 \text{ mV/div} \\ \text{Lower Trace: Output Loading Current } 100 \text{ mA/div} \end{split}$$


Figure 6. Load Transient Response



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

OPERATION DESCRIPTION

Low Dropout Voltage Regulator

The low dropout voltage regulator contains a voltage reference unit, an error amplifier, a PMOS power transistor, resistors for setting output voltage, current limit and thermal shutdown protection circuits.

Enable Operation

The enable pin will turn on or off the regulator. The limits of threshold are covered in the electrical specification section of this data sheet. If the enable is not used then the pin should be connected to V_{in} .

Voltage Detector

The NCP400 consist of a precision voltage detector that drives a time delay generator. Figures 23 and 24 show a timing diagram and a typical application. Initially consider that input voltage V_{in} is at a nominal level and it is greater than the voltage detector upper threshold (V_{DET+}). The

voltage at CD Pin (Pin 4) will be at the same level as Vin, and the reset output (Pin 3) will be in the high state. If there is a power interruption and Vin becomes significantly deficient, it will fall below the lower detector threshold (VDET-) and the external time delay capacitor CD will be immediately discharged by an internal N-Channel MOSFET that connects to Pin 4. This sequence of events causes the Reset output to be in the low state. After completion of the power interruption, Vin will again return to its nominal level and become greater than the V_{DET+}. The voltage detector will turn off the N-Channel MOSFET and allow internal current source to charge the external capacitor CD, thus creating a programmable delay for releasing the reset signal. When the voltage at CD Pin 4 exceeds the inverter threshold, typically 0.97 V, the reset output will revert back to its original state. The detail reset output time delay calculation is shown in Figure 24.

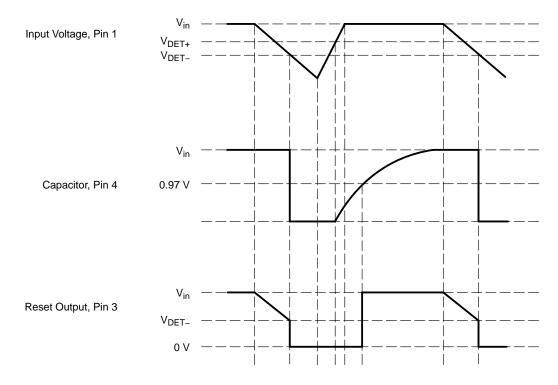


Figure 23. Timing diagram

APPLICATION NOTES

Delay Time: $(\Delta t) = \frac{(C \times \Delta V_{ThCD})}{I_{CD}}$

where: C is the CD pin capacitor ΔV_{ThCD} is the delay threshold voltage I_{CD} is delay current source.

As target use C = 3300 pF and have Δt = 2 ms: With internal ΔV_{ThCD} = 0.97 V and I_{CD} =1.56 µA, then

 \Rightarrow Delay Time: (Δt) = $\frac{(3300 \text{ pF} \times 0.97 \text{ V})}{1.56 \mu \text{A}}$ = 2.05 ms

APPLICATION INFORMATION

Low Dropout Voltage Regulator

-Input Decoupling

A 1.0 μ F capacitor either ceramic or tantalum is recommended and should be connected close to the NCP400 package. Higher values and lower ESR will improve the overall line transient response.

-Output Decoupling

The NCP400 is a stable Regulator and does not require any specific Equivalent Series Resistance (ESR) or a minimum output current. Capacitors exhibiting ESRs ranging from a few m Ω up to 10 Ω can thus safely be used. The minimum decoupling value is 1.0 μ F and can be augmented to fulfill stringent load transient requirements. The regulator accepts ceramic chip capacitors as well as tantalum devices. Larger values improve noise rejection and load regulation transient response. Figure 25 shows the stable area of the regulator with different output capacitor ESR and output current.

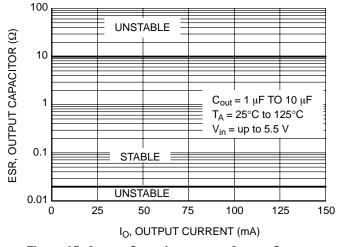


Figure 25. Output Capacitor versus Output Current

-Thermal Protection

Internal thermal shutdown circuit is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When the thermal protection activated, higher than 150°C, the regulator turns off. This feature is provided to prevent failures from accidental overheating.

-Hints

Please be sure the Vin and GND lines are sufficiently wide. When the impedance of these lines is high, there is a chance to pick up noise or cause the regulator to malfunction. Set external components, especially the output capacitor, as close as possible to the circuit, and make leads a short as possible.

Voltage Detector

The voltage detector has built–in hysteresis to prevent erratic reset operation. This device is specifically designed for use as reset controllers in portable microprocessor based systems, it can offer a cost–effective solution in numerous applications where precise voltage monitoring and time delay are required. Figures 26 through 27 shows various application examples.

APPLICATION CIRCUIT INFORMATION

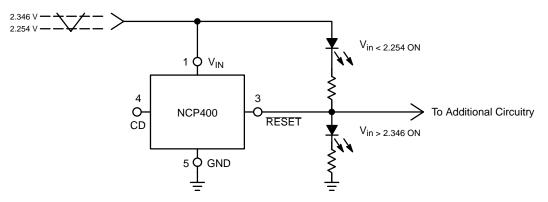
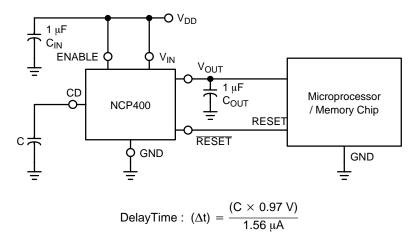
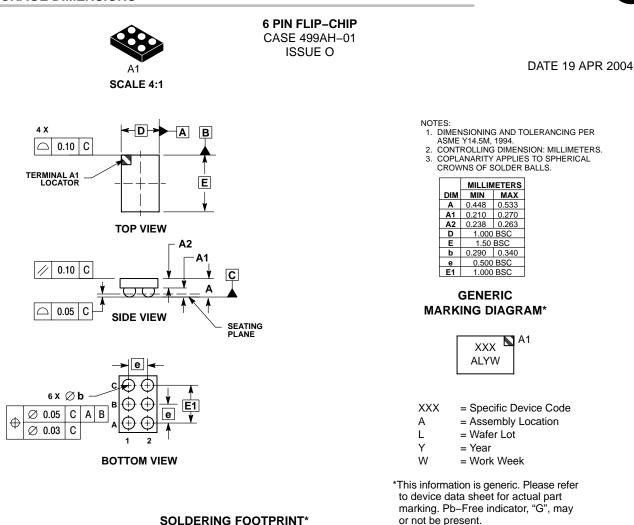
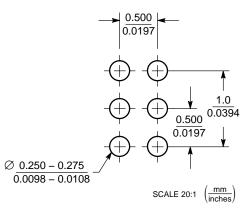


Figure 26. Input Voltage Indicator


Figure 27. Microprocessor Reset Circuit

ON Semiconductor[®]

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON15006D	Electronic versions are uncontrolle	Repository. Printed	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	6 PIN FLIP-CHIP, NCP400, 1.00 X 1.5 MM, 0.50 MM PITCH PAGE			

ON Semiconductor®

DOCUMENT NUMBER: 98AON15006D

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY S. BROW.	19 APR 2004

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent feedesign or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative