EVAL_100W_DRIVE_CFD2 Getting started guide

September 2017

Agenda

Agenda

Introduction

Agenda

Components CoolSet[™] ICE5QR4770AG XMC1302 Microcontroller Based on XMC1302 ARM[®] Cortex[®]-M0 MCU enabling sensored and Software package (downloadable > sensorless motor control from www.infineon.com/eval-100w-drive-Supports HALL cfd2) Includes J-Link debug interface by Micrium µC/Probe[™] for XMC[™] Segger .zip file with DAVE[™] 4 project for the _ µC/Probe[™]-based GUI for EVAL 100W DRIVE CFD2 parametrization and tuning kit (e.g. Eval-100W_FOC_XMC13_v1.zip) Half bridge gate driver > 2EDL05N06PF CoolMOS[™] IPD65R1K4CFD >

System overview

Software package content description:

Eval-100W_FOC_XMC13

A DAVE[™] 4 project for XMC1302-TO380200 device. The user can configure the motor parameter and startup mode in the source code. The compile firmware needs to be programed to EVAL_100W_DRIVE_CFD2 board via DAVE[™] 4 IDE and XMC Link

Eval-100W_FOC_XMC13.elf

A debugging file used by µC/Probe[™] GUI tool

Eval-100W_FOC_XMC13.wspx

A μ C/ProbeTM project file for predefined GUI used for system parametrization and tuning

Hardware overview

Hardware

> Kit name

- EVAL_100W_DRIVE_CFD2

> Kit description

- EVAL_100W_DRIVE_CFD2 board
- USB cable
- XMC[™] Link Isolated Debug Probe

> Order number

>

- EVAL100WDRIVECFD2TOBO1

Input voltage/output power

- 230 VAC/100 Watt max

Infineon parts utilized on EVAL_100W_DRIVE_CFD2 board:

Infineon Parts	Order Number
XMC1300 Microcontroller	XMC1302-T038F0200
600 V half bridge gate driver	2EDL05N06PF
650 V CoolMOS™	IPD65R1K4CFD
Quasi-resonant CoolSET™	ICE5QR4770AG
5 V LDO regulator	IFX1763XEJV50

Agenda

DAVE[™] 4 setup

Download Micrium µC/Probe[™] for XMC[™] installer package from:

www.infineon.com/ucprobexmc

Installation requirements:

- PC with Windows Vista, Windows 7, Windows 8, Windows 10 – 32 bit & 64 bit
- > RAM 3 GB or more

Agenda

Import the *.zip project

Import the *.zip project

Input motor parameters

Input motor parameters

For more explanation of the parameter specified in the code, please refer to XMC1000 application note: 'AP32370-XMC1000-PMSM FOC motor control software using XMC[™]'

infineon

Input inverter circuitry parameters

Input inverter circuitry parameters

pmsm foc invertercard parameters.h ≅		
196 #elif(INVERTERCARD_TYPE == CUSTOM_INVERTER)		
197 #define INTERNAL OP GAIN	DISABLED	/*1. ENABLED 2. DISABLED (Please configure C
198 #define USER VDC LINK V	(320.0f)	/* Hardware Inverter VDC link voltage in V *
199 #define USER CCU8 PWM FREQ HZ	(160000)	/* CCU8 PWM Switching Frequency in Hz*/
200 #define USER_DEAD_TIME_US	(1.0f)	/* deadtime, rise(left) and fall values in us */
201 #define USER_BOOTSTRAP_PRECHARGE_TIME_MS	(20U)	/* Initial Bootstrap precharging time in ms */
202 #define USER_DC_LINK_DIVIDER_RATIO	(float)(3.3f/(3.3f+400.0f)) /* R1/(R2+R1) ratio for DC link MCL
203 #define USER_VBEMF_RATIO	(float)(3.3f/(3.3f+400.0f)) /* R1/(R2+R1) ratio for BEMF Voltag
204 #define USER_CURRENT_TRIP_THRESHOLD_A	(3.0f)	/* threshold current for trip detection in Ampere*/
205 #define USER_TRIP_THRESHOLD_TIME_MS	(100U)	/* threshold time for trip detection in <u>ms</u> */
206 #define USER_MAX_RETRY_MOTORSTARTUP_TRIP	(3U)	/* Max retry of motor startup if trip */
207 /*	Motor	Phase Current Measurement
208 #define USER_R_SHUNT_OHM	(0.05f)	/* Phase shunt resistor in ohm */
209 #define USER_DC_SHUNT_OHM	(0.5+)	/* DC link shunt current resistor in ohm */
210 #define USER_RIN_PHASECURRENT_KOHM	(1.0+)	/* R_IN (of equivalent amplifier) kohm */
211 #define USER_R_PHASECURRENI_FEEDBACK_KOHM	(10.0+)	/* R_FEEDBACK (of equivalent amplifier) kohm */
212 #define USER_RIN_DCCURRENT_KOHM	(10.0†)	/* kt for dc current sensing */
213 #define USER_K_DCCURRENT_FEEDBACK_KOHM	(55.0†)	/* <u>Kin</u> for <u>dc</u> current sensing */
214 #define C ODAMD DED DUASECURDENT	(J.0T) (USER R DUASEC	VIPPENT FFFDPACK VOIM (USED DIA DUASCIDENT VOIM)
213 #detine d_OPANP_PER_PRASECORRENT	(USER_R_PHASEC	UKRENT_FEEDBACK_KUMI'I / USEK_KIN_PHASECUKKENT_KUMI'I)
217 #if(INTERNAL OR GAIN ENARLED)		
217 #IT(INTERNAL_OF_GAIN ENABLED)	(211)	/* Different WW Reard has different OP Gain fac
219 #alif(INTERNAL OP GAIN DISARLED)	(30)	/ Difference has difference of dail fac
220 #define OP GAIN FACTOR	G ODAMD DER DH	ASECURENT
220 Waltine of GAIN THETON		Reconnent

The inverter parameters is already preset to the EVAL_100W_DRIVE_CFD2 board's value, e.g. USER_VDC_LINK_V is 320 V ($\sqrt{2*230}$ V) with the assumption that AC input voltage is 230 V

The PWM frequency driving the power MOSFET is set to 16 kHz

The minimum PWM frequency can be set is 6.6 kHz

The user does NOT need to change the value here if AC input voltage to EVAL_100W_DRIVE_CFD2 board is 230 V

Input XMC1302 pin setting

Input XMC1302 pin setting

Input motor startup: current sensing setting

Input motor startup: current sensing setting

0			
Scroll to (MCL	JCARD_TYPE ==	ECUSTOM_M	1CU)
	pmsm_foc_user_config.h ≅		
	78 799 /***********************************	****	*****
	82° #define PMSM_FOC_HARDWARE_BOARD 83 84 85	CUSTOM_KIT	/*1. KIT_XMC1X_AK_MOTOR_001 2. KIT_XMC750WATT_MC_AK_V1 3. CUSTOM_KIT*/
	86 87 #define CURRENT_SENSING 88	USER_THREE_SHUNT_SYNC_CONV	sing Mechanism//*1. USER_SINGLE_SHUNT_CONV 2. USER_THREE_SHUNT_ASSYNC_CONV 3. USER_THREF_SHUNT_SYNC_CONV#//
	90 /* 91 #define MY_FOC_CONTROL_SCHEME 92 93	FOC Control and Start SPEED_CONTROLLED_DIRECT_FOC	<pre>tup Scheme (Only Select 1 Scheme at one time) /*1. SPEED_CONTROLLED_VF_ONLY, 2. SPEED_CONTROLLED_VF_MET_FOC 3. SPEED_CONTROLLED_DIRECT_FOC</pre>
	94 95 96 /*	<u>Micrium</u> uC Probe Enal	4. TORQUE_CONTROLLED_DIRECT_FOC 5. VQ_CONTROLLED_DIRECT_FOC */ ple/Disable /*1_ENABLED2_DISABLED_(
i	98 /* 99% #define SETTING_TARGET_SPEED 100	MICRIUM_UC_ONLY	stment Method

The user can select 3 types of current sensing methods (as shown in green comment lines)

The user can select 5 types of motor control schemes (as shown in green comment lines)

3 shunt synchronous current sensing and speed controlled direct FOC startups have been selected by default. The user does NOT need to change these!

Input SVM scheme

The user can select 2 types of SVM scheme: 7-segment or 5-segment SVM (as shown in green comment lines)

123 #define ADC_ALTERNATE_REFERENCE DISABLED /*1. ENABLED 2. DIS. 127 /*	124	#define	SVM_SWITCHING_SCHEME	STANDARD_SVM_7_SEGMENT	/*1. 5	STANDARD_SVM	_7_SI	EGMEN
127 /** Advance Constant Cons	125	#define	ADC_ALTERNATE_REFERENCE	DISABLED	/*1.	ENABLED	2.	DISA
130 #if(CURRENT_SENSING == USER_SINGLE_SHUNT_CONV) 131 /* 131 /* 132 /* 134 #define SETTING_TARGET_SPEED 134 #define DQ_DECOUPLING 135 /* 136 #define VACLUADEG_TIMER 137 /* 138 #define VACLUADEG_OVERVOLTAGE_PROTECTION 139 #define OV_ERCURRENT_PROTECTION 14 #define OV_ERCURRENT_PROTECTION 15 /* 14 #define OV_ERCURRENT_PROTECTION 15 /* 16 #define OV_ERCURRENT_PROTECTION 17 /* 18 /*1. ENABLED 19 #define OV_ERCURRENT_PROTECTION 14 #define OV_ERCURRENT_PROTECTION 14 #define OQ_DECOUPLING 14 #define WATCH_DOG_TIMER 14 #define VACLUNDER_OVERVOLTAGE_PROTECTION 14 #define WATCH_DOG_TIMER 14 #define WATCH_DOG_TIMER 14 #define VACLUNDER_OVERVOLTAGE_PROTECTION 14 #define WATCH_DOG_TIMER 14	127 128 129	/* #define /*	ADVANCE_CONDITIONAL_MOTOR_STOP	DISABLED Recommended Configuration (Strongly i)	/*1. fluend	ENABLED	2. tion	. DIS
12 #define SETING_TARGET_SPEED BV_DOT_ONLY 33 /* Add d-q voltage decoupling components 34 #define DQ_DECOUPLING /*1. ENABLED 2. DIS. 35 /* Watch Dog Timer Activation /*1. ENABLED 2. DIS. 36 #define DQ_DECOUPLING DISABLED /*1. ENABLED 2. DIS. 37	130 131	#if(CURI /*	RENT_SENSING == USER_SINGLE_SHUNT_CONV)	Reference Speed Adjustment Method				
135 /* Watch Dog Timer Activation /*1. ENABLED 2. DISA 136 #define WATCH_DOG_TIMER DISABLED /*1. ENABLED 2. DISA 137 /* FOC Control Safety Protection /*1. ENABLED 2. DISA 138 #define VDC_UNDER_OVERVOLTAGE_PROTECTION DISABLED /*1. ENABLED 2. DISA 139 #define OVERCURRENT_PROTECTION DISABLED /*1. ENABLED 2. DISA 141 #else	132 133 134	#define /* #define	SETTING_TARGET_SPEED	BY_POI_ONLY Add d-q voltage decoupling components DISABLED	/*1.	ENABLED	2.	DISA
137 /*1 FUC Control Safety Protection /*1. ENABLED 2. DIS. 138 #define OVERCURRENT_PROTECTION DISABLED /*1. ENABLED 2. DIS. 139 #define OVERCURRENT_PROTECTION DISABLED /*1. ENABLED 2. DIS. 141 #else	135 136	/* #define	WATCH_DOG_TIMER	DISABLED	/*1.	ENABLED	2.	DIS
11 #else 121 #define Q_DECOUPLING Add d-q voltage decoupling components 123 #define Q_DECOUPLING /*1. ENABLED 2. D 124 #define WATCH_DOG_TIMER ENABLED /*1. ENABLED 2. D 125 /* FOC Control Safety Protection /*1. ENABLED 2. D 146 #define VATCH_DOG_UTRER_OVERVOLTAGE_PROTECTION ENABLED /*1. ENABLED 2. D 147 #define OVERCURRENT_PROTECTION ENABLED /*1. ENABLED 2. D 148 #endif /*1. ENABLED 2. D	137 138 139	/~ #define #define	VDC_UNDER_OVERVOLTAGE_PROTECTION OVERCURRENT_PROTECTION	DISABLED DISABLED	/*1. /*1.	ENABLED ENABLED	2. 2.	DISA DISA
145 /* FOC Control Safety Protection 146 #define VDC_UNDER_OVERVOLTAGE_PROTECTION ENABLED /*1. ENABLED 2. D 147 #define OVERCURRENT_PROTECTION ENABLED /*1. ENABLED 2. D 148 #endif 148 148 148 148	141 142 143 144	#else /* #define #define	DQ_DECOUPLING WATCH_DOG_TIMER	Add d-q voltage decoupling components ENABLED ENABLED	/*1 /*1	. ENABLED . ENABLED		2. DJ 2. DJ
	145 146 147 148	/* #define #define #endif	VDC_UNDER_OVERVOLTAGE_PROTECTION OVERCURRENT_PROTECTION	ENABLED ENABLED	/*1 /*1	. ENABLED . ENABLED	1	2. DI 2. DI

i

Standard 7-segment SVM is selected by default. The user does NOT need to change this!

Input current and voltage protection setting

Input current and voltage protection setting

Input current and voltage protection setting

Input speed control setting

Input speed control setting

By default, the speed control method is using $\mu C/Probe^{TM}$ GUI's speed slider Setting Target Speed 100 % pmsm_foc_user_config.h 🛛 ----- Reference Speed Adjustment Method 990 #define SETTING_TARGET_SPEED MICRIUM UC ONLY hsm foc user config.h 🛙 ----- Reference Speed Adjustment Method #define SETTING_TARGET SPEED BY POT ONLY /*1. MICRIUM UC ONLY 2. BY POT ONLY */ The user can choose to use an external 10 kohm potentiometer as speed control method but he has to solder the potentiometer on the EVAL 100W DRIVE CFD2 board 3 Change the speed control method to BY_POT_ONLY

Compile and download the code

Click Build Active Project 🔯
2
Check Eval-100W_FOC_XMC13.lst created
Console ⋈ □ Properties ℝ Problems Search CDT Build Console [Eval-100W_FOC_XMC13]
"C:/DAVEv4/DAVE-4.3.2/eclipse/ARM-GCC-49/bin/arm 'Finished building: Eval-100W_FOC_XMC13.lst'

Compile and download the code

3 Click Debug Confi	guration 🏂
4 Select GDB SEGGE	R J-Link Debugging
4	Debug Configurations Create, manage, and run configurations
	Image: Second secon

Compile and download the code

5 Click the Debug button to d	lownload the code
6 Click the Resume button to	start the application
 Debug Configurations Create, manage, and run configurations 	gurations
Image: Second state Image: Second state Image: Second state Image: Second state </th <th>Name: Eval-100W_FOC_XMC13 Debug Main ★ Debugger ► Startup Project: ★ Eval-100W_FOC_XMC13 Browse C/C++ Application: ↓ Debug\Eval-100W_FOC_XMC13.elf Browse</th>	Name: Eval-100W_FOC_XMC13 Debug Main ★ Debugger ► Startup Project: ★ Eval-100W_FOC_XMC13 Browse C/C++ Application: ↓ Debug\Eval-100W_FOC_XMC13.elf Browse
Image: wide of the second s	Build (if required) before launching

Using µC/Probe[™] GUI

Using µC/Probe[™] GUI

Using $\mu C/Probe^{TM}$ GUI

The default K _P , K _I values from the pmsm_foc_motor_parameters.h file are automatically displayed in the Motor Tuning page
4 Click the MOTOR START button 5 Then use the target speed slider or key in directly to set the percentage of maximum speed.

Using µC/Probe[™] GUI

Using $\mu C/Probe^{TM}$ GUI

			_	
	P setting	I setting	SCALEKPKI	
Speed Contro	ol 32768	3	15	
	111141111	0		
		246	15	
Torque Contr	roi 11141	240		
		· · · · · <u>·</u> · · · ·	ara 197	
Flux Centrel	11141	246	15	
	1-0-1-1-1-1-1-1		(<u></u> µ)	
PLL Control	1024	32	22	
device Flash				
Click this button to save K_{P} , K_{I} , So The motor will stop	CALEKPKI	values to	o Flash.	
i				
<i>This saving function only</i>	works if the	motor is	rotating no	rmally

Using $\mu C/Probe^{TM}$ GUI

Using µC/Probe[™] GUI

Using µC/Probe[™] GUI

Effects of increasing proportional gain K_P or integral gain K_I of PI controller independently

		Effects on step response characteristics								
	Gain change	Rise time	Overshoot	Settling time	Steady-state error					
1	$K_P \uparrow$ K_I unchanged		↑ ⊗	Minor Change ☺	♦ ☺					
2	$K_I \uparrow$ K_P unchanged	♥ ☺	↑ ⊗	↑ ⊗	Eliminate 😊					

		1	P setting	lsetting	SCALEKPKI	Pl error	lk	lk_Limit	Uk	Uk_Limit			
	Sp	eed Control	32768	3	15	0	Snood Rof	0 1,073,741	,824	0 32767			
	т	orque Control	11141	246	15	0	opeen ner	0 1,073,709	,056	0 32767			
			a: : : : : : : : : : : : : : : : : : :			•	lq Ref	0 lq					
	Fit	ux Control	11141	246	15	0		0 1,073,709	,056	0 32767			
		H	o <u>; ; ; ; ; ; ; ; ; ; ;</u>		::	•	ld Ref	0 Id					
	PL	L Control	1024	32	22	0		0 1,073,741	,824	0 470			
3			on ochs				JILLOI			79			
The TO	e target spo RQUE_CON	eed s ITROL	lider b _LED_	ecom DIREC	es the CT_FO	e tar C m	get i iode	torque sl	ider	under			
4													
Ma the	ke sure the PLL contro	e Uk v ol par	value o amete	of PLL ers	contr	ol d	oes i	not hit it	s Uk_	_Limit	whi	le tuni	ing

	P setting	l setting	SCALEKPKI	
Speed Control	32768	3	15	
	<u></u>	0		
Torque Contro	11141	246	15	
	- 19		(C)	
Flux Control	11141	246	15	
	- q	• <u>••••</u> ••••		
PLL Control	1024	32	22	
After the motor is able to rotate smoothly under TORQUE_CONTROLLED_DIRECT_FOC, remember to save the parameters by clicking the Save PI button				
Change the My_FOC_CONTROL_SCHEME in pmsm_foc_user_config.h to SPEED_CONTROLLED_DIRECT_FOC, re-compile and reload the code				
6 Use the same tactic to tune the	e Speed	Contro	ol parameters. No need to	

General hints on tuning of SCALEKPKI, P, I value using the μ C/ProbeTM

General hints on tuning of SCALEKPKI, P, I value using the μ C/ProbeTM

Testing result with a ceiling fan

- > AC input: 230 V/50 Hz
- Ceiling Fan motor specification:
 - Resistance/phase: 23 ohms
 - Inductance/phase: 65 mH
 - Pole pairs: 4
 - Max. speed: 105 rpm

> Power consumption: 35 W @ 105 rpm

Agenda

Schematic of EVAL_100W_DRIVE_CFD2 board

Schematic of EVAL_100W_DRIVE_CFD2 board

Schematic of EVAL_100W_DRIVE_CFD2 board

Resource Listing

Support material:

Collaterals and brochures	 > Product briefs > Selection guides > Application brochures > Presentations > Press releases, ads 	 www.infineon.com/XMC www.infineon.com/CFD2 www.infineon.com/COOLSET www.infineon.com/motorcontrol
Technical material	 Application notes Technical articles Simulation models Datasheet, MCDS files PCB design data 	 > www.infineon.com/XMC > Kits and Boards > DAVE[™] > Software and Tool Ecosystem
Videos Play	 Technical videos Product information Videos 	 Infineon Media Center XMC Mediathek How to measure motor parameters
Contact Support	> Forums> Product support	 <u>Infineon Forums</u> <u>Technical Assistance Center (TAC)</u>

Glossary abbreviations

Abbreviation	Full name
ADC	Analog-to-Digital Converter
FOC	Field-Oriented Control
PI Controller	Proportional-Integral Controller
PMSM	Permanent Magnet Synchronous Motor
PWM	Pulse Width Modulation
SVM	Space Vector Modulation
ХМС™	Cross-Market Microcontrollers

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

All the images used in this training are free for commercial use or free for use with attribution and were designed by Freepik.

Part of your life. Part of tomorrow.

