BUS

JNS5189(T)/UN5188(T) User
Manual

UM11138

Rev. 1.4 — June 2020

Document information

User manual

Info Content
Keywords Arm Cortex-M4, microcontroller, Zigbee, Thread
Abstract JN5189 User Manual

h -

P |

NXP Semiconductors U M1 1 1 38

Revision history

JN5189(T)/JN5188(T) User Manual

Rev |Date Description
1.4 202006 ® Added to support Thread as well as Zigbee across the whole book.
® Corrected the Tag of JN5189T/UJN5188T to be NT3H2211.
® Updated SPIFI feature in the Section 1.2.1 “Microcontroller features”.
® Updated to “1.9 V to 3.6 V supply voltage” in the Section 1.2.2 “Radio features”.
® Updated Table 3 “Pin descriptions” to correct typos and make the descriptions aligned with the
Figure 3 “Pinout diagram”.
® Updated the Range of MAIN_CLK to be “12-48 MHZz” in the Table 56 “Base clock sources for DMIC
interface peripheral”.
® Updated SPIFI features in the Section 34.2 “Features”, the Remark in the Table 64 “Available pins
and configuration registers”, and Section 34.8.4 “SPIFI intermediate data register”, Section 34.9.2
“Software requirements and capabilities”.
® Updated the ISP usage restrictions in the Section 38.8 “Usage restrictions”.
¢ Updated the Section 41.7.6.2 “Memory mapping”, descriptions in the Section 41.9 “Antenna
Diversity”.
® Updated Section 42.5 “General description”.
® Updated to reserve the CT32B_IR[7:6].
13 202002 Initial public release

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 2 of 350

UM11138

Chapter 1: Introductory Information
Rev. 1.4 — June 2020 User manual

1.1 Introduction

1.2 Features

The JN5189(T) and JN5188(T) (called JN5189(T)/JN5188(T) throughout this document)
are ultra-low power, high performance Arm® Cortex®-M4 based wireless microcontrollers
supporting Zigbee 3.0 and Thread networking stacks to facilitate the development of
home automation, smart lighting and wireless sensor network applications.

The JN5189(T)/UJN5188(T) includes a 2.4 GHz IEEE 802.15.4 and a comprehensive mix
of analog and digital peripherals. Ultra-low current consumption in radio receive and radio
transmit modes allows use of coin cell batteries.

JN5189(T) has 640 KB embedded Flash, 152 KB RAM and 128 KB ROM memory. The
embedded flash can support Over The Air (OTA) code download to applications. The
devices include 10—-channel PWM, two timers, one RTC/alarm timer, a Windowed
Watchdog Timer (WWDT), two USARTSs, two SPI interfaces, two 12C interfaces, a DMIC
subsystem with dual-channel PDM microphone interface with voice activity detector, one
12-bit ADC, temperature sensor and comparator.

The JN5189T/JN5188T variant has an internal NTAG I2C plus NFC tag and connections
for the external NFC antenna. The tag is an NXP device NT3H2211.

The JN5188 variant has the same functionality as the JN5189 except for reduced memory
sizes of 320 KB embedded Flash, 88 KB RAM. The JN5188T variant is that it has the
functionality of the JN5188 with the addition of an embedded NTAG 12C plus NFC tag.

The Arm Cortex-M4 is a 32-bit core that offers system enhancements such as low-power
consumption and enhanced debug features. The Arm Cortex-M4 CPU, operating at up to
48 MHz, incorporates a 3-stage pipeline, uses a Harvard architecture with separate local
instruction and data buses as well as a third bus for peripherals, and includes an internal
prefetch unit that supports speculative branching. The Arm Cortex-M4 supports
single-cycle digital signal processing and SIMD instructions. Debug is supported using the
Serial Wire Debug.

Refer to the data sheet for complete details on specific products and configurations.

1.2.1 Microcontroller features

JIN5189

¢ Application CPU, Arm Cortex-M4 CPU:
— Arm Cortex-M4 processor, running at a frequency of up to 48 MHz.
— Arm built-in Nested Vectored Interrupt Controller (NVIC)
— Memory Protection Unit (MPU)
— Non-maskable Interrupt (NMI) with a selection of sources
— Serial Wire Debug (SWD) with 8 breakpoints and 4 watchpoints

— System tick timer

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 3 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 1: Introductory Information

— Includes Serial Wire Output for enhanced debug capabilities.
On-Chip memory:

— 640 KB flash (320 KB for JN5188)

— 152 KB SRAM (88 KB for JN5188)

- 128 KB ROM

12 MHz to 48 MHz system clock speed for low-power
2 x 12C-bus interface, operate as either master or slave
10 x PWM

2 x Low-power timers

2 x USART, one with flow control

2 x SPI-bus, master or slave

1 x PDM digital audio interface with a hardware based voice activity detector to
reduce power consumption in voice applications. Support for dual-channel
microphone interface, flexible decimators, 16 entry FIFOs and optional DC blocking

19-channel DMA engine for efficient data transfer between peripherals and SRAM, or
SRAM to SRAM. DMA can operate with fixed or incrementing addresses. Operations
can be chained together to provide complex functionality with low CPU overhead

Up to four GPIOs can be selected as pin interrupts (PINT), triggered by rising, falling
or both input edges

Two GPIO grouped interrupts (GINT) enable an interrupt based on a logical
(AND/OR) combination of input states.

32-bit Real Time clock (RTC) with 1 s resolution. A timer in the RTC can be used to
wake from Sleep, Deep-sleep and Power-down, with 1 ms resolution

Voltage Brown Out with 8 programmable thresholds

8-input 12-bit ADC, 190 kS/sec. HW support for continuous operation or single
conversions, single or multiple inputs can be sampled within a sequence. DMA
operation can be linked to achieve low overhead operation.

1 x analog comparator

Battery voltage measurement

Temperature sensor

Watchdog timer and POR

Standby power controller

Up to 22 Digital I0s (DIO)

1 x Quad SPIFI for reading or writing to external flash device
NTAG NFC Forum Type 2 on JN5189T and JN5188T only
Random Number Generator engine

AES engine

Hash hardware accelerator

EFuse :

— 128-bit random AES key

— configuration modes

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 4 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 1: Introductory Information

— Trimming

1.2.2 Radio features

2.4 GHz IEEE 802.15.4 compliant

Receive current 4.3 mA

IEEE 802.15.4 receiver sensitivity -100 dBm

Improved co-existence with WiFi

Flexible output power up to 11 dBm, programmable with 46 dB range
Transmit power +10 dBm current 20.28 mA

Transmit power +3 dBm current 9.44 mA

Transmit power 0 dBm current 7.36 mA

1.9V to 3.6 V supply voltage

32 MHz XTAL cell with internal capacitors, able with suitable external XTAL, to meet
the required accuracy for radio operation over the operating conditions

Antenna Diversity control

Integrated RF balun

Integrated ultra Low-power sleep oscillator

Deep Power-down current 350 nA (with wake-up from 10)

128-bit or 256-bit AES security processor

MAC accelerator with packet formatting, CRCs, address check, auto-acks, timers

1.2.3 Low-power features

Sleep mode supported, CPU in low-power state waiting for interrupt

Deep-sleep mode supported, CPU in low-power state waiting for interrupt, but extra
functionality disabled or in low-power state compared to sleep mode

Power Down mode, main functionality powered down, wakeup possible from |Os,
wakeup possible from some peripherals (12C, USART, SPI) in a limited function mode
and low-power timers

Deep power down, very low-power state with option of reset triggered by 10s, 350 nA

41-bit and 28-bit Low power timers can run in power down mode, clocked by 32 kHz
FRO or 32 kHz XTAL. Timers can run for over one year or 2 days

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 5 of 350

NXP Semiconductors

UM11138

1.3 Block diagram

Chapter 1: Introductory Information

APB Bridge 1

System

SRAM 0

SRAM 1

K 88K

ROM

128 K
(1128K)

Functional
Muxes I/Os

core_digital

Power @ 32kHz 32 kHz
on S XTAL Free Running LDOs F
Reset Oscillator Oscillator

192 MHz
ree Running
Oscillator

1 MHz
Temperature Analog ncoc
F";’ Running Sensor A0C) Comparator Converter
scillator

Band Gap]
(Bias)

pmu_top

32 MHz
XTAL

Oscillator

radio_top

2 o
: Slave

Interface
Key:

Fig1. Chip block diagram

s

:
i
E

1.4 Architectural overview

JIN5189

The Arm Cortex-M4 includes three AHB-Lite buses, one system bus and the I-code and
D-code buses. One bus is dedicated for instruction fetch (I-code), and one bus is
dedicated for data access (D-code). The use of two core buses allows for simultaneous
operations if concurrent operations target different devices.

A multi-layer AHB matrix connects the CPU buses and other bus masters to peripherals in
a flexible manner that optimizes performance by allowing peripherals on different slaves
ports of the matrix to be accessed simultaneously by different bus masters. More
information on the multilayer matrix can be found in Section 2.1.3 “AHB multilayer matrix”.
Connections in the multilayer matrix are shown in Figure 1. Note that while the AHB bus
itself supports word, halfword, and byte accesses, not all AHB peripherals need or provide
that support.

APB peripherals are connected to the AHB matrix via two APB buses using separate
slave ports from the multilayer AHB matrix. This allows for better performance by reducing
collisions between the CPU and the DMA controller, and also for peripherals on the
asynchronous bridge to have a fixed clock that does not track the system clock. Note that
APB, by definition, does not directly support byte or halfword accesses.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 6 of 350

NXP Semiconductors

UM11138

Chapter 1: Introductory Information

The multi-layer has several master interfaces and slave interfaces. The following table
shows which slaves the master interfaces are able to access; indicated with a 'x'. Where a
block has '-REG' in the name, this shows that it is the register interface of the block.
SPIFI-MEM is the direct memory access function of the block and not the register

interface.
Table 1. AHB master interface accessibility to the slaves
AHB slave AHB master
CPU DMA HASH MODEM
I-code D-code System

Slave port 0 Flash X X X X
Slave port 1 ROM X X X
Slave port 2 SRAMO X X X X X
Slave port 3 SRAM1 X X X X X
Slave port 4 SPIFI-MEM X X
Slave port 5 APB bridge 0 X X
Slave port 6 APB bridge 1 X
Slave port 7 SPIFI-REG X X

GPIO X X

DMA-REG X X

AES X X

ADC X X

DMIC X X

USARTO X X

USART1 X X

SPIO X X

SPI1 X X

HASH X X
Slave port 8 Zigbee/Thread MODEM X X

Zigbee/Thread MAC X X

1.5 Arm Cortex-M4 processor

The Cortex-M4 is a general purpose 32-bit microprocessor, which offers high performance
and very low-power consumption. The Cortex-M4 offers a Thumb-2 instruction set, low
interrupt latency, interruptible/continuable multiple load and store instructions, automatic
state save and restore for interrupts, tightly integrated interrupt controller, and multiple
core buses capable of simultaneous accesses.

A 3-stage pipeline is employed so that all parts of the processing and memory systems
can operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.

Information about Cortex-M4 configuration options can be found in Chapter 43 “Arm
Cortex-M4 Appendix”.

JN5189 All information provided in this document is subject to legal disclaimers.

Rev. 1.4 — June 2020

© NXP B.V. 2020. All rights reserved.

7 of 350

User manual

UM11138

Chapter 2: Memory Map

Rev. 1.4 — June 2020 User manual

2.1 General description

JIN5189

211

2111

The JN5189(T)/JN5188(T) incorporates several distinct memory regions. Figure 2 shows
the overall map of the entire address space from the user program viewpoint following
reset.

The APB peripheral area (detailed in Figure 2) is divided into fixed 4 KB slots to simplify
addressing.

The registers incorporated into the CPU, such as NVIC, SysTick, and sleep mode control,
are located on the private peripheral bus.

Main SRAM

The main SRAM is composed of 152 KB of on-chip static RAM memory. The SRAM is
accessed through two controllers SRAM-CTRLO and SRAM-CTRL1. SRAM-CTRLO gives
access to the first 88 KB and SRAM-CTRL1 gives access to the remaining 64 KB. In a
JN5188 device, SRAM-CTRL1 is held in reset to prevent access to this memory. The
memory is contiguous within the two separate regions but not contiguous from
SRAM-CTRLO to SRAM-CTRL1. Each SRAM has a separate clock control and power
switch.

Table 2. SRAM configuration

SRAM Controller SRAM-CTRLO SRAM-CTRL1

(total main SRAM = up to 152 KB)

Size 88 KB Up to 64 KB

Address range 0x0400 0000 to 0x0401 5FFF |0x0402 0000 to 0x0402 FFFF

SRAM usage notes

The SRAM controllers, SRAM-CTRLO and SRAM-CTRLA1, are placed on different AHB
matrix ports. This allows user programs to potentially obtain better performance by
dividing RAM usage among the ports. For example, simultaneous access to SRAMO by
the CPU and SRAM1 by the system DMA controller does not result in any bus stalls for
either master.

Generally, data being communicated via peripherals will be accessed by the CPU at some
point, even when peripheral data is mainly being transferred via DMA. So, in order to
minimizing data read/write stalls, data buffers may be placed in RAMs on different AHB
matrix ports. For instance, if DMA is writing to one buffer on a specific AHB matrix port
while the CPU is reading data from a buffer on a different AHB matrix port, there is no stall
for either the CPU or the DMA. Sequences of data from the same peripheral could be
alternated between RAM on each port. This could be helpful if DMA fills or empties a RAM
buffer, then signals the CPU before proceeding on to a second buffer. The CPU would
then tend to access the data while the DMA is using the other RAM.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 8 of 350

NXP Semiconductors U M1 1 1 38

Chapter 2: Memory Map

2.1.2 Memory mapping

The overall memory map and also details of the APB peripheral mapping are shown in
Figure 2 “Main memory map”.

JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 9 of 350

NXP Semiconductors

UM11138

Chapter 2: Memory Map

«—32-bit Words

Reserved
(Do not access)

OxEOOF_FFFF

0xE004_0000

Bus (External)

0xE003_FFFF

0xE000_0000

Private Peripheral
Bus (Internal)

Reserved
(Do not access)

0x400B_1FFF

0x400B_1000

Zigbee/Thread MAC

0x400B_OFFF

0x4008_0000,

0x400A_FFFF

0x400A_0000

0x4008_FFFF

0x4008_F000

0x4008_EFFF

0x4008_E000

0x4008_DFFF

0x4008_D000

Private Peripheral f

0x4008_CFFF

0x4008_C000

0x4008_BFFF

0x4008_B000

0x4008_AFFF

0x4008_A000

0x4008_9FFF

0x4008_9000

0x4008_8FFF

0x4008_8000

0x4008_5FFF

0x4008_5000

0x4008_4FFF

0x4008_4000

0x4008_3FFF

0x4008_0000

Reserved
(Do not access)

0x4003_FFFF

0x4002_0000

(Asynchronous)

APB Bridge 1 t

APB Bridge 0 t

Zigbee/Thread MODEM | 4 Kbytes
Reserved 6_4 ;b_ B
(Do not access) vies
Reserved
(Do not access)
[S
Hash v 4 Kbytes
AT
SPI1 v 4 Kbytes
AT
SPI0 v 4 Kbytes
A
USART 1 v 4 Kbytes
USART 0 [Y
v 4 Kbytes
[Y
DMIC v 4 Kbytes
AT
ADC v 4 Kbytes
Reserved A
(Do not access) v 4 Kbytes
Reserved
(Do not access) y 4 foves
I S
AES-256 v 4 Kbytes
AT
DMA Controller v 4 KBytes
) Wi
SPIFI Registers \
I
General Purpose 1/0 \

(Synchronous)
Reserved
Quad SPIFI
(Memory-Mapped Space)
e Reserved
0x0402_FFF
—0x0402_000(_
______ I Reserved |
0x0401_5FFF
_0x0400_0000 _
Reserved

(Do not access)

0x0301_FFFF

0x0300_0000

Reserved
(Do not access)

FFFF

0x0000_0000

FLASH Memory

_____ \
ROM i 128 KBytes ’_
______ \

| Main Memory Map (AHB) |

32-bit Words
7 o003 FFFF] | AT T 777
7’ Reserved
7 (Do not access) 116 KBytes
/ _ox0023000] 0 | ¥_____
g 0x4002_2FFF
/ e CTIMER 1
/ _ 0x4002_2000
- 0x4002_1FFF
- CTIMER 0
_ _0x4002_1000
0x4002_OFFF Asynchronous
0x4002 0000 | System Configuration

Ox0402_FFFF

0x0402_C000
0x0202_BFFF

_ 0x0402_8000
0x0402_TFFF
0x0402_4000

0x0402_3FFF \

0x0402_0000

0x0401_6FFF
0x0401_5000
0x0401_4FFF
0x0401_4000

0x0807_3FFF
0x0401_2000

0x0401_1FFF
0x0401_0000
0x0400_FFFF
0x0400_C000

0x0400_7FFF
0x0400_4000
0x0400_3FFF
0x0400_0000

SRAMs Memory Map

32-bit Words

-

R = e B S

Reserved
(Do not access) 40 KBytes

_Oxoot1eo0 | ¥ ____
Reserved

_ _ox4001 5000 | (Do not access) ;"_K_Byfﬁ_ _
Reserved

_ _0x4001_4000 | (Do not access) ; 4KBytes

RFP MODEM

0x4001_3000

PMC ; 4 KBytes

GPIO Group | 4
Interrupt (GINT0)
GPIO Pattern
_ _ox4001 0000 | Interrupt (PINT) | ; 4KBytes
10 CONFIG
(IOCON)

INPUT MUX
Random Number

_ _0xd001 1000

_ _0x400_E000

0x4000_D000

PWM
__0x4000_C000 ; $KBres _
__0x4000_BO0O. RTC ; $RBres _
__0x4000_A000 or ; Hi8res
Flash Controller
— _0xd000_5000 e _
Code Patch
_ _0x4000_8000 Module $RBres _
_oxdo00_7000 IR Modulator ; 4KBytes
1SO7816
— _0x4000_6000 So78 e
12C 2
__0x4000_5000 $Keres _
__0x4000_4000 f2¢ 1 ;1Kfy:es_ -
12!
___0x4000_3000 co ;iK_Byie S
Reserved (do not
__0x4000_2000 $KBres _
Reserved (do not
__0x4000_1000) dreres _
\ Synchronous System
"\ _0x4000_0000 C $8res

APB Bridge 0 Memory Map |

1) The private peripheral bus includes CPU peripherals such as the NVIC, SysTick, and the core control registers.
2) The total size of flash and SRAM is part dependent, see the ordering information in the specific device data sheet for details.
3) Memory region 0x00000000 to 0x000001FF can be mapped to flash, as shown here, or ROM or RAM depending upon the

Vector Table Remapping setting.

Fig 2.

Main memory map

JN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

10 of 350

NXP Semiconductors U M1 1 1 38

Chapter 2: Memory Map

2.1.3 AHB multilayer matrix

The JN5189(T)/UJN5188(T) uses a multi-layer AHB matrix to connect the CPU buses and
other bus masters to peripherals in a flexible manner that optimizes performance by
allowing peripherals that are on different slave ports of the matrix to be accessed
simultaneously by different bus masters. Figure 2 and shows details of the potential
matrix connections.

2.1.4 Memory Protection Unit (MPU)

The Cortex-M4 processor has a memory protection unit (MPU) that provides fine grain
memory control, enabling applications to implement security privilege levels, separating
code, data and stack on a task-by-task basis. Such requirements are critical in many
embedded applications.

The MPU register interface is located on the private peripheral bus and is described in
detail in Ref. 1 “Cortex-M4 TRM”.

2.1.5 Vector table remapping

The Cortex boot address is 0x00000000. The memory map in Figure 2 shows flash at this
address. However, the first 512 bytes in the memory map are treated specially to give
flexibility to the location of the vector table. This region will be referred to here as the
Vector Table Region.

The MEMORYREMAP MAP field is used to indicate if this Vector Table Region is located
in ROM, Flash or RAM. Depending upon this setting, cortex address 0x00000000 to
0x000001FF will either access the bottom of the ROM, the bottom of the Flash or the
bottom of SRAMO.

The default / reset condition is to use ROM code so that a known boot sequence is
followed. Typically, during the boot sequence, this setting is changed so that the vector
table region is in Flash. This allows application specific interrupt vectors to be used.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 11 of 350

UM11138

Chapter 3: Pin and Pad Descriptions

Rev. 1.4 — June 2020 User manual

3.1 How to read this chapter

JN5189(T)/JN5188(T) package is a HYQFN40 (6x6 mm). The pinout and IO cells are
consistent across all product types except for the NTAG antenna connections.

There are some functional differences between the 1O cells used for different digital pins
and these are presented in this chapter.

3.2 Pinout diagram

= ZI 'll
O ¥ ¥
= 288 2
e, L4 8
terminal 1 Eeg‘&-ﬁg;;gﬁ
index area
SEICIBEICIBISIEIS
XTAL_P [1) (0] Vsspceoc)
XTAL N [2) Q9] Lx
PI00 [3) (28] Vear
PIO1 [4) (27] RSTN
PIO2 [5) (26] TRsT
PIO3 [6) (25] PI021/ACM
PIO4 [7) (24] Pi020/ACP
PIO5/ISP_ENTRY | 8) (23] PIO19/ADC5
PIO6 [9) (22| PlO18/ADC4
PIO7 [10) (21] PI017/ADC3
AAARAAARARAR
o O O A X (_j o - N uw
2256532888388
Edanz=< <<
8 3 23f e
s ¥ <000
& o OO0&®ana
o o
Transparent top view
* For JN5188HN and JN5189HN (without NTAG), it is N.C.
Fig 3. Pinout diagram

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 12 of 350

NXP Semiconductors U M1 1 1 38

Chapter 3: Pin and Pad Descriptions

3.3 Pinout signaling descriptions

Table 3. Pin descriptions

Symbol Pin |Type Default at reset | Description

XTAL_P 1 ‘System crystal oscillator 32 MHz

XTAL_N 2 System crystal oscillator 32 MHz

P1O0 3 10 GPIO0 'GPIOO0 — General Purpose digital Input/Output 0

USARTO0_SCK — Universal Synchronous/Asynchronous
Receiver/Transmitter 0 - synchronous clock

USART1_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - transmit data output

PWMO0 — Pulse Width Modulator output O
SPI1_SCK — Serial Peripheral Interface-bus 1 clock input/output

PDMO_DATA — Pulse Density Modulation Data input from digital
microphone (channel 0)

PIO1 4 10 GPI01[1 GPI01 — General Purpose digital Input/Output 1

USART1_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - receive data input

PWM1 — Pulse Width Modulator output 1
SPI1_MISO — Serial Peripheral Interface-bus 1 master data input

PDMO_CLK — Pulse Density Modulation Clock output to digital
microphone (channel 0)

P102 5 10 GPI0211 'GPI02 — General Purpose digital Input/Output 2
SPI0_SCK — Serial Peripheral Interface-bus 0 clock input/output
PWM2 — Pulse Width Modulator output 2

SPI1_MOSI — Serial Peripheral Interface-bus 1 master output slave
input

USARTO0_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter O - receive data input

ISO7816_RST — RST signal, output, for ISO7816 interface

MCLK — External clock, can be provided to DMIC IP

P1O3 6 10 GPI031 'GPIO3 — General Purpose digital Input/Output 3

SPI0_MISO — Serial Peripheral Interface-bus 0 master input

PWM3 — Pulse Width Modulator output 3

SPI1_SSELNO — Serial Peripheral Interface-bus 1 slave select not 0

USARTO0_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter O - transmit data output

1ISO7816_CLK — Clock output for ISO7816 interface

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 13 of 350

NXP Semiconductors

UM11138

Table 3. Pin descriptions

Chapter 3: Pin and Pad Descriptions

Symbol Pin |Type
PI1O4 7 10

Default at reset | Description

GPl104M4

GPIO4 — General Purpose digital Input/Output 4

SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave
input

PWM4 — Pulse Width Modulator output 4
SPI1_SSELN1 — Serial Peripheral Interface-bus 1 slave select not 1

USARTO_CTS — Universal Synchronous/Asynchronous
Receiver/Transmitter 0 - Clear To Send input

1ISO7816_I0 — |0 of ISO7816 interface
RFTX — Radio Transmit Control Output
ISP_SEL — In-System Programming Mode Selection

PIO5/ISP_ENT |8 |10
RY

GPIO5/ISP_EN
TRYE]

GPIO5/ISP_ENTRY — General Purpose digital Input/Output 5;
In-System Programming Entry

SPI0_SSELN — Serial Peripheral Interface-bus 0 slave select not
SPI1_MISO — Serial Peripheral Interface-bus 1 master data input
SPI1_SSELN2 — Serial Peripheral Interface-bus 1 slave select not 2

USARTO_RTS — Universal Synchronous/Asynchronous
Receiver/Transmitter 0 - Request To Send output

RFRX — Radio Receiver Control Output

P106 9 IO

PIO7 10 10

JIN5189

GP106l1

GPIO7U

'GPIO7 — General Purpose digital Input/Output 7

GPIO6 — General Purpose digital Input/Output 6

USARTO_RTS — Universal Synchronous/Asynchronous
Receiver/Transmitter O - Request to Send output

CT32B1_MATO0 — 32-bit CT32B1 match output O
PWM6 — Pulse Width Modulator output 6
12C1_SCL — 12C-bus 1 master/slave SCL input/output

USART1_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - transmit data output

ADE — Antenna Diversity Even output

SPI0_SCK — Serial Peripheral Interface 0- synchronous clock

USARTO_CTS — Universal Synchronous/Asynchronous
Receiver/Transmitter O - Clear to Send input

CT32B1_MAT1 — 32-bit CT32B1 match output 1
PWM7 — Pulse Width Modulator output 7
12C1_SDA — 12C-bus 1 master/slave SDA input/output

USART1_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - receive data input

ADO — Antenna Diversity Odd Output
SPI0_MISO — Serial Peripheral Interface-bus 0 master input

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 14 of 350

NXP Semiconductors

UM11138

Table 3. Pin descriptions

Chapter 3: Pin and Pad Descriptions

Symbol
PIO8/TXD0

Pin

11

Type

10

Default at reset | Description

GPl0O8M“l

GPIO8 — General Purpose digital Input/Output 8

USARTO0_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 0 - transmit data output

CT32B0_MATO0 — 32-bit CT32B0 match output 0
PWMS8 — Pulse Width Modulator output 8
ANA_COMP_OUT — Analog Comparator digital output

PDM1_DATA — Pulse Density Modulation Data input from digital
microphone (channel 1)

SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave
input

RFTX — Radio Transmit Control Output

PIO9/RXDO

12

GPI1091B]

GPIO9 — General Purpose digital Input/Output 9

USARTO0_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter O - receive data input

CT32B1_CAP1 — 32-bit CT32B1 capture input 1
PWM9 — Pulse Width Modulator output 9

USART1_SCK — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - synchronous clock

PDM1_CLK — Pulse Density Modulation Clock output
to digital microphone (channel 1)

SPI0_SSELN — Serial Peripheral Interface-bus 0 slave select not
ADO — Antenna Diversity Odd Output

PIO10

PIO11

JIN5189

13

14

GPI1O10M

GPIO11LI

GPIO10 — General Purpose digital Input/Output 10
CT32B0_CAPO — 32-bit CT32B0 capture input 0

USART1_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - transmit data output

RFTX — Radio Transmit Control Output
12C0_SCL — 12C-bus 0 master/slave SCL input/output (open drain)
SPI0_SCK — Serial Peripheral Interface-bus 0 clock input/output

PDMO_DATA — Pulse Density Modulation Data input from digital
microphone (channel 0)

'GPIO11 — General Purpose digital Input/Output 11

CT32B1_CAPO — 32-bit CT32B1 capture input 0

USART1_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - receive data input

RFRX — Radio Receiver Control Output

12C0_SDA — 12C-bus 0 master/slave SDA input/output (open drain)

SPI0_MISO — Serial Peripheral Interface-bus 0 master input slave
output

PDMO_CLK — Pulse Density Modulation Clock output to digital
microphone (channel 0)

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 15 of 350

NXP Semiconductors

UM11138

Table 3. Pin descriptions

Chapter 3: Pin and Pad Descriptions

Symbol Pin |Type Default at reset | Description
PIO12/SWCLK 15 10 SWCLK 'GPI012 — General Purpose digital Input/Output 12
SWCLK — Serial Wire Debug Clock
PWMO0 — Pulse Width Modulator output 0
12C1_SCL — 12C-bus 1 master/slave SCL input/output (open drain)
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave
input
ANA_COMP_OUT — Analog Comparator digital output
IR_BLASTER — Infra-Red Modulator output
P1O13/SWDIO (16 IO SWDIO GPIO13 — General Purpose digital Input/Output 13
SPI1_SSELN2 — Serial Peripheral Interface-bus 1, slave select not 2
SWDIO — Serial Wire Debug Input/Output
PWM2 — Pulse Width Modulator output 2
12C1_SDA — 12C-bus 1 master/slave SDA input/output (open drain)
SPI0_SSELN — Serial Peripheral Interface-bus 0, slave select not
PIO14/ADCO (17 IO GPI10141 ADCO0 — ADC input 0
GPIO14 — General Purpose digital Input/Output 14
SPI1_SSELN1 — Serial Peripheral Interface-bus 1, slave select not 1
CT32B0_CAP1 — 32-bit CT32B0 capture input 1
PWM1 — Pulse Width Modulator output 1
SWO — Serial Wire Output
USARTO0_SCK — Universal Synchronous/Asynchronous
Receiver/Transmitter 0 - synchronous clock
MCLK — External clock, can be provided to DMIC IP
RFTX — Radio Transmit Control Output
PIO15/ADC1 18 10 GPIO1501] 'ADC1 — ADC input 1
GPI015 — General Purpose digital Input/Output 15
SPI1_SCK — Serial Peripheral Interface-bus 1, clock input/output
ANA_COMP_OUT — Analog Comparator digital output
PWM3 — Pulse Width Modulator output 3
PDM1_DATA — Pulse Density Modulation Data input from digital
microphone (channel 1)
12C0_SCL — 12C-bus 0 master/slave SCL input/output (open drain)
RFRX — Radio Receiver Control Output
PIO16/ADC2 |19 |10 GPIO16l1 ADC2 — ADC input 2

GPI016 — General Purpose digital Input/Output 16

SPI1_SSELNO — Serial Peripheral Interface-bus 1, slave select not 0
PWMS5 — Pulse Width Modulator output 5

PDM1_CLK — Pulse Density Modulation Clock output to digital
microphone (channel 1)

SPIFI_CSN — Quad-SPI Chip Select Not, output

1ISO7816_RST — RST signal, output, for ISO7816 interface
12C0_SDA — 12C-bus 0 master/slave SDA input/output (open drain)

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 16 of 350

NXP Semiconductors

UM11138

Table 3. Pin descriptions

Chapter 3: Pin and Pad Descriptions

Symbol Pin |Type
VDDE 20 P

Default at reset | Description

Vppe — Supply voltage for 1O

PIO17/ADC3 21 |10

GPIO17U1

ADC3 — ADC input 3
GPIO17 — General Purpose digital Input/Output 17

SPI1_MOSI — Serial Peripheral Interface-bus 1, master output slave
input

SWO — Serial Wire Output

PWM6 — Pulse Width Modulator output 6
SPIFI_IO3 — Quad-SPI Input/Output 3

1ISO7816_CLK — Clock output for ISO7816 interface
CLK_OUT — Clock out

PIO18/ADC4 22 |10

GP1018L1

ADC4 — ADC input 4
GPIO18 — General Purpose digital Input/Output 18

SPI1_MISO — Serial Peripheral Interface-bus 1, master data input
CT32B0_MAT1 — 32-bit CT32B0 match output 1

PWM7 — Pulse Width Modulator output 7
SPIFI_CLK — Quad-SPI Clock output

1ISO7816_I0 — 10 of ISO7816 interface

USARTO0_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter O - transmit data output

PIO19/ADC5 |23 IO

PIO20/ACP 24 1O

GPI1O19l1

GP1020M

ADC5 — ADC input 5
GPIO19 — General Purpose digital Input/Output 19

ADO — Antenna Diversity Odd Output
PWM4 — Pulse Width Modulator output 4

SPIFI_IO0 — Quad-SPI Input/Output 0

USART1_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - receive data input

CLK_IN — External clock

USARTO0_RXD — Universal Synchronous/Asynchronous
Receiver/Transmitter O - receive data input

'ACP — Analog Comparator Positive input

GPl020 — General Purpose digital Input/Output 20
IR_BLASTER — Infra-Red Modulator output

PWMS8 — Pulse Width Modulator output 8
RFTX — Radio Transmit control Output

SPIFI_lO02 — Quad-SPI Input/Output 2

USART1_TXD — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - transmit data output

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 17 of 350

NXP Semiconductors

UM11138

Table 3. Pin descriptions

Chapter 3: Pin and Pad Descriptions

Symbol ’Pin ’Type Default at reset | Description

PIO21/ACM 25 10 GP10211 ACM — Analog Comparator Negative input
GPl021 — General Purpose digital Input/Output 21
IR_BLASTER — Infra-Red Modulator output
PWM9 — Pulse Width Modulator output 9
RFRX — Radio Receiver Control Output
SWO — Serial Wire Output
SPIFI_IO1 — Quad-SPI Input/Output 1
USART1_SCK — Universal Synchronous/Asynchronous
Receiver/Transmitter 1 - synchronous clock

TRST 26 G 'TRST — must be connected to GND

RSTN 27 |1 RSTN — Reset Not input

VBaT v28 VP ‘VBAT — Supply voltage DCDC input

LX 29 LX — DCDC filter

Vss(pcbce) 30 G ‘Vss(DCDc) — ground for DCDC section

FB 31 FB — DCDC Feedback input

Vbp(Pmu) v32 VP ‘VDD(pMU) — supply voltage for PMU section

XTAL_32K P 33 crystal oscillator 32.768 kHz

XTAL 32K N 34 crystal oscillator 32.768 kHz

VDD(RADIO) 35 P Vbb(rADIO) — SUpply voltage for radio section

Vss(RF) 36 G Vss(rr) — RF ground

RF_10 37 10 RF_IO — RF antenna, RF pin which can be considered as RF
Input/output. The radio transceiver is connected here.

Vss(RF) 38 G Vssrr) — RF ground

LB 39 NFC tag antenna input B

LA 40 'NFC tag antenna input A

exposed die G must be connected to RF ground plane

pad

3.4 Pin properties

(1]
[2]

(3]

[4]
(3]

I: input at reset.

For standard operation (normal boot or ISP programming mode), this pin should be high during the release

of reset. If there is no external driver to this pin, then the internal pull-up will keep this pin high.

ISP programming mode: leave pin floating high during reset to avoid entering UART programming mode or

hold it low to program.

In ISP mode, it is configured to USARTO_TXD.
In ISP mode, it is configured to USARTO_RXD.

JIN5189

Table 4 presents the different functionality and default states of the pins. PIO10 and P1O11

have 10 cells that support true 12C operation and also general purpose digital modes. The
reset and test reset pins support a narrow range of functionality. All other digital IOs are

standard GPIO IO cells.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 18 of 350

NXP Semiconductors

UM11138

Chapter 3: Pin and Pad Descriptions

Table 4. Pin properties
14
x g
o
®
E g 2 ¢ ;1 2 2
5 3 3 7 é 2 2 >
= = 3 = c c B =
o 5 3 3 © £ £ £ S 3
- N - e £ 5 5 =
2 2 E 3 = = % £ £ £ °
£ £ g & 2 |8 & & |8 |& |2
1 XTAL_P — — — — — — — — —
2 XTAL_N — — — — — —
>3 P100 Hi-Z Y PU SS N N N Y N
4 P1O1 Hi-Z Y PD SS N N N Y N
>5 P102 Hi-Z Y PD SS N N N Y N
6 P1O3 Hi-Z Y PU SS N N N Y N
>7 P104 Hi-Z Y PU SS N N N Y N
8 PIO5/ISP_ENTRY Hi-Z Y PU SS N N N Y N
>9 P106 Hi-Z Y PD SS N N N Y N
v 10 P1O7 Hi-Z Y PD SS N N N Y N
1" P108/TXD0 Hi-Z Y PU SS N N N Y N
v 12 PIO9/RXDO0O Hi-Z Y PU SS N N N Y N
13 P1010 Hi-Z NI — SS N N Y Y Y
v14 P1O11 Hi-Z N[— SS N N Y Y Y
15 P1012/SWCLK Hi-Z Y PU SS N N N Y N
v16 P10O13/SWDIO Hi-Z Y PU SS N N N Y N
17 P1014/ADCO Hi-Z Y PU SS N N N Y N
v18 P1O15/ADC1 Hi-Z Y PU SS N N N Y N
19 PIO16/ADC2 Hi-Z Y PU SS N N N Y N
20 VbpE — — — — — — — — —
21 P10O17/ADC3 Hi-Z Y PD SS N N N Y N
v22 PIO18/ADC4 Hi-Z Y PD SS N N N Y N
23 PIO19/ADC5 Hi-Z Y PD SS N N N Y N
v24 P1020/ACP Hi-Z Y PD SS N N N Y N
25 P1021/ACM Hi-Z Y PU SS N N N Y N
26 TRSTA H-z N — — — — — N —
27 RSTN H Y PU — — — — N —
28 Vear — — — — — — — — —
29 LX — — — — — — — — —
30 Vss(pepo) — — — — — — — — —
31 FB — — — — — — — — —
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 19 of 350

NXP Semiconductors

UM11138

Table 4. Pin properties

Chapter 3: Pin and Pad Descriptions

S
% o
a 8
g kS
= o _
s 9 S ¥ 3
14 2 = o O =
(@] o g o - c
o g & ” 8 ® 8
S
2 e g S o 2 B
L 3 3 ~ 2 © © -
s 8 |8 |8 |E |5 (8 |y |2
® = = ® £ c c o 3
2 I g a2 o a s g £ g
. 1] s =) o = — qhg o
i i "g % % qg: 3 3 g E v
& & a & & » a o o & &
32 VbbPmu) — — — — — — — — —
33 | XTAL 32K P — _ — _ _ _ _ — _
34 XTAL_32K_N — — — — — _ _ _ _
35 VDD(RADIO) — — _ _ - _
36 Vssrr — — — — — — — — —
37 | RFIO _ — _ _ _ _ _ — _
38 Vssre — — — — — — — — —
39 LB — — — — — I _ _ _
40 LA — — _ _ _ _ _ — —

[1]1 External pullup required

[2] Tie to ground for functional mode

Table 5: Abbreviation used in the Table 4

Properties

Default status after POR

Pullup/pulldown Enable after
POR

Pullup/pulldown selection after
POR

Slew rate after POR

Passive Pin Filter after POR

JIN5189

Abbreviation |Descriptions
Hi-Z High impedance
H High level
L Low level
% Enabled
N Disabled
PU Pullup (ie reg ICON.MODE = 0x0)
PD Pulldown (ie reg ICON.MODE = 0x3)
FS Fast slew rate
® For MFIO pads ie all except PIO10&11: IOCON.SLEW = 0 or
1, IOCON.SLEW1 = 1
® For lICFPGPIO pads ie PIO10&11: IOCON.SLEW = 1
ss Slow slew rate
® For MFIO pads ie all except PIO10&11: IOCON.SLEW =0,
IOCON.SLEW1 =0
® For lICFPGPIO pads ie PIO10&11: IOCON.SLEW =0
N Disabled (ie reg IOCON.FILTEROFF = 1)
Y Enabled (ie reg IOCON.FILTEROFF = 0)
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 20 of 350

NXP Semiconductors U M1 1 1 38

Chapter 3: Pin and Pad Descriptions

Table 5: Abbreviation used in the Table 4

Properties Abbreviation |Descriptions

Fast capability Not support fast capability

Open drain enable after reset N Disabled (ie reg IOCON.OD = 0)
Y Enabled (ie reg IOCON.OD = 1)
Open drain enable control iN Disabledl!]
Y Enabled
Pin interrupt iN No
Y Yes
N
Y

Support fast capability

[11 Al PIO except PIO10 and PIO11 can be configured to operate in a pseudo-open drain mode

3.5 General information for handling PIOs

3.5.1 10 clamping

IO clamping can be used in power down mode to maintain digital outputs when necessary
(except if driven by SP10, USARTO, 12C0). It is necessary to activate this function just
before going into power down.

It should only be enabled for power down mode and for 10 cells being used as outputs
where the application requires the pin state to be held during the power down cycle. IO
cells that are used as inputs must not be clamped because the level on the pin depends
on the external driver; a clamp could create a conflict.

Settings to freeze the 10:

* Assert SYSCON_RETENTIONCTRL register, to enable the option of clamping

* Assert SYSCON_RETENTIONCTRL[IOCLAMPI] field for all IOs to be maintained or
clamped:

— IOCON_PIOx[11] for MFIO pads (ie. All PIOs except PIO10 and 11)

— IOCON_PIOx[12] for combo 12C/GPIO pads (ie. PIO10 and 11).
After wake-up from power-down, the clamp will still be enabled for all the IPs that are
clamped. The application is responsible for releasing the clamps to allow for normal 1O

operation. Hence, the clamp must be released for each clamped IO cell by clearing the
SYSCON_RETENTIONCTRL[IOCLAMP] control bits.

3.5.2 10s and power modes

P10s of PIO_0 to PIO_21 can be used as GPIO. You can use them as general-purpose
inputs and outputs or for specific functions, like 12C, USART, 1SO7816, etc.

By default, at reset and during boot, GPIO mode is often the selected mode, except for
I0s 8/9/12/13 (see Table 19 “IOMUX functions”).

If boot fails, ISP mode is activated, see more in Chapter 38 “In-System Programming

(1SP)”.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 21 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

3.5.3

Chapter 3: Pin and Pad Descriptions

Then in ACTIVE, SLEEP, DEEPSLEEP modes, user has complete control over PADs:
speed, inversion, filter, open drain, pull-up, pull-down, bus keeper, disable input. These
settings are configured independently of whether the pin is used as GPIO or for a specific
function.

Note here that PIOs 10/11 are using special PADs that make them behave differently from
the other ones. For example, pull-down is not supported (see Table 19 “IOMUX
functions”).

The maximum supported frequency is not only affected by the type of PAD being used but
also is limited by construction to either 10 MHz (PIOs from 0 to 15) or 33 MHz (P10s from
16 to 21). All these restrictions are checked by the reference SW API joined below.

Selection of input or output mode (direction), and value to output are controlled
dynamically by the functional module itself: GPIO, I2C, USART, ISO7816, etc.

In POWERDOWN modes, most functional modules are powered off, which means they
lose control over direction and value to output. If it is required to maintain the output value
of an 10 during power-down, then two steps are required:

1. Firstly, it is necessary to enable the IOCLAMP feature, giving the ability for any 10 to
freeze and maintain an output value during the power-down phase. To do this refer to
the SYSCON_RETENTIONCTRL[IOCLAMP] control bit.

2. Secondly, for any |10 that is required to clamp, there is a dedicated control bit in the
respective IOCON_PIOx register (See Section 3.5.1 “IO clamping”). I10s that are
operating as inputs do not require this because they are driven by an external source.

Note that in some POWERDOWN modes, power domain Comm0 is maintained, which
means USARTO, 12C0, SPIO can still have control over PADs so no need in that case to
use IOCLAMP feature.

In DEEPPOWERDOWN mode, it is not possible to have any 10s as an output or
clamping. There are two options on managing the 10 during DEEPPOWERDOWN mode:

* |Os are powered off. The IC is waiting for a PAD reset or an event on NTAG (when
available)

* |Os are kept alive to wake the IC with for example an event on PIO. In that case,
internal isolation forces PIOs as input with pre-defined configuration
(pull-up/pull-down), the same as the one defined after reset (see Table 19 “IOMUX
functions”)

See Chapter 5 “Power Management” for more details.

I0s speed and configuration

Summary of possible configurations on PIOs

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 22 of 350

NXP Semiconductors

UM11138

3.5.3.1

Table 6.
10 Application mode

Max Fregency (MHz)
L

Exclusive
1

PIO 4

W o w0 B W P O

[T e i
SbowYaar oo R~ oS

21

10

25 33

invertinput

nolnputSpikeFilter

openDrain (simulated

pullUp

pullDown

busKeeper

disablelnput

SS

SS

FS

SS

SS

FS

SS

5SS

FS

SS

SS

FS

SS

5SS

FS

SS

SS

FS

SS

SS

FS

SS

SS

FS

SS

SS

FS

SS

SS)

FS

SS

FS

SS

FS

SS

SS

FS

SS

SS)

FS

SS

SS

FS

SS

SS

FS

SS

SS

FS

SS

SS

FS

FS

SS

S5

FS

FS

SS

SS

FS

FS

SS

SS

FS

FS

SS

SS

FS

FS

Chapter 3: Pin and Pad Descriptions

Comments

GPIO mode
GPIO mode

Note: The green box means the feature is supported.

Fig4. Possible configurations on PIOs

Figure 4 shows the maximum speed of operation of the PIO outputs and also the slew
setting required for this operation, SS or FS. For definition of the slew settings, see

Table 5.

The figure also shows the modes supported on the PlOs.

For PIO10 and PIO11, it is necessary to configure the IO for GPIO mode in order to

achieve the stated output frequencies.

10 application mode

The table below lists the 40 IO application modes available on JN5189(T)/JN5188(T):

10 application mode

Description of 10 functional mode

10 in strong push pull:
0

IOx: Strong output 0, receiver enabled, no pull-up, no pull-down, low speed

I0x: Strong output 1, receiver enabled, no pull-up, no pull-down, low speed

IOx: Strong output 0, receiver enabled, no pull-up, no pull-down, high speed

1
2
3

JIN5189

All information provided in this document is subject to legal disclaimers.

I0x: Strong output 1, receiver enabled, no pull-up, no pull-down, high speed

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

23 of 350

NXP Semiconductors U M1 1 1 38

Chapter 3: Pin and Pad Descriptions

Table 6. 10 application mode

10 Application mode Description of 10 functional mode

4 I0x: Strong output 0, receiver disabled, no pull-up, no pull-down, low speed
5 I0x: Strong output 1, receiver disabled, no pull-up, no pull-down, low speed
6 I0x: Strong output 0, receiver disabled, no pull-up, no pull-down, high speed
7 I0x: Strong output 1, receiver disabled, no pull-up, no pull-down, high speed

10 in open drain mode (external pull-up):

8 I0x: Strong output 0, receiver enabled, no pull-up, no pull-down, low speed

9 I0x: Output disabled , receiver enabled, no pull-up, no pull-down, low speed (pull-up at
application level)

10 I0x: Strong output 0, receiver enabled, no pull-up, no pull-down, high speed

11 I0x: Output disabled, receiver enabled, no pull-up, no pull-down, high speed (pull-up at
application level)

12 IOx: Strong output 0, receiver disabled, no pull-up, no pull-down, low speed

13 I0x: Output disabled, receiver enabled, no pull-up, no pull-down, low speed (pull-up at
application level)

14 I0x: Strong output 0, receiver disabled, no pull-up, no pull-down, high speed

15 I0x: Output disabled, receiver enabled, no pull-up, no pull-down, high speed (pull-up at

application level)

10 in open drain mode (Internal pull-up)l™:

16 I0x: Strong output 0, receiver enabled, pull-up enabled, no pull-down, low speed
17 I0x: Output disabled, receiver enabled, pull-up enabled, no pull-down, low speed
18 I0x: Strong output 0, receiver enabled, pull-up enabled, no pull-down, high speed
19 I0x: Output disabled, receiver enabled, pull-up enabled, no pull-down, high speed

10 in input mode only:

20 I0x: Output disabled, receiver enabled, no pull-up, no pull-down, low speed (input filtered)

21 I0x: Output disabled, receiver enabled, no pull-up, no pull-down, high speed (input not
filtered)

10 in Input mode with pull-up or pull-downl"I:

22 IOx: Output disabled, receiver enabled, pull-up enabled, no pull-down, low speed (input
filtered)

23 I0x: Output disabled, receiver enabled, pull-up enabled, no pull-down, high speed (input not
filtered)

24 I0x: Output disabled, receiver enabled, no pull-up, pull-down enabled, low speed (input
filtered)

25 IOx: Output disabled, receiver enabled, no pull-up, pull-down enabled, high speed (input not
filtered)

10 in pull-up or pull-down mode onlyl"l:

26 I0x: Output disabled, receiver disabled, pull-up enabled, no pull-down, low speed

27 I0x: Output disabled, receiver disabled, pull-up enabled, no pull-down, high speed

28 I0x: Output disabled, receiver disabled, no pull-up, pull down enabled, low speed

29 I0x: Output disabled, receiver disabled, no pull-up, pull-down enabled, high speed

10 high impedance /floating:

30 I0x: Output disabled, receiver disabled, no pull-up, no pull-down, low speed

31 IOx: Output disabled, receiver disabled, no pull-up, no pull-down, high speed

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 24 of 350

NXP Semiconductors U M1 1 1 38

Chapter 3: Pin and Pad Descriptions

Table 6. 10 application mode

10 Application mode

10 with repeater model!l

Description of 10 functional mode

32 I0x: Strong output 0, receiver enabled, pull-up enabled, pull-down enabled, low speed
33 I0x: Strong output 0, receiver enabled, pull-up enabled, pull-down enabled, high speed
34 I0x: Strong output 1, receiver enabled, pull-up enabled, pull-down enabled, low speed
35 I0x: Strong output 1, receiver enabled, pull-up enabled, pull-down enabled, high speed
36 10x: Output disabled, receiver enabled, pull-up enabled, pull-down enabled, low speed
37 I0x: Output disabled, receiver enabled, pull-up enabled, pull-down enabled, high speed

10 in Analogue mode:
38

‘|OX: Output disabled, receiver disabled, no pull-up, no pull-down, low speed

39

10 in Switch OFF mode (DPDOQ => CPD asserted):

‘|OX: High impedance /floating

JIN5189

[11 Not valid for PIO10 and PIO11.

To configure these modes, the P10 or PIO_I2C registers in IOCON must be set correctly.
The exception to this is option 39; this option occurs when the device is put into deep
power-down mode, without the option of IO wake-up.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 25 of 350

UM11138

Chapter 4: Analog Power Management Unit
Rev. 1.4 — June 2020 User manual

4.1 General information

The Analog Power Management Unit (PMU) contains the analog blocks for generating
clocks, creating and managing the internal power domains. For reliable start-up and
device operation, the power-on reset (POR) and brownout detect (BOD) blocks are
necessary and also form part of the PMU. These blocks are outlined in this section.

Overall, these blocks are needed to support the device functionality and to achieve
low-power consumption in functional and low-power modes.

The control and configuration of most of these features are managed either by dedicated
hardware state machines, to manage the device start-up or power-down modes, or the
Power Management API library.

4.2 Power supplies

JIN5189

4.2.1

The JN5189(T)/UJN5188(T) has three power supplies: the main power connection, Vgar,
and two lower voltage supplies, Vpp(RADIO) and Vpp(PMU). Internal to the
JN5189(T)/UN5188(T), there is a DCDC converter which can generate the Vpp supplies,
see Section 4.2.1 “DCDC”".

From these three power supplies, there are further internal power domains which are
used to support a range of operating modes. The power domains are presented in
Section 4.3 “Power domains”.

DCDC

The JN5189(T)/UJN5188(T) has an internal DCDC module. It is a buck converter which
efficiently converts an input supply voltage to a fixed output voltage. The configuration of
the DCDC module can be optimized to suit the load current of the application; there are
settings for 10 mA, 20 mA, 40 mA and 60 mA. The default configuration is 40 mA,
software APls are available to configure the other settings.

The DCDC converter is connected to Vgat and generates the supply voltage required for
Vpp(RADIO) and Vpp(PMU). The external configuration for this is shown in the following
diagram.

VDD_RADIO

VDD_PMU

VBAT

‘s w L1
n S J~<ro.
© 3 o5 4.7uH v
S
=

IN5189(T)/
IN5188(T)

L
T

10pF

Fig5. DCDC system diagram

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 26 of 350

NXP Semiconductors U M1 1 1 38

Chapter 4: Analog Power Management Unit

4.3 Power domains

The JN5189(T)/UJN5188(T) has many power domains; these are created in various ways
such as internal LDOs, power switches or connections to DCDC output. The voltage of the
LDOs may be changed to reduce power in certain modes and the domain may be
switched off as well. The APIs of the Low-power library, fs|_power library, manage the
configurations of the power domains. The main domains are listed here:

* Always On: This domain is used to control initial device start-up and the deep
power-down states with their wake-up triggers

* System: System control features are in this domain such as the sleep controller and
low-power wake-up, 10 configuration and clock control. This domain is active in most
operating modes.

* CommO: In power-down mode, some digital communication modules can still operate
in a reduced capacity. The CommO0 domain ensures these are powered when
required.

* Mem: The SRAMs can all be powered separately and, if memory retention is required
in power-down state, then voltage scaling is used to reduce power consumption

* Core: The majority of the digital logic is in the core domain, used during main device
operation

* ADC: The general purpose ADC has its own supply
® Flash: The flash memory has its own supply

* |O domain: To achieve the very low deep power-down current consumption, it is
necessary to remove power from IO cells and hence a separate domain is necessary

* Retention in Radio Controller: When digital logic is unpowered, it will lose its state, a
small number of registers in the radio controller have been managed specially in order
to keep their state in power-down mode, so that on wake-up their values will still be

valid.
4.4 Clocks

There are several clock sources in the JN5189(T)/JN5188(T) to support a range of
operating conditions.

441 FRO1M
The FRO1M clock is an internal, very low-power 1 MHz FRO used for the main system
controller state machines. It can be trimmed to improve its accuracy. During device
production, trimming values are determined and these are applied, by boot software,
before the application starts. Once trimmed, the FRO accuracy is within £15% across
operating temperature and voltage.

4.4.2 High speed FRO

JIN5189

The high speed FRO clock module is an internal module that generates several clocks: 48
MHz, 32 MHz, 12 MHz. It can be trimmed to improve its accuracy. During device
production, trimming values are determined and these are applied by hardware before the
device starts executing the boot code. Once trimmed, the FRO accuracy is within £2%
across operating temperature and voltage.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 27 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

443

444

445

44.6

Chapter 4: Analog Power Management Unit

FRO32K

The FRO32K clock is an internal, ultra low-power 32 kHz FRO used for the RTC and
low-power wake-timers. It can be trimmed to improve its accuracy. During device
production, trimming values are determined and these are applied, by software APls,
before the clock is used. Once trimmed, the FRO accuracy is within +2% across operating
temperature and voltage.

XTAL32K

The XTAL32K clock is generated from the internal clock module and an external 32 kHz
XTAL. The accuracy is determined by the XTAL selected, and very high precision devices
are available. This clock can be used, instead of the internal FRO32K, as the source for
the 32 kHz clock.

Generally, an XTAL requires a capacitor connected between each pin of the XTAL and
ground. The capacitance required is set by the specification of the crystal. The
JN5189(T)/JN5188(T) has internal configurable capacitors that removes the need for
external capacitors in most applications.

XTAL32M

For radio operation, a very precise 32 MHz clock source is required. To support this, a 32
MHz XTAL is supported in the radio module. The accuracy is determined by the XTAL
selected, and very high precision XTALs are available. For IEEE 802.15.4 operation, it is
necessary to meet +40 ppm accuracy across temperature/voltage and lifetime of the
product, accounting for XTAL aging.

Generally, an XTAL requires a capacitor connected between each pin of the XTAL and
ground. The capacitance required is set by the specification of the crystal. The
JN5189(T)/JN5188(T) has internal configurable capacitors that removes the need for
external capacitors in most applications.

The internal 32 MHz XTAL module requires biasing which can be sourced from the PMU
or within the radio module. For radio operation, it is necessary to use the radio biasing
because the PMU biasing is not stable enough to meet the radio specification. The
configuration of the biasing and XTAL module is managed by the
CLOCK_EnableClock(kCLOCK_Xtal32M) and also the radio biasing function in the Radio
Controller API.

XTAL cap bank management

The two XTAL cells both have capacitor banks connected to the two XTAL pins; this is
configured to select the capacitance to match the external XTAL and hence to give the
required frequency. Each capacitor bank for the 32 MHz XTAL has a maximum
capacitance of approximately 25 pF. For the 32 kHz XTAL, the maximum is
approximately 24 pF.

During production test, the capacitor banks are tested and calibrated; the setting required
for two specific capacitance values is stored in flash.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 28 of 350

NXP Semiconductors U M1 1 1 38

Chapter 4: Analog Power Management Unit

The software API that configures the XTAL capacitor bank setting uses this calibration
data to achieve accurate operation of the XTAL.

Ideally the external XTAL is stable across the whole temperature range of the device. In
this case once the capacitor bank setting has been applied, it does not need modifying if
the device remains powered. However, if the XTAL is not stable across the whole
temperature range of the device, it may be necessary to adjust the capacitor bank setting
based on the device temperature.

4.5 Support Functions

Two functional blocks are included in the Analog Power Management Unit for safe
operation of the device. These are Power On Reset (POR) and Brown-out Detect (BOD).

451 POR

When the device is powered up, the POR module keeps the device in reset until the
power supply, VBAT, reaches the release/ trip_high threshold; then the start-up sequence
begins. If the supply drops too low, it is necessary to put the device safely into reset again.
For this purpose, the POR block creates the reset signal, which is the voltage dropping
below the reapply/trip_low threshold where this threshold is slightly lower than the
trip_high threshold. The trip levels are typically 0.8 V.

45.2 BOD

The device must be supplied by VBAT within the specified operating limits. There is a
large gap between the lowest allowed voltage and the point at which the POR block would
cause the device to enter the reset state. To allow for detection of the supply being within
this region, it supports for Brown-out detection. This block supports a configurable
threshold and will create an interrupt if a low level is detected. This allows application
software to complete any critical operation before shutting down the device.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 29 of 350

UM11138

Chapter 5: Power Management
Rev. 1.4 — June 2020 User manual

5.1 Introduction

The JN5189(T)/UJN5188(T) supports several low-power modes that can be used by the
application to reduce average power consumption. This chapter provides an overview of
these modes, what can be enabled in these modes and what events can be used to
trigger a return to the normal active state.

The Power Management Controller has state machines and configuration settings to
manage the low-power states and these are explained in Chapter 8 “Power Management
Controller and SLEEPCON”. To allow easy use of these power modes there is a software
API provided, this is introduced in Chapter 11 “Power Control API”.

Many of the features required to achieve these low-power modes use the blocks within the
Power Management Unit, this is described in Chapter 4 “Analog Power Management
Unit”.

5.2 General description

JIN5189

There is a primary power input to the device Vgar. From this a DCDC converter,
programmable LDOs and power switches are used to create numerous power domains. A
key power domain for the power modes is the always-on power domain, this domain is
always active as long as sufficient voltage is supplied to Vgar. This domain controls the
device start-up and the lowest power modes when all other power domains may be off.

In addition to controlling power domains, the other parts are also carefully controlled in
power down states to achieve correct functionality and low power.

The following modes are supported in order from highest to lowest power consumption:

1. Active mode:

The part is in active mode after a Power-On Reset (POR) and when it is fully powered
and operational after booting.

2. Sleep mode:

This is the same as Active mode except that the processor is inactive and is waiting
for an interrupt/event to cause it to restart operation. There are no changes to power
domains compared to active state.

3. Deep-sleep mode:

Deep-sleep mode allows some functional blocks and clocks to be disabled to save
power. In addition, the core voltage is reduced to save power; this restricts the
maximum operating frequency to be 12 MHz. DMA operation is not permitted while
the device is in Deep Sleep mode.

Wake-up from deep-sleep mode takes more time than from sleep mode due to the
need to alter system voltages and also to re-enable blocks which had been disabled
in the deep-sleep mode.

The CPU clock is switched off in deep-sleep mode.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 30 of 350

NXP Semiconductors

UM11138

Chapter 5: Power Management

In deep-sleep mode, SRAM access is not possible and the SRAM will be in one of
three states: powered off; in low-power state to retain contents; in normal state. The
SRAM containing data necessary for the application must not be powered off.

Other blocks that may be switched off are: Flash, ADC, analog comparator,
temperature sensor, brown out detectors, XTAL32M, XTAL32K, FRO192M, FRO32K.

Peripherals can be left running provided that they have the required clock and are not
using DMAs (DMA is not available in deep-sleep mode).

On wake-up the processor will continue code execution from where it was before
entering deep-sleep mode.

. Power-down mode:

Power-down mode switches off further functionality to save even more power. The
main digital domain is switched off, flash is off and the SRAM is either off or in a
low-power state to retain contents. The only peripherals that can operate are the 12CO0,
USARTO and SPIO, but in a limited functionality mode. A 32 kHz clock can be still
active, either FRO32K or XTAL32K.

After a wake-up, the processor will start executing the boot code to determine how to
reinitialize the device.

Deep power-down mode:

Deep power-down mode shuts down virtually all on-chip power consumption, and
requires a significantly longer wake-up time. For maximal power savings, the entire
system (CPU and all peripherals) is shut down except for the PMU. On wake-up, the
device reboots.

The device can be woken by the reset pin or an IO event unless the 10s are disabled
to reduce current consumption further. For a JN5189T or JN5188Tdevice, NTAG FD
(Field Detect) interrupt, from the internal NTAG device can also wake up the device.

Table 7. Peripheral configuration in reduced power modes
Peripheral Power mode

Active or sleep Deep-sleep Power-down Deep power-down
PD_MCU On On Retained/ Off Off
PD_SYSTEM On On On Off
PD_COMMO On On Optional Off
PD_AON On On On On
PD_IO On On On ‘Optional
PD_MEM On On / Retained/ Off Retained/ Off Off
Flash On >Optional Off Off
GP ADC Optional Optional Off Off
Comparator ‘ Optional ’ Optional Optional Off
DCDC converter On On Off Off
Temperature Sensor ‘Optional >Optional Off Off
Power on reset On On On On
BODVBAT ‘Optional Optional Optional ‘Optional
XTAL32M Optional Optional Off Off
XTAL32K 'Optional ‘Optional Optional Off
FRO1M On On Off Off

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 31 of 350

NXP Semiconductors

UM11138

Chapter 5: Power Management

Table 7. Peripheral configuration in reduced power modes
Peripheral Power mode
Active or sleep Deep-sleep Power-down Deep power-down
High speed FRO On Optional Off Off
FRO32K ‘Optional >Optional Optional Off
Radio Optional Off Off Off
CPU OnorHaltedin Halted Off off
Sleep
12C0 Optional Optional Optional (with limited Off
functionality)
SPI0 Optional Optional Optional (with limited Off
functionality)
USARTO 'Optional 'Optional Optional (with limited Off
functionality)
Other digital peripherals | Optional Optional Off Off
DMA 'Optional Off Off Off
5.2.1 Wake-up process
The part always wakes up to the active mode. To wake up from the reduced power
modes, the user must configure the wake-up source. Each reduced power mode supports
its own wake-up sources and needs to be configured accordingly as shown in Table 8.
Table 8. Wake-up sources for reduced power modes
Power mode 'Wake-up source Conditions
Sleep Any interrupt Enable interrupt in NVIC.

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

32 of 350

NXP Semiconductors

UM11138

Table 8.

Chapter 5: Power Management

Wake-up sources for reduced power modes

Power mode

Deep-sleep

JIN5189

Wake-up source

Pin interrupts

Conditions

Enable pin interrupts in NVIC (see more details in Chapter 9 “Nested Vectored
Interrupt Controller (NVIC)”) and SYSCON_STARTERT1 registers.

BOD interrupt

Enable interrupt in NVIC, see more details in Chapter 9 “Nested Vectored
Interrupt Controller (NVIC)”

Enable interrupt using SYSCON_STARTERO[WDT_BOD].
Configure the BOD to keep running in this mode with the power API.

Watchdog interrupt

Enable the watchdog oscillator using the software APIs, see Section 6.4 “Clock
control software functions”.

Enable the watchdog interrupt in NVIC (see more details in Chapter 9 “Nested
Vectored Interrupt Controller (NVIC)”) and using
SYSCON_STARTERO[WDT_BOD].

Enable the watchdog in the WWDT_MOD and WWDT_FEED registers.
Enable interrupt in WWDT_MOD register.

Configure the selected watchdog oscillator source to keep running in this mode
with the power API.

Watchdog reset

Reset pin

RTC 1 Hz alarm timer

RTC 1 kHz timer
time-out and alarm

12C interrupt

Enable the watchdog oscillator using the software APIs, see Section 6.4 “Clock
control software functions”.

Enable the watchdog and watchdog reset in the WWDT_MOD and
WWDT_FEED registers.

Configure the selected watchdog oscillator source to keep running in this mode
with the power API

iAIways available.

Enable the RTC 1 Hz oscillator using the software APls, see Section 6.4 “Clock
control software functions”.

Enable the RTC bus clock in the SYSCON_AHBCLKCTRLO register.
Start RTC alarm timer by writing a time-out value to the RTC_COUNT register.
Enable the RTCALARM interrupt by using SYSCON_STARTERO[RTC].

Enable the RTC 1Hz and 1kHz clocks using the software APIs, see Section 6.4
“Clock control software functions”.

Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.
Enable the RTC wake-up interrupt by using the SYSCON_STARTERO[RTC].

ilnterrupt from 12C in slave mode. See Chapter 25 “Inter-Integrated Circuit (12C)".

SPI interrupt

USART interrupt

Interrupt from SPI in slave mode. See Chapter 24 “Serial Peripheral Interfaces
(SPI)".

vInterrupt from USART in slave or 32 kHz mode. See Chapter 23 “Universal
Synchronous/Asynchronous Receiver/Transmitter (USART)”.

DMIC

NTAG FD interrupt

Enable the DMIC module
Enable DMIC wake-up in the SYSCON_STARTERT1 register

‘Enable interrupt in NVIC and SYSCON_STARTERT registers.

Comparator ® Enable ANA_COMP to cause wake-up in SYSCON_STARTER1[ANA_COMP]
® Configure comparator to operate in power down, using the two comparator input
pins
1ISO7816 ® Enable the ISO7816 interface
® Enable ISO7816 wake-up in the SYSCON_STARTER1[ISO7816]
ADC ® Enable the ADC module

All information provided in this document is subject to legal disclaimers.

Enable ADC wake-up in the SYSCON_STARTER1[ADC_THCMP_OVR]

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 33 of 350

NXP Semiconductors U M1 1 1 38

Chapter 5: Power Management

Table 8. Wake-up sources for reduced power modes

Power mode Wake-up source Conditions
Deep-sleep IR modulator ®* Enable the IR modulator
® Enable IR modulator wake-up in the SYSCON_STARTERO[IRBLASTER]
SPIFI " * Enable the SPIFI module
® Enable SPIFI wake-up in the SYSCON_STARTERO[SPIFI]
Wakeup timer ® Enable the wake-up timer

® Enable wake-up timer wake-up in the
SYSCON_STARTER1[WAKE_UP_TIMER1] and
SYSCON_STARTER1[WAKE_UP_TIMERGQ]

PWM ' e Enable the PWM module
* Enable PWM wake-up in the SYSCON_STARTERO[PWNMXx]
NFCTAG ® Enable the NFCTAG module

® Enable NFCTAG wake-up in the SYSCON_STARTERO[NFCTAG]

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 34 of 350

NXP Semiconductors

UM11138

Chapter 5: Power Management

Table 8. Wake-up sources for reduced power modes

Power mode

Power-down

JIN5189

Wake-up source
10

NTAG FD

Conditions

Enable required 10 to be able to cause wakeup in PMC_DPDWKSRC[PIOx]
Configure IO to be an input in GPIO_DIR[DIRP_PIOn]
Enable NTAG FD to be able to cause wakeup in PMC_DPDWKSRC[NTAG_FD]

RTC 1 Hz alarm timer

RTC 1 kHz timer
time-out and alarm

Enable the RTC 1 Hz oscillator in the RTC_CTRL[ALARM1HZ].

Enable the RTC bus clock in the SYSCON_AHBCLKCTRLO[RTC].

Start RTC alarm timer by writing a time-out value to the RTC_COUNT register.
Enable the RTCALARM interrupt in the SYSCON_STARTERO[RTC].

Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the
RTC_CTRL[RTC1KHZ_EN].

Enable the RTC bus clock in the SYSCON_AHBCLKCTRLO register.
Start RTC 1 kHz timer by writing a value to the RTC_WAKE.

Enable the 1 kHz timer by setting the RTC_CTRL[RTC1KHZ_EN]
Enable the RTC wake-up interrupt in the SYSCON_STARTERO[RTC].

Low-power wake-up
timers

Comparator

Enable wake up timer 0 and/or 1 to cause wake-up in
SYSCON_STARTER1[WAKE_UP_TIMER1] and/or
SYSCON_STARTER1[WAKE_UP_TIMERO]

Enable the 32 kHz clock, FRO or XTAL using the software APls, see Section 6.4
“Clock control software functions”

Configure and enable the wake-up timer using SYSCON_WKT_CTRL and the
relevant WKT_LOAD _ registers. Software APIs are provided to perform this
configuration.

Enable ANA_COMP to cause wake-up in SYSCON_STARTER1[ANA_COMP]

Configure comparator to operate in power down, using the two comparator input
pins

12C0

Enable CPD_COMMO to stay active in power-down using the power control APIs
Interrupt from 12C in slave mode. See Chapter 25 “Inter-Integrated Circuit (12C)”

SPIOO

USARTO

Enable CPD_COMMO to stay active in power-down using the power control
APls.

Interrupt from SPIO in slave mode. See Chapter 24 “Serial Peripheral Interfaces

(SPI)”

Enable CPD_COMMO to stay active in power-down using thepower control
APls.

Interrupt from USART in slave mode. See Chapter 23 “Universal
Synchronous/Asynchronous Receiver/Transmitter (USART)”

BODVBAT

Enable BOD VBAT to wake the device in power-down mode using the power
control APIs.

The BOD bias must be enabled during the power-down cycle, this is managed
by the power control APls

Configure trigger threshold for BOD VBAT using PMC_BODVBAT[TRIGLVL].
This is managed by the power control APIs.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 35 of 350

NXP Semiconductors U M1 1 1 38

Chapter 5: Power Management

Table 8. Wake-up sources for reduced power modes

Power mode

Deep
power-down

Wake-up source Conditions

10 ® Enable IO domain in deep power-down with
PMC_CTRL[WAKUPRESETENABLE]

NTAG FD ® Enable NTAG FD wake-up with PMC_CTRL[NTAGWAKUPRESETENABLE]

BODVBAT * Enable BOD VBAT to be enabled in deep power-dwon mode using the power

control APls.

® The BOD bias must be enabled during the deep power-down cycle, this is
managed by the power control APIs

® Configure trigger threshold for BOD VBAT using PMC_BODVBAT[TRIGLVL].
This is managed by the power control APls.

5.3 Functional description

JIN5189

5.3.1

5.3.2

5.3.2.1

Power management

The JN5189(T)/UJN5188(T) supports a variety of power control features. In Active mode,
when the chip is running, power and clocks to selected peripherals can be optimized for
power consumption. In addition, there are three special modes of processor power
reduction with different peripherals running: sleep mode, deep-sleep mode, and deep
power-down mode, activated by the power mode configuration API (see Chapter 11
“Power Control API”).

Remark: The Debug mode is not supported in sleep, deep-sleep, or deep power-down
modes.

Active mode
In Active mode, the CPU, memories, and peripherals are clocked by the AHB/CPU clock.

The chip is in Active mode after reset and the default power configuration is determined
by the reset values of the registers, such as the SYSCON_AHBCLKCTRLO and
SYSCON_AHBCLKCTRLA1 registers. The power configuration can be changed during run
time by functional configuration changes such as enabling clock sources, functional
blocks and changing the CPU clock speed.

Power configuration in Active mode

Power consumption in Active mode is determined by the following configuration choices:

* The AHBCLKCTRL registers control which memories and peripherals are running. In
order to save power, the user should turn off the functions that are not needed by the
application. If certain functions are not needed in specific time, they can be turned off
temporarily and turned back on when they are needed.

* The power to various analog blocks (RAMs, PLL, oscillators, and the BOD circuit) can
be controlled individually. As with clock controls, these blocks should generally be
turned off if not needed by the application. If turned off, it takes time to make these
blocks functional after being turned on. Software APls are provided to configure and
enable or disable these blocks.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 36 of 350

NXP Semiconductors U M1 1 1 38

5.3.3

5.3.3.1

5.3.3.2

JIN5189

Chapter 5: Power Management

* The system clock frequency, 48 MHz to 12 MHz, and source can be selected (See
Section 6.3 “Clock generation (CLK_GEN) module”). In general, the device uses less
power at lower frequencies, so running the CPU and other device features at a
frequency sufficient for the application (plus some margin) will save power. In some
cases, a faster CPU frequency is better so that code can be executed quickly to move
to a power-down state.

* Several peripherals use individual peripheral clocks with their own clock dividers. The
peripheral clocks can be shut down through the corresponding clock divider registers
if the base clock is still needed for another function.

* The power library provides an easy way to optimize power consumption depending on
CPU load and performance requirements. See Chapter 11 “Power Control AP!I".

Sleep mode

In sleep mode, the system clock to the CPU is stopped and execution of instructions is
suspended until either a reset or an interrupt occurs.

Peripheral functions, if selected to be clocked in the SYSCON_AHBCLKCTRLO and/or
SYSCON_AHBCLKCTRLA1 registers, continue operation during sleep mode and may
generate interrupts to cause the processor to resume execution. Sleep mode eliminates
dynamic power used by the processor itself, memory systems and related controllers, and
internal buses. The processor state and registers, peripheral registers, and internal SRAM
values are maintained, and the logic levels of the pins remain static.

As in Active mode, the power API provides an easy way to optimize power consumption
depending on CPU load and performance requirements in sleep mode. See Chapter 11
“Power Control API”.

Power configuration in sleep mode

Power consumption in sleep mode is configured by the same settings as in Active mode:

* Enabled clocks remain running.

* The system clock frequency remains the same as in Active mode, but the processor is
not clocked.

* Analog and digital peripherals are powered and selected as in Active mode through
the registers such as AHBCLKCTRLO and AHBCLKCTRLA1 if other functional blocks,
such as clocks, have been enabled..

Programming sleep mode

Generally, sleep mode is used when the application has no further processing to perform
until a functional event occurs or a timer event occurs. Therefore it is unlikely the
configuration changes needed for sleep mode.The following steps must be performed to
enter sleep mode:

1. In the NVIC, enable all interrupts that are needed to wake up the part, see Chapter 9
“Nested Vectored Interrupt Controller (NVIC)” for more details.

2. Ensure that an event will occur in the future to end the sleep mode.

3. Execute the WFI instruction to enter sleep mode

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 37 of 350

NXP Semiconductors U M1 1 1 38

5.3.3.3

5.3.4

5.3.4.1

5.3.4.2

5.3.4.3

JIN5189

Chapter 5: Power Management

Wake-up from sleep mode

Sleep mode is exited automatically when an interrupt enabled by the NVIC arrives at the
processor or a reset occurs. After wake-up caused by an interrupt, the device returns to its
original power configuration as the processor clock will be restarted and no other changes
occurred due to being in sleep mode. If a reset occurs, the microcontroller enters the
default configuration in Active mode.

Deep-sleep mode

In deep-sleep mode, the system clock to the processor is disabled as in sleep mode.
Analog blocks are powered down by default but can be selected to keep running through
the power API if needed as wake-up sources. Table 7 shows the state of different blocks
in deep sleep and indicates which ones the user has options on. The main clock and all
peripheral clocks are disabled.

Deep-sleep mode eliminates power used by analog peripherals and all dynamic power
used by the processor itself, memory systems and related controllers, and internal buses.
The processor state and registers, peripheral registers, and internal SRAM values are
maintained, and the logic levels of the pins remain static.

GPIO Pin Interrupts, GPIO Group Interrupts, and selected peripherals such as DMIC, SPI,
I2C, USART, WWDT, RTC, and BOD can be left running in deep-sleep mode. The FRO,
RTC oscillator, and the watchdog oscillator can be left running.

Power configuration in deep-sleep mode

Power consumption in deep-sleep mode is determined primarily by which analog wake-up
sources remain enabled. Serial peripherals and pin interrupts configured to wake up the
part contribute to the power consumption only to the extent that they are clocked by
external sources. All wake-up events (other than reset) must be enabled in the
SYSCON_STARTER registers and in the NVIC. In addition, any related analog block (for
example, the RTC oscillator or the watchdog oscillator) must be explicitly enabled through
a power API function See Table 8 and Chapter 11 “Power Control API".

Programming deep-sleep mode
The following steps must be performed to enter deep-sleep mode:
1. Select wake-up sources and enable all selected wake-up events in the
SYSCON_STARTERO and SYSCON_STARTERT1 registers and in the NVIC.
2. Select the FRO 12 MHz as the main clock.
3. Ensure that an event will occur in the future to end the deep sleep mode.

4. Call the power API with the peripheral parameter to enable the digital/analog
peripherals as wake-up sources (see Chapter 11 “Power Control API”).

Wake-up from deep-sleep mode

The part can wake up from deep-sleep mode in the following ways:

* Using a signal on one of the four pin interrupts selected in INPUTMUX_PINTSEL
register. Each pin interrupt must also be enabled in the SYSCON_STARTERO register
and in the NVIC.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 38 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

5.3.5

5.3.5.1

5.3.5.2

5.3.5.3

5.3.5.4

Chapter 5: Power Management

* Using an interrupt from a block such as the watchdog interrupt or RTC interrupt, when
enabled during the reduced power mode via the power API. Also enable the wake-up
sources in the SYSCON_STARTER registers and the NVIC.

® Using a reset from the RESET pin, or the WWDT (if enabled in the power API).

* Using a wake-up signal from any of the serial peripherals that are operating in
deep-sleep mode. Also enable the wake-up sources in the SYSCON_STARTER
registers and the NVIC.

* GPIO group interrupt signal. The interrupt must also be enabled in the
SYSCON_STARTERH1 register and in the NVIC.

* RTC alarm signal or wake-up signal. See Chapter 21 “Real-Time Clock (RTC)
Interrupts must also be enabled in the SYSCON_STARTER1 register and in the
NVIC.

Power down mode

In power-down mode, the always on logic, 10 cells and, if enabled, low-power wake timers
are powered. During power-down mode, the contents of the SRAM can be optionally
retained.

Power configuration in power down mode

Power-down mode has configuration options to decide:

¢ which of the possible wake-up sources will be enabled
¢ if the RAM contents are to be retained
¢ if the 10 cell values are to be held during power down

* if the 32 MHz XTAL will be restarted automatically on wake-up

Wake-up sources for power-down mode

Wake-up from power-down can be accomplished via the reset pin (to cause a reset).
Additionally, a wake-up can be triggered by the low-power sleep timers, IO trigger, NTAG
FD interrupt, RTC, comparator, BOD VBAT. Also USARTO, SPI0 and 12CO0 operating in
limited modes may generate a wake-up trigger.

Programming power-down mode

For wake-up from the low-power wake timers, it is necessary to configure and enable the
timers to cause an interrupt at the correct time in the future.

The low-power API function, see Chapter 11 “Power Control API”, will perform all other
necessary configuration for power-down mode. If some PIO outputs need to be
maintained during power-down, then some retention must be programmed in this mode.

Wake-up from power-down mode

The part goes through almost the whole start-up process when the wake-up event occurs.

* The PMU will turn on the internal on-chip voltage regulators and the DCDC converter
® Optionally the 32 MHz XTAL will be enabled
* Except for some registers in the PMC, all registers will be in their reset state.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 39 of 350

NXP Semiconductors U M1 1 1 38

5.3.6

5.3.6.1

5.3.6.2

5.3.6.3

JIN5189

Chapter 5: Power Management

Deep power-down mode

In deep power-down mode, power and clocks are shut off to the entire chip with the
exception of the always on controllers and, if enabled, the 10 cells.

During deep power-down mode, the contents of the SRAM and registers are not retained.
All functional pins are tri-stated in deep power-down mode as long as chip power supplied
externally. The functional pins can also be inputs and configured to cause a wake-up from
deep power down.

Power configuration in deep power-down mode

Deep power-down mode has no configuration options. All clocks, the core, and all
peripherals are powered down. If required, the BODVBAT can be enabled in deep
power-down state, as long as power is supplied to the device.

Programming deep power-down mode

See Chapter 11 “Power Control API” for information on entering deep power-mode using
the Power Control API.

Wake-up from deep power-down mode

Wake-up from deep power-down can be accomplished via the reset pin, NTAG FD and pin
interrupt. When the wake-up event occurs, the part goes through the entire reset process
when the wake-up event occurs:

¢ The PMU will turn on the on-chip voltage regulator, DCDC converter, necessary
clocks and proceed trough the start-up sequence.
* All registers will be in their reset state.

* CPU will start executing boot code when it is released from reset.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 40 of 350

UM11138

Chapter 6: Clock Distribution
Rev. 1.4 — June 2020 User manual

6.1 Introduction

This chapter provides an overview of the system level clock architecture,
including the clock generation, division multiplexing, gating and distribution for
this device.

6.2 Clock architecture

The main block of the clock architecture is the CLK_GEN. It receives all the clock sources
from the external pads, the PMU and the RADIO. It also generates the clock inputs for all
the digital blocks.

The clock sources are described in Section 6.3 “Clock generation (CLK_GEN) module”.

The SYSCON block provides a location for programming all the system clock controls
(enables, mux selectors, gating controls).

system_ahb_clk
64 e

FLEX_I2S_MCLK_PAD_IN .
5 periph_clk

32 kHz XTAL OSC

High Speed
FRO FRO32KHZ .

FRO1MHZ

FRO12MHZ

FRO32MHZ

FRO48MHZ

32MHZ XTAL OSC

¥

Controls, Selects, Enables

Fig 6. Clock generation high level diagram

6.3 Clock generation (CLK_GEN) module

The CLK_GEN block has multiple input clocks that can be selected as the root clock of the
system and peripheral clock outputs and respective clock trees. The following table lists
the input clock sources:

JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 41 of 350

NXP Semiconductors

UM11138

Chapter 6: Clock Distribution

Table 9. Clock description
Clock Frequency Source Description
FRO_12MHz 12 MHz PMU Derived from the 192 MHz FRO.
FRO_32MHz 32 MHz PMU Derived from the 192 MHz FRO.
FRO_48MHz 48 MHz PMU Derived from the 192 MHz FRO.
FRO_1MHz 1 MHz PMU Used by the PMC (power management block)
FRO_32KHz 32 kHz PMU Used in power down modes and for RTC
XTAL_32MHz |32 MHz Radio Mainly used by the Radio, and also a source for main_clk
XTAL_32KHz 32 kHz PMU To timers and 32 kHz source of several blocks (USART, LSPI, PMC, etc)
MCLK_IN 2 MHz PIO The MCLK input function, when it is connected to a pin by selecting it in the
(Max) IOCON block. This clock is for DMIC only.
The clock source for the registers and memories is derived from main clock. The main
clock can be selected from the sources shown in Figure 7. The main clock, after being
optionally divided by the MAINCLK Divider clocks the core, the memories, and the
peripherals (register interfaces and peripheral clocks).
All the control registers (indicated in blue) are in the system configuration (SYSCON)
block.
FRO_12MH SOLKIES 32 x CLK N
_ z AHBCLK[63:32] X '
000 Glitch Free Gatings
32MHz XTAL OSC 010 switching SYSTEM
—_—>) AHBCLK[63:1]
SYSTEM sysTem AHBCLKCTRLIBTOL oy pyocks helk clocks
FRO32MHz | 114 |_main_clk | MAINCLK | AHBCLK AHBCLKI31] 739y CLK
d Divider ” > Gatings | >
FRO_48MHz 100 A
: SYSTEM AHBCLK|O
AHBCLKDIV[7:0] AHBCLKCTRLO[31:1] SRy e free[]
/(There are restrictions on running hclk,
the options available for Frequency measure
Main Clock Select main clock select and
MAINCLKSEL[2:0] divider settings: FRO
12M, 24M, 32M, 48M
and XTAL16M, 32M are
supported
Fig 7. main_clk generation and selection

JIN5189

The Main Clock Select and asynchronous peripheral bridge (APB) clock select muxes are
implemented with glitch-free logic. All the other clock muxes described in this chapter
cannot be considered as glitch-free, thus it is necessary to pay attention during clock
switching. All the dividers can be halted and restarted during clock switching, to provide a
glitch free output. During the boot sequence, main_clk and SYSTEM AHBCLK are
configured to operate at 12 MHz with the clock sourced from the FRO_12MHz signal.

The 32 MHz and 32 kHz clock sources are also internally muxed, and then used as clock
sources for several peripherals. The default source is the FRO option for the two clock
muxes. The muxes are shown below:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 42 of 350

NXP Semiconductors

UM11138

_FROSaWHz |10 0SCIAMOLK

32MHz XTAL OSC 1

_ >

32MHz Clock Select
OSC32CLKSEL]0]

Fig 8. 32 MHz clock sources internal muxing

FRO_32KHz

—>0

32KHz XTAL OSC 1

-

32KHz Clock Select
OSC32CLKSEL[1]

Fig9. 32 kHz clock sources internal muxing

OSC32KCLK

Chapter 6: Clock Distribution

All the division and/or gating features described in this chapter are provided at CLK_GEN
level. Each IP block may provide additional clock control related logic, which is discussed

in the related block-specific chapters.

Next pictures show the details of the clock muxing and gating for each clock generated in
CLK_GEN block. From reset the clocks are disabled and the clock gate or clock divider

blocks.

{

APB Clock Select
ASYNCAPBCLKSELA[1:0]

Fig 10. APB clock generation

JIN5189

All information provided in this document is subject to legal disclaimers.

—»TIMEROCLK
main_clk —»TIMER1CLK
00 Glitch Free
switching .
39MHz XTAL OSC ASYNCAPBCLKCTRL[2:1]
01 CLK APBCLK Free running aclk
FRO_32MH Gating » ToAPB Bridge
_ z A h
» 10 ‘ (Asynchronous)
FRO_48MHz .| 14 | ASYNCAPBCTRL[O]

© NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020

43 of 350

NXP Semiconductors U M1 1 1 38

Chapter 6: Clock Distribution

main_clk SYSTICKCLK| ___ SYSTICKCLK
Divider to CPU

SYSTICKCLKDIVI[7:0], [29], [30]

TRACECLK TRACECLK to
Divider » debug_access
then CPU

TRACECLKDIV[7:0], [29], [30]

Fig 11. CPU SYSTICK and TRACECLK clock generation

main_clk .1 000
32MHz XTAL OSC > 001
Not support SPIFICLK SPIFICLK To Quad-SPIFI
»/ 010 ™1 pivider v
Not support 011
« None » = 1XX SPIFICLKDIV[10], [29], [30]

Quad SPIFI Clock Select
SPIFICLKSEL[2:0]

Fig 12. SPIFI clock generation

CLK_32KHz
CLK Gatin,_> To CLK32K of USART 0 & 1,
LSPI O & 1, PMC
0SC32KCLK T » PMC,
w;o\‘ SYSCON. MODEMCTRLI[9] frequency measure
32 kHz XTAL OSC 1
A RTC RTC1HZCLK
— Divider
T By 32768 250usec
delay >
32 kHz Clock Select To RTC
OSC32CLKSEL[1] RTC Dividef RTC1KHZCLK

RTCCLKDIV[4:0], [29], [30]

Fig 13. RTC and 32 kHz clocks selection

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 44 of 350

NXP Semiconductors

UM11138

Chapter 6: Clock Distribution

FRG Clock Select
FRGCLKSEL[1:0]

Fig 14. USART clocks selection

0OSC32MCLK 00
main_clk \ >
> 00 FRO_48MHz 01
0OSC32MCLK >
> (01 FRG FRG_CLK _[1(—jUSARTCLK
| —
FRO_48MIHz to USART 0 & 1
- > 1 O « None » 11
« None »
> 11 /
/ FRGCTRL[15:0]
T USARTO & 1 Clock Select

USARTCLKSEL[1:0]

32MHz XTAL OSC RNG CLKO
CLK Gating = RNG
RNGCLKCTRL[0]
FRO_32MHz RNG_CLK1
CLK Gating RNG
RNGCLKCTRLI0]
Fig 15. RNG clocks selection and gating
32MHz XTAL OSC
>0
/2 ZIGBEECLK
« None » 4 to ZigBee and
radio controller RFP
MODEMCLKSEL[0]
Fig 16. Zigbee/Thread clock selection
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

45 of 350

NXP Semiconductors

UM11138

main_clk

32KHz XTAL OSC
FRO_32KHz
32MHz XTAL OSC
« None »

FRO_48MHz

FRO_1MHz

« None »

Fig 17. CLKOUT selection

000

001

010

011
100

101

110
11

Clock Out Select
SYSCON.CLKOUTSEL[2:0]

Chapter 6: Clock Distribution

CLKOUT
CLKOUT

—

Divider

CLKOUTDIV[3:0], [29], [30]

OSC32KCLK W

\ 4

« None » R 01
»

« None »
|10
»

« None »
|11

/

Fig 18. WKT clock selection and gating

WKTCLK[1:0]
2xCLK > To WKT

Gating

Clock for timer 0

and timer 1

WKT_CTRL[3:2]

WKTCLKSEL[1:0]

JN5189 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020

46 of 350

NXP Semiconductors U M1 1 1 38

Chapter 6: Clock Distribution

main_clk 000
OSC32KCLK 001
FRO_48MHz | 010

MCLK_IN | 011

DM!C_CLK DMICCLK to DMIC

FRO_1MHz 100 Divider
FRO_12MHz |44 | DMICCLKDIV] 7 :0], [29], [30]

« None » 111

DMIC CLK Select
DMICCLKSELJ[2:0]

Fig 19. DMIC clock selection

The DMIC IP can receive an external clock (MCLK_IN), as shown in Figure 19 “DMIC
clock selection”. This option is provided to have the ability to synchronize the DMIC
operation to a clock linked to the audio sub-system.

OSC32MCLK
» (00

OSCzReLK WDT CLK to WDT
- o
»| 01 WD.T.CLK

FRO_1MHz Divider
»|10
«None » y WDTGLKDIV[7:0], [29], [30]

Windowed WDT Clock Select WDTCLKSEL[1:0]

Fig 20. WDT clock selection

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 47 of 350

NXP Semiconductors U M1 1 1 38

Chapter 6: Clock Distribution

OSC32MCLK

\ 4

FRO_48MHz
— PWM CLK to PWM

\ 4

« None »

\ 4

PWM Modulator Clock Select
PWMCLKSEL[1:0]

Fig 21. PWM clock

0OSC32MCLK 00

e
FRO_48MHz 01
_ > IRCLK to IR Blaster
IRQLK
« None » 11 DIVIder
T —

T

L IRCLKDIV[3:0], [29], [30]
IR Modulator Clock Select

IRCLKSEL[1:0]

Fig 22. IR Blaster clock

0OSC32MCLK 00
_

FRO_48MHz 01 SPICLK to SP1 0 & 1

3
>

\4

« None » 11
—>

SPI0 & 1 Clock Select
SPICLKSEL[1:0]

Fig 23. SPICLK selection

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 48 of 350

NXP Semiconductors U M1 1 1 38

Chapter 6: Clock Distribution

0OSC32MCLK 00

FRO_48MHz | (4

_ 12CCLK

tol2C0&1&2
« None » 11
—_—
12C0 & 1 Clock Select
12CCLKSEL[1:0]

Fig 24. 12C clocks

32MHz XTALOSC | (33
B s

FRO_12MAz 01 ADCCLK ADCCLKA CLK
sync

Divider To ADC

« None » 1
—_—

ADCCLKDIV] 2 :0], [29], [30]

ADC Clock Select
ADCCLKSEL[1:0]

Fig 25. ADC clock generation

6.3.1 Clock outputs

Next table lists all the output clocks generated by the CLK_GEN module, relative sources,
division factor(s) and clock gating support availability:

Table 10. Clock outputs

Clock Source Division ‘ Gating ‘ Descriptions
system_ahb_clk[63:1] main_clk[!l | Yes To all blocks hclk clocks
system_ahb_clk[0] main_clkl!l 0| No To CPU, free-running hclk and frequency
measurement
system_async_vpb_clk All inputs for None Yes Free running aclk (to asynchronous APB
main_clk + XTAL bridge)
32M + FRO32M +
FRO48M
SYSTICKCLK main_clk 1:256 No To SYSTICK clock
TRACECLK main_clk 1:256 No To TRACECLK
SPIFICLK main_clk 1:4 No To Quad SPI
XTAL32M
CLK_32KHz FRO32K None Yes To CLK32K of USART, LSPI, PMC, frequency
XTAL32K measurement
RTC1HzCLK FRO32K By 32768 ‘Nol2l To RTC
XTAL32K
RTC1KHzCLK FRO32K 1:32 Nol2l To RTC
XTAL32K
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 49 of 350

NXP Semiconductors

UM11138

Table 10. Clock outputs

Chapter 6: Clock Distribution

Clock Source Division
USART_CLK main_clk None

0SC32M
FRO48M
FRGCLK

’Gating ’Descriptions
No To USART 0 and 1

RNG_CLKO XTAL32M None

Yes

RNG_CLK1 FRO32M None
ZIGBEE_CLK XTAL32M 12

Yes
No

CLKOUT main_clk 1:16
XTAL32K
FRO32K
XTAL32M
FRO48M
FRO1M

No

WKTCLK]1:0] XTAL32M None
DMICCLK main_clk 1:256
XTAL32K
FRO32K
FRO12M
FRO48M
FRO1M

MCLK_IN

Yes To wakeup timers
No

WDTCLK FRO32K 1:256
FRO32M
XTAL32K
XTAL32M
FRO1M

No

PWMCLK XTAL32M None
FRO32M
FRO48M

No

IRCLK XTAL32M 1:16
FRO32M
FRO48M
ADCCLK XTAL32M 1:8
FRO12M

No

vNo

12CCLK[1:0] XTAL32M None
FRO32M
FRO48M
SPICLK[1:0] XTAL32M None
FRO32M
FRO48M
CONTROLLED_FRO1MHz |FRO1M None

No

vNo

'Yes vTo Frequency Measure

CONTROLLED_32MHz XTAL32M None
XTAL_OSC

Yes To Frequency Measure

JN5189 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020

50 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

6.3.2

6.3.2.1

6.3.2.2

Chapter 6: Clock Distribution

[1] Frequency and division factors restricted to the following final system clock frequencies: FRO12MHz
(Default CPU boot), FRO 16MHz, FRO 24MHz, FRO 32MHz, FRO48 MHz, XTAL 32MHz, XTAL16MHz.

[2] The RTC clock can be gated within the RTC module.

Clock enable and switching

Clock switching during active mode

All the clock gating logic and clock dividers are glitch-free (safe). MAINCLKSEL and
ASYNCAPBCLKSEL muxes are safe too. This means that the system clock can be safely
switched in active mode.

All the remaining clock muxes described in this chapter cannot be considered glitch-free,
meaning that every time a clock switching is needed, a safe procedure must be used.

Two different situations can be identified:
Case 1) A clock divider is available in CLK_GEN (i.e. for SPIFI):

1. Disable SPIFI clock divider, by writing “1” to the SYSCON_SPIFICLKDIV[HALT]

2. Set SPIFI source clock by writing the selected value in SYSCON_SPIFICLKSEL
register

3. Sets SPIFI clock divider value by writing the selected value to the
SYSCON_SPIFICLKDIV[DIV]

4. Reset SPIFI clock divider by writing “1” to the SYSCON_SPIFICLKDIV[RESET]

5. Release the Reset on the clock divider by clearing the
SYSCON_SPIFICLKDIV[RESET]

6. Enables SPIFI clock divider (clear the SYSCON_SPIFICLKDIV[HALT])
Case 2) No clock divider available in CLK_GEN (i.e. I2C)

As the clock mux is not glitch-free, and no divider with HALT and RESET features is
available, if the application requires clock switching during activity, the safe procedure is:

1. Put the peripheral under reset, by using the corresponding bitfield of
SYSCON_PRESETCTRLSETO and SYSCON_PRESTCTRLSET1 registers, which
are described in Chapter 10 “System Configuration (SYSCON)".

2. Set the peripheral source clock

3. Release the reset by clearing the peripheral reset bit by using the corresponding
bitfield of SYSCON_PRESETCTRLCLRO and SYSCON_PRESETCTRLCLR1.

This procedure is also recommended for peripheral initialization.

Clock selection at power-up and initialization

At power-up, the hardware boot is managed by the PMC state machine. It enables the
High Speed FRO, and after the power-up of analog blocks and applying trim values from
efuse, it releases the CPU reset.

At the software boot entry point:

¢ All the clock muxes take the reset value, meaning that the main_clk is connected to
high speed FRO(see SYSCON_MAINCLKSEL register).

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 51 of 350

NXP Semiconductors U M1 1 1 38

6.3.2.3

Chapter 6: Clock Distribution

¢ All the AHB clocks are gated, except those to the CPU, ROM and FLASH.
Then the boot code:

* Enable clock to SRAMO, SRAM1 and the Flash (by writing a 1 to the corresponding
SYSCON_AHBCLKCTRLO bitfields) (gating is removed)

At CPU boot, the system clock is FRO12MHz.

When leaving the boot (jump to the first instruction of the application), all the clock settings
have their reset values, excepts CPU, ROM Flash, SRAMO and SRAM1. It means that the
application needs to select and enable the needed clocks for peripherals, by following the
safe procedure(s) described in Section 6.3.2.1 “Clock switching during active mode”.

The system clock frequency needs to be adjusted by the application to meet best
compromise between power consumption and product performance requirements.

Wake-up from low-power mode

When going to power down mode, the system clock frequency is switched back to 12 MHz
(just before going to power down) thus the initial phase of the wake up sequence is
performed at 12 MHz.

The system clock frequency is switched back to application frequency at the end of the
wake-up phase (by the ROM code)

When waking up from a low-power mode, the Sleep controller and the PMC handle the
wake-up sequence. All the blocks which are powered-off are automatically reset by the
Sleep Configuration. No action is required by the software.

In addition, in Deep Sleep and Power Down modes, the clock gating and muxing
configuration are kept as SYSCON is still powered.

The COMMO power domain can be optionally switched on or off, according to the
application needs. If it is switched OFF, then the PMC/Sleep controller will not handle the
recovery / re-initialization procedure for it => the software must ensure that the COMMO
switched-off blocks are reset at wake-up.

6.4 Clock control software functions

Table 11 shows the clocks that can be controlled using the software APls. Clocks enabled
by default should not be altered. Clocks managed by the radio stack software are not
shown in this table.

Table 11. Clock sources controllable by software APIs

Clock Name Description Enabled by
Default?
kCLOCK_SramO The clock for SRAM controllerO, for SRAM blocks SRAMO to SRAM7 Yes
kCLOCK_Sram1 The clock for SRAM controller1, for SRAM blocks SRAM8 to SRAM11 Yes
kCLOCK _Spifi The clock for the Quad SPI Flash controller No
kCLOCK _InputMux The clock for the Input Mux No
kCLOCK_IOCON The clock for the IOCON module No
kCLOCK_Pint The clock for the Pin Interrupt (PINT) No

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 52 of 350

NXP Semiconductors

UM11138

Chapter 6:

Clock Distribution

Table 11. Clock sources controllable by software APIs
Clock Name Description Enabled by
Default?
kCLOCK_Gint The clock for the Group Interrupt (GINT) No
kCLOCK Dma The clock for the DMA No
kCLOCK Is07816 The clock for the ISO7816 No
kCLOCK_WdtOsc The clock for the Watchdog timer No
kCLOCK_Rtc The clock for the RTC No
kCLOCK_Analnt The clock for the Analog Interrupt Controller No
kCLOCK_WakeTmr The clock for the Wake up timers No
kCLOCK_Adc0 The clock for the ADC Controller No
kCLOCK_Usart0 The clock for the USARTO No
kCLOCK_Usart1 The clock for the USART1 No
kCLOCK _12c0 The clock for the 12C0 No
kCLOCK I2¢1 The clock for the 12C1 No
kCLOCK_Spi0 The clock for the SPI0O No
kCLOCK_Spi1 The clock for the SPI1 No
kCLOCK _Ir The clock for the Infra Red No
kCLOCK_Pwm The clock for the PWM Yes
kCLOCK_Rng The clock for the Random Number Generator No
kCLOCK 12¢c2 The clock for the 12C2 No
kCLOCK_Aes The clock for the AES No
kCLOCK_DMic The clock for the DMIC No
kCLOCK_Timer0 The clock for the TimerQ No
kCLOCK_ Timer1 The clock for the Timer1 No
kCLOCK_Gpio0 The clock for GPIO Yes
kCLOCK_Sha The clock for Hash-Crypt peripheral No
kCLOCK_MainClk The clock used as MAIN_CLK Yes
kCLOCK_CoreSysClk |The clock attached to MAIN_CLK Yes
kCLOCK_BusClk The clock used on the internal AHB bus Yes
kCLOCK_Xtal32k The external 32kHz crystal No
kCLOCK_Xtal32M The external 32MHz crystal No
kCLOCK_Fro32k The 32kHz clock from the Free Running Oscillator (FRO) No
kCLOCK_Fro1M The 1MHz clock from the Free Running Oscillator (FRO) Yes
kCLOCK_Fro12M The 12MHz clock from the Free Running Oscillator (FRO) Yes
kCLOCK_Fro32M The 32MHz clock from the Free Running Oscillator (FRO) Yes
kCLOCK_Fro48M The 48MHz clock from the Free Running Oscillator (FRO) Yes
kCLOCK_ExtClk The clock that can be sourced from PIO19 No
kCLOCK_WdtClk The Watchdog Timer Clock No
kCLOCK _Frg The Fractional Rate generator (FRG) that can be used with the USARTS No
kCLOCK_CIkOut The clock that can be used to drive PIO17 No
kCLOCK_Fmeas The clock for frequency measurement Yes
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 53 of 350

NXP Semiconductors U M1 1 1 38

Chapter 6: Clock Distribution

The previous section showed how most blocks have options on the clock that can be used
for the block; i.e. there are multiple clock sources. These are managed within the software
using the definition provided in fsl_clock.h

For example, the SPI blocks can take their clock source from one of 2 locations. These
are the 32 MHz clock (that can by derived from the 32 MHz crystal or the 32 MHz free
running oscillator) and the 48 MHz free running oscillator. On this block there is also the
option to switch the clock off. So, within fsl_clock there defines 3 clock sources:

* kOSC32M_to_SPI_CLK

* kFRO48M_to_SPI_CLK

* kNONE_to SPI_CLK
To select one of these clock sources use:
* CLOCK_AttachClk (kFRO48M to SPI_CLK);

In a similar manner, the MAIN_CLK has several sources and so the following definitions
have been created:

* kFRO12M_to_MAIN_CLK

* kXTAL32M_to_MAIN_CLK

* kFRO32M_to_MAIN_CLK

* kFRO48M_to MAIN_CLK

One of these can be selected using: CLOCK_AttachClk (kFRO12M_to_MAIN_CLK);

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 54 of 350

UM11138

Chapter 7: Reset, Boot and Wakeup

Rev. 1.4 — June 2020 User manual

7.1 Introduction

The JN5189(T)/UJN5188(T) device is provided with the following reset sources:

Table 12. Reset

Reset Type Description

Voltage Resets System Power-On-Reset (POR)

External Resets External Pin reset (RESETN)
Wake-up 10 Reset

Internal Resets Watchdog Timer Reset

Arm System Reset
SW Reset
Debug Reset TRSTN

Each reset source has a corresponding bit in the PMC_RESETCAUSE register, located in
the PMC. This information can be used to take appropriate action when coming out of a
reset.

7.2 Reset
Asserting a reset to the device, a core, or a peripheral provides a way to start processing
from a known set of initial conditions. On de-assertion of a system level reset source, the
on-chip regulator is in full regulation and system clock generation is from an internal
source. When the device exits reset, the boot core performs the following actions:
* Read the initial Stack Pointer (SP) from vector-table at offset 0x0000_0000
* Read the initial Program Counter (PC) from vector-table at offset 0x0000_0004
* Set the Link Register (LR) to OXFFFF_FFFF
After a system level reset, the on-chip peripherals are disabled, the non-analog /O pins
return to their default disabled configuration, and the analog I/O pins return to their default
analog function configuration.
7.2.1 System Power-On Reset (POR)
The POR voltage monitor is used to ensure that the voltage applied to the system is high
enough for analog modules such as the bias circuits and low voltage monitors to operate
correctly. When voltage is initially applied to the device or when the supply voltage drops
below the Power-On Reset re-arm voltage, the POR monitor asserts POR to the device.
7.2.2 External reset sources

JIN5189

External system resets are provided so that the device can be reset or awakened from
very low-power states. This allows the user to start the device at the correct time from a
known state. The external system resets available in this device are described in the
following sections.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 55 of 350

NXP Semiconductors U M1 1 1 38

7.2.21

7.2.2.2

7.2.3

7.2.31

7.2.3.2

7.2.3.3

7.2.4

JIN5189

Chapter 7: Reset, Boot and Wakeup

External Pin Reset

The RESETN is a dedicated pin on this device. This pin is open drain and has an internal
pull-up. Asserting RESETN wakes the device from any mode.

Wake-up 10 Reset

Some GPIOs can cause a wake-up from low-power mode, if configured the
PMC_CTRL[WAKEUPRESETENABLE]. When waking up from deep power-down mode,
a wake-up event from 10s causes a general reset. In power-down state, the IO can cause
a wake-up event, and also a reset but this is not recommended, as at wake-up from
power-down mode, the PMC handles a clean reconfiguration of the blocks that are
switched-off.

Internal reset sources

Internal system resets are provided so that the device can be reset when certain
erroneous conditions are detected. This allows the device to reset a portion of the device
or the entire device to recover from the erroneous conditions. The internal system resets
available in this device are described in the following sections.

Watchdog Timer Reset

The WDT monitors the operation of the system by receiving periodic communication from
the software. This communication is generally known as servicing or refreshing the
Watchdog. If this periodic servicing does not occur, then the Watchdog issues a system
reset.

Software Reset

The software can reset a specific peripheral by writing into its corresponding bit field of the
SYSCON_PRESETCTRLO and SYSCON_PRESETCTRLA1 registers for AHB peripherals
and into the ASYSCON_ASYNCPRESETCTRL register to reset the peripherals attached
to the async APB bridge. Writing a “1 asserts the reset.

It is also possible to have a chip SW reset, by using the
ASYNC_SYSCON[SWRESETCTRL] and PMC_CTRL[SWRRESETENABLE] fields.

Arm System Reset
An Arm System reset can be generated by the CPU.

Reset sources summary

Next table summarizes the different reset sources and their effect on all the blocks.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 56 of 350

UM11138

Chapter 7: Reset, Boot and Wakeup

NXP Semiconductors

Table 13. Reset outputs from RST_GEN

Analog Digital
i3
o
o
0
(7]
o
(3]
(%)
o (1}
o |
£ 3
S [)
) T
© [+*]
s < |
T e <
%) e T a
=12 |5 |8 (25
2 T |8 |2 |3 |5
— S & 8 5 T o
Q. % o @® o .g 7))
5 3 |2 g e |5 |E|E |5 |&
T = o < - (o] [T (o] = S o qh, 2 (3]
5 & 5 & x X E & B E 2 8 5 3§
o 2 > & = N ¥ N E N g8 E 2 & %5 09
513131831818 (2|2 &g 2 |E|5|= 2|22
8 @ o @ @& 9 8 &8 8§ 2 2 ¢ § 5 2 T A
Power on reset (POR) Y Y Y |Y Y Y Y Y Y Y |Y Y |Y Y |Y Y Y
External pin reset Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Software reset Y |y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |Y
Watchdog timer reset Y |Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Arm system reset N N N N N N N Y N N N Y Y N N Y |N
Wakeup 1O reset Y N N Y Y Y Y Y Y Y Y Y Y Y N Y Y
Brown out detector Y N N Y Y Y Y Y Y Y Y Y Y Y N Y Y
(BOD) reset
[11 Y:Yes; N: No

7.2.5 Reset management architecture

The previously described reset sources are combined and synchronized by the PMC, in
the PMC reset block, as shown in Figure 26.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Rev. 1.4 — June 2020 57 of 350

JIN5189

User manual

NXP Semiconductors

UM11138

Chapter 7: Reset, Boot and Wakeup

PAD RESETN

wakeup_io_reset_ena

swr_reset
[SWRESETCTRL

VECTKEY=0x05FA]

swr_reset_ena

wdt_reset L—

wdt_reset_ena ——

wakeup_io_reset ||

ICRESETREQ=1 and

“1" ror

reset_n_sync

reset_.n |"

pad_reset_n

reset_n_sync

wdt_reset_n_sync

}pmc_rs)

E]
g
2%
e
o
2
g

reset_n_sync

wakeup_io_reset_n_sync

|
g
e
o
<l

reset_n_sync

swr_reset_n_sync

E]
g
3e
o
S

Fig 26. PMC reset block

The PMC logic directly generates the reset signals for the Modem and the Efuse blocks,
while the reset inputs to all the remaining peripherals are managed by the Reset
Generator (RST_GEN) block, as shown in the next high-level blocking diagram.

Reset
sources

- Reset
factory

Efuse

Modem

ASYNC SYSCON

1111

resets

SYSCON

N
G e

1l

Digital resets

RST_GEN [:> | toinfra
peripherals

'

SLEEP_CON

Fig 27. Reset management structure

JN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev.

1.4 — June 2020 58 of 350

NXP Semiconductors U M1 1 1 38

7.3 Boot

Chapter 7: Reset, Boot and Wakeup

The RST_GEN receives reset requests from different sources, it combines and
synchronizes them and generates the resets for most digital blocks and peripherals.

The SLEEP Controller block must take over the control of CPU and peripherals resets at
wake-up from power down and deep power down modes. This is achieved by combining
at system level the reset sources from RST_GEN to the reset sources from SLEEP_CON.
Each peripheral block can be reset independently by the SYSCON registers.

JIN5189

7.31

The device is provided with on-chip boot ROM, containing the Boot Loader. The boot code
runs when the processor comes out of reset and is responsible for;

* Configuring processor and chip settings (operating mode, processor stack pointer)

¢ Initializing the application's variable space

* Jumping into the application

It supports also ISP (In-System Programming) access via USART.

Boot modes

The boot mode can be selected and is influenced with different settings and inputs, from
external pins and values stored in the flash:

* Flash settings

— N-2 page: SWD_DIS: 0 for SW to enable SWD, 1 for SW to disable SWD;
JTAG_DIS: 0 for SW to enable JTAG, 1 for SW to disable JTAG

— pFlash_HardwareTestModeEnable enable; ISP access level
¢ DIO4 and DIOS5, allow start-up mode to be specified

— DI0O4=0, DIO5=0: Hardware test mode

— DIO4=1, DIO5=0: ISP

— DIO4=x, DIO5=1: Normal boot

There is further information on the SYSCON_CODESECURITYPROT write-once register,
used to enable or disable JTAG and SWD, in Chapter 10 “System Configuration

(SYSCON)".

During startup, the boot code reads the state of DIO4 and DIO5. From reset, these I0s
have internal pull-up resistors and hence they would both be read as high state. To ensure
that, a start-up mode other than normal boot mode is entered, DIO4 and DIO5 must be
held low for at least 3 ms after reset is de-asserted. For normal boot mode, they can be
left un-asserted during this time. It is not recommended to use DIO4 and DIOS for any
other signal unless the signal will revert to being high during reset. Otherwise it is possible
that a resetting or waking device may enter the hardware test mode or ISP mode in error.

The CPU clock defaults to 12 MHz after reset, and the boot code runs at this speed.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 59 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

7.3.2

Chapter 7: Reset, Boot and Wakeup

Table 14. Boot modes
Mode Flash Boot SW Actions

— |Hardware test mode disable

() 2]

< w @ |8

o o o|)

© o = g

o o (7)) -
Hardware test 0 0 — — Initialize flash
mode requested, Loop forever
denied

Do not enable SWD or JTAG

Hardware test 0 0 A B 0 Initialize flash
mode requested, If A=0, enable SWD
allowed

If B=0, enable JTAG, else disable it
Sit in loop forever

Normal ISP 1 0 A B — Initialize flash

If A=0 enable SWD

If B=0, enable JTAG, else disable it
Enter ISP mode

Normal run — 1 A B — Initialize flash

If A=1, disable SWD

If B=0, enable JTAG, else disable it
Find and run application

Table 14 shows the possible boot modes. hardware test mode gives a method for allowing
control of the device with a debugger, typically this mode would be available during
application or product development. After product development, this mode is disabled by
setting Flash fields SWD_DIS and JTAG_DIS.

The JTAG option is shown here for completeness and only gives a route for internal test
features; it is independent of the SWD debug function. For completeness, it should be
disabled before a product is released.

Code protection

The following features are provided to protect the access to the memory:

* SWD and JTAG control

* Configuration of memory protection mechanism (MPU), by the boot code, to minimize
threats such as code injection

At the end of the hardware boot sequence, that is, after the release of the CPU reset, and
just at the start of the ROM boot code execution, the SW checks the value of the
JTAG_DIS field in the flash. The JTAG port, which would only be used for internal test,
would then be disabled if the field is set. Hence, all devices must have this JTAG_DIS field
set to prevent unwanted use of the test port.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 60 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

7.3.3

Chapter 7: Reset, Boot and Wakeup

The boot code checks the F_SWD_DIS flag value (stored in the flash); if this flag is set
then the SWD port must be disabled. The boot code writes a value to the
SYSCON_CODESECURITYPROT register accordingly:

* SWD is enabled if the value written to the SYSCON_CODESECURITYPROT is
correct (= 0x87654320). In that case, PIO12 and PIO13 are configured as SWCLK
and SWDIO (by default during boot).

* SWD is disabled if the value written to the SYSCON_CODESECURITYPROT is
wrong. This will disable the SWD forever, because the register is write once only.

ISP mode is mainly used to allow programming of the device. This mode can be used
during product development; then the device should be locked before a product is
released. Hardware test mode allows access to the device during code development as a
safety route in case of a locked device, this mode should also be locked down after
product development.

Boot process

The following figures show the ROM's boot process of the JN5189(T)/JN5188(T).
Figure 28 shows the boot sequence from a cold start.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 61 of 350

NXP Semiconductors

UM11138

CPU out of reset
Read
protection
settings

Hardware__ Yes

Chapter 7: Reset, Boot and Wakeup

test mode
allowed?

Read, verify

Read, verify

and apply
ROM patch

Y

and apply
trim settings

Y

Search
flash for
application

Application
found?

Relocation
needed?

ata in
restricted
egion?

No

A

Apply MPU
restrictions

Initialise
data and
vector table

Jump to
application
entry point

Fig 28. Boot from cold start

ISP allowed?
No
Remap or
move
application
Erase data in
restricted
region
\i \ \i
‘Dead’ state ISP El.ﬁable SWD,
if allowed
Loop Loop
forever forever

Figure 29 shows the boot sequence from a warm start.

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

62 of 350

NXP Semiconductors U M1 1 1 38

Chapter 7: Reset, Boot and Wakeup

CPU out of reset

Read
protection
settings

Read, verify
and apply
ROM patch

Read, verify
and apply
trim settings

Apply MPU
restrictions

Initialise
vector table

¥

Jump to
application
entry point

Fig 29. Boot from warm start

JIN5189

Some details about the blocks in the previous diagrams:

The protection settings are stored in the “protected data” region of the flash memory
(pFlash), mapped at the address range of 9EC00 - 9EFFF. They contain the ROM patch
and several device configuration data.

The hardware test mode can be requested by setting PIO4 and PIO5 low (as shown in
Table 14 “Boot modes”); there is a field in the pFlash to allow or prohibit this hardware test
mode.

The ROM patch is stored within the pFlash. It is optionally verified by a checksum that the
boot loader calculates and compares to the stored value.

¢ |f the ROM patch is not present, or does not match the checksum, no further action is
taken.

* |f the ROM patch is present and valid, the boot loader performs a jump-and-link to the
entry point of the ROM patch.

¢ |f the ROM patch returns, execution of the boot loader will then continue.

The ROM patch is provided by NXP and configured into the flash before out of factory; this
description is only for information purposes.

Trim settings are programmed during ATE testing and are stored in the N-2 sector of the
flash. These are used to allow software to configure certain functional blocks with
optimum settings to overcome process variations.

Application search: if no valid application is found, the boot loader will jump to the ISP. If
ISP is disabled, the boot loader will go to a "dead" state.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 63 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

7.3.4

Chapter 7: Reset, Boot and Wakeup

The ISP state allows a PC-based programmer application to interact through the USART
port, and request various actions.

ISP can be used at several levels of access:

* Unrestricted (secure or unsecure): normal developer mode
* Write-only (secure or unsecure): allow updates but existing contents cannot be read
* Locked: only allow limited access, with a secure handshake

Note: Secure means that communication with the PC based programmer application are
authenticated; unsecure means no authentication is used.

The default ISP level is unrestricted unsecure access.

See Chapter 38 “In-System Programming (ISP)” for more information.

SWD interface can be enabled if the device is in hardware test mode. This can be used to
allow reprogramming of a device. Generally the application must enable the SWD access,
if debug capability is required.

Protected regions

Near the top of the flash there is a region assigned as 'protected flash', or pFlash. This
holds system settings and configuration data. Some of these fields may need to be
modified to suit that requirements of the application being developed. Software utilities are
provided to allow modification of these fields.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 64 of 350

UM11138

Chapter 8: Power Management Controller and SLEEPCON

Rev. 1.4 — June 2020 User manual

8.1 Introduction

Power modes are handled by the PMC module (power management control) and the
SLEEPCON module (sleep controller).

The PMC organizes and schedules various necessary steps during changes between
power modes: wake-up, active, deep sleep, power-down, deep power-down. It contains
the state machines.

Waking up from low-power modes is controlled by the SLEEPCON module. Wake-up from
IOs are first processed by a dedicated power sub-system module next to the PMC.

Therefore PMC and SLEEPCON work together, but are not active at the same phases.

PMC is configured by its own register interface, while SLEEPCON is configured through
SYSCON.

SYSCON (system controller) is used for configuration of most clocks and resets. It also
acts as a bridge to SLEEPCON. That is, it provides register interface to control
SLEEPCON. See Chapter 10 “System Configuration (SYSCON)” for further details of the
SYSCON functions.

There are many complex interactions between these modules. Software APls in ROM
code and SW reference APls in flash simplify the usage. See Chapter 11 “Power Control
API” for further details of the power control API. By using the power APIs, most of the
configurations for the low-power modes are managed; this removes the need for
understanding many of the registers involved in this implementation.

It is not recommended to access the registers handling power modes directly.

A complete description of registers of PMC and SLEEPCON (subpart of SYSCON
registers) is centralized in another part of this user manual and thus will not be duplicated
here.

Further details of the power modes are provided in the next section.

8.2 Power modes

Power modes are highly configurable.

Some examples of the possible modes are shown in Table 15.:

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 65 of 350

NXP Semiconductors

UM11138

Table 15.

Chapter 8: Power Management Controller and SLEEPCON

Possible power modes and state of power domains

Power modes Power domains
. 2
= =) E ‘S g g g E
S5 B 2 2 B S 2 ¢ & § 37
o ¢ © & [i W w o w = 5
EI ml ol <| 9I 9I E| E| E| E| E I.I-I
£ £ £ & &8 &8 &8 & &8 &8 &8 €&
Active |PM_ACTIVE template On On On [On On On |On On On On |On On
PM_ACTIVE_MIN_REF On On [On [On On On On On On On On On
PM_ACTIVE_RADIO On On On On On On On On On On On On
PM_ACTIVE_SINGLE On On [On [On On On On On On On On On
PM_ACTIVE_DUAL On On On On On On On On ©Ohn On On On
Sleep |PM_SLEEP Modes On On [On [On On On On On On On On On
Deep PM_DEEP_SLEEP template On On On On On On |RET/ RET/ RET/ RET/ RET/ On/
sleep On |On On On Off |Off
PM_DEEP SLEEP REFMIN On On On On On On RET RET RET RET RET Off
PM_DEEP_SLEEP XTAL On On On On On On RET RET RET RET RET Off
PM_DEEP_SLEEP_FULL On On |OnNn |[ONn On On On On On On On On
Power PM_DOWN template RET On On/ |lOn On On RET/ RET/ RET/ RET/ RET/ Off
down /On off off Off Off Off Off
PM_DOWN_REF_MIN Of On Of On On On Off Off Of Of Off Off
PM_DOWN_NTAG Of On |Of On On On |Off Of Off Off Off Off
PM_DOWN_FRO Of On Of On On On Off Off Of Of Off Off
PM_DOWN_XTAL Of On |Of On On On |Off Off Off Off Off Off
PM_DOWN_4K Of On Of On On On Off Off Of RET Off Off
PM_DOWN_16K Of On Of On On On |Of RET RET RET Off Off
PM_DOWN_COM Of On On On On On |Of RET RET RET Off Off
PM_DOWN_ANA_COMP Of On |Of On On On |Of RET RET RET Off Off
PM_DOWN_BODVBAT Of On Of On On On Of RET RET RET Off Off
PM_DOWN_NTAG_16K Of On |Of On On On |Of RET RET RET Off Off
PM_DOWN_FULL_MEM Of On Of On On On RET RET RET RET [RET Off
PM_DOWN_CAL_RET RET On Of On On On Of RET RET RET Off Off
PM_DOWN_FULL RET On ON |On On On Off |[RET RET RET Off Off
Deep PM_DEEP_DOWN Template Off Off Of On On On Off Off Off Of Off Off
ggxﬁf PM_DEEP_DOWN_REF of off Of oOn oOn oOff Off Off off off off oOff
PM_DEEP_DOWN_NTAG Off Off Of On On Off |Of Off Off Off Of Off
PM_DEEP_DOWN_NIO Of Off Of On On On Off Off Of Of |Off Off
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 66 of 350

NXP Semiconductors U M1 1 1 38

Chapter 8: Power Management Controller and SLEEPCON

Table 16. Proposed power modes and state of analog modules

Power modes Analog modules
s 2
© — c
— = (] [} -
o 2 E 3 ? N N N
(=] £ > = o I T N I N
24 o £ |2 ¢ E = x z = T |,
© 8 ® & < o o 5 o =
(&] o o qh; m P) P2 (2] N =]
2 & Q 8§ 8 ¢ 2 4 4 T T 9 < 9
s 28 E g2 8 %z e e g g
O < & B o @ @ X X oL @ o 4 &
Active PM_ACTIVE template On/ On/ On On/ On On |On On/ |On/ On On On/ |On/ On/
Off |Off Off Off |Off Off |Off |Off
PM_ACTIVE_MIN_REF Off |Off |On Off On On |On |Off Off On On On |On |Off
PM_ACTIVE_RADIO Off Off On |Off On On [On On |Off |On |[On On On |On
PM_ACTIVE_SINGLE On On On On On On On [On |On On On Off On |On
PM_ACTIVE_DUAL On On On |[On |[On [On |On |On |On |On |On |Off |On |On
Sleep |PM_SLEEP Modes On/ |On/ |On On/ On [On/ On/ |On/ |On/ |On [On On/ |On/ On/
Off Off Off Off |Off |Off Off Off |Off |Off
Deep |PM_DEEP_SLEEP template On/ |On/ On [On/|On [On [On |On/ On/ |On |On/ On/ On/ On/
sleep Off Off Off Off Off Off |Off |Off Off
PM_DEEP_SLEEP_REF_MIN Off |Off |On Off On On |On |Off Off On Off On |Off |Off
PM_DEEP_SLEEP_XTAL Off |Off |On Off On On |On |Off On On Off Off Off |Off
PM_DEEP_SLEEP_FULL On [On [On On On On [On On On On On On |On |Off
Power PM_DOWN template Off |On/ |Off |Off On On/ On/ |Off On/ Off Off On/ |Off Off
down Off Off | Off Off Off
PM_DOWN_REF_MIN Off Off Off |Off On |Off |Off Off Off Off |Off Off Off |Off
PM_DOWN_NTAG Off |Off |Off Off On Off |Off Off Off Off Off Off Off |Off
PM_DOWN_FRO Off Off Off |Off On |Off Off Off Off Off |Off On |Off |Off
PM_DOWN_XTAL Off |Off |Off Off On Off |Off Off On Off Off Off Off |Off
PM_DOWN_4K Off |Off |Off Off On Off |Off Off Off Off Off Off Off |Off
PM_DOWN_16K Off Off Off |Off On |Off |Off Off Off Off |Off On |Off |Off
PM_DOWN_COM Off Off Off |Off On |Off |Off Off Off Off |Off On |Off |Off
PM_DOWN_ANA_COMP Off On Off |Off On |Off |Off Off Off Off |Off Off Off |Off
PM_DOWN_BODVBAT Off Off Off |[Off On [On |On Off Off Off |Off Off Off |Off
PM_DOWN_NTAG_16K Off |Off |Off Off On Off |Off Off Off Off Off Off Off |Off
PM_DOWN_FULL_MEM Off |Off |Off Off On Off Off Off Off Off Off Off Off |Off
PM_DOWN_CAL_RET Off |Off |Off Off On Off Off Off Off Off Off On |Off |Off
PM_DOWN_FULL Off |On |Off Off On On |On |Off On Off Off On |Off |Off
Deep |PM_DEEP_DOWN Template Off |Off |Off Off On Off Off Off Off Off Off Off Off |Off
gower PM_DEEP_DOWN_REF Off Off Off Off On Off Off Off Off Off Off Off Off Off
own | . |
PM_DEEP_DOWN_NTAG Off Off Off |Off On |Off |Off Off Off Off |Off Off Off |Off
PM_DEEP_DOWN_NIO Off |Off |Off Off On Off Off Off Off Off Off Off Off |Off

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 67 of 350

NXP Semiconductors U M1 1 1 38

Chapter 8: Power Management Controller and SLEEPCON

8.3 Low level drivers APIs

JIN5189

The low level driver APIs provide the way for the application to request a specific power
mode. The APl is then responsible for performing any required configuration and
sequencing to put the device into the required mode. As a developer, it is not necessary to
know the detail of this. However, to give some insight into the operations, the following list
shows the functionality that may be controlled within the API functions.

1.

ok~ w0 D

6.

Set clocks. For example, switch off or lower clock speed, activate FRO to replace
XTAL,

Enable data retention mode in the radio controller

Reset unused modules

Deactivate power domains, to reduce power consumption

Configure LDOs to operate at lower voltage levels when in the low-power mode

Set wake-up conditions: on timer, event on 10s, interrupt from internal modules

The PMC itself will schedule most of these operations, based on settings put in registers.
See Chapter 11 “Power Control API” for further information.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 68 of 350

UM11138

Chapter 9: Nested Vectored Interrupt Controller (NVIC)
Rev. 1.4 — June 2020 User manual

9.1 How to read this chapter

9.2 Features

Available interrupt sources vary slightly with specific JN5189(T)/JN5188(T) device type. A
device with internal NTAG will have an additional interrupt source.

Nested Vectored Interrupt Controller that is an integral part of the CPU.
* Tightly coupled interrupt controller provides low interrupt latency.

* Controls system exceptions and peripheral interrupts.

The NVIC of the Cortex-M4 supports:

— alarge array of vectored interrupt slots.

— 8 programmable interrupt priority levels with hardware priority level masking.
— Vector table offset register VTOR.
Support for NMI from any interrupt (see Section 9.3.2 “Non-maskable interrupt”).

9.3 General description

9.3.1

The tight coupling of the NVIC to the CPU allows for low interrupt latency and efficient
processing of late arriving interrupts.

Interrupt sources

Table 17 lists the interrupt sources for each peripheral function. Each peripheral device
may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may
represent more than one interrupt source. The interrupt number does not imply any
interrupt priority; interrupt priorities are configured within the NVIC.

The interrupt source table shows the name of the defined interrupt handler. Each IRQ is
defined as 'weak'. Naming a function with these names will cause this function to become
the default handler for the interrupt.

See Ref. 1 “Cortex-M4 TRM” for detailed descriptions of the NVIC and the NVIC registers.

Table 17. Connection of interrupt sources to the NVIC

Interrupt |Interrupt source name Interrupt Handler Descriptions

source

number

-14 NonMaskablelnt_IRQn NMI_Handler Cortex-M4 Non Maskable Interrupt

-13 HardFault_IRQn HardFault_Handler Cortex-M4 SV Hard Fault Interrupt

-12 MemoryManagement_IRQn |MemManage_Handler Cortex-M4 Memory Management Interrupt
-11 BusFault_IRQn BusFault_Handler Cortex-M4 Bus Fault Interrupt

-10 UsageFault_IRQn UsageFault_Handler Cortex-M4 Usage Fault Interrupt

-5 SVCall_IRQn SVC_Handler Cortex-M4 SV Call Interrupt

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 69 of 350

NXP Semiconductors

UM11138

Chapter 9: Nested Vectored Interrupt Controller (NVIC)

Table 17. Connection of interrupt sources to the NVIC

Interrupt |Interrupt source name Interrupt Handler Descriptions

source

number

-4 DebugMonitor_IRQn DebugMon_Handler Cortex-M4 Debug Monitor Interrupt

-2 PendSV_IRQn PendSV_Handler Cortex-M4 Pend SV Interrupt

-1 SysTick_IRQn SysTick_Handler Cortex-M4 System Tick Interrupt

0 System_IRQn System_IRQHandler System (BOD, Watchdog Timer, Flash
controller) interrupt

1 DMA_IRQn DMAO_IRQHandler DMA interrupt

2 GINT_IRQn GINTO_IRQHandler GPIO global interrupt

3 IRBlaster_IRQn CIC_IRB_DriverIRQHandler Infra Red Blaster interrupt

4 PINTO_IRQn PIN_INTO_DriverIRQHandler Pin Interrupt and Pattern matching 0

5 PINT1_IRQn PIN_INT1_DriverIRQHandler Pin Interrupt and Pattern matching 1

6 PINT2_IRQn PIN_INT2_DriverIRQHandler Pin Interrupt and Pattern matching 2

7 PINT3_IRQn PIN_INT3_DriverIRQHandler Pin Interrupt and Pattern matching 3

8 SPIFI_IRQnN SPIFI_IRQHandler Quad-SPI flash interface interrupt

9 Timer0_IRQnN CTIMERO_DriverIRQHandler Counter/Timer 0 interrupt

10 Timer1_IRQn CTIMER1_DriverIRQHandler Counter/Timer 1 interrupt

11 USARTO_IRQn FLEXCOMMO_DriverIRQHandler USART 0 interrupt

12 USART1_IRQn FLEXCOMM1_DriverIRQHandler USART 1 interrupt

13 12C0_IRQn FLEXCOMM2_DriverIRQHandler 12C 0 interrupt

14 12C1_IRQn FLEXCOMM3_DriverIRQHandler 12C 1 interrupt

15 SPIO_IRQnN FLEXCOMM4_DriverIRQHandler SPI 0 interrupt

16 SPI1_IRQn FLEXCOMMS_DriverIRQHandler SPI 1 interrupt

17 PWMO_IRQn PWMO_IRQHandler PWM channel 0 interrupt

18 PWM1_IRQn PWM1_IRQHandler PWM channel 1 interrupt

19 PWM2_IRQn PWM2_IRQHandler PWM channel 2 interrupt

20 PWM3_IRQn PWM3_IRQHandler PWM channel 3 interrupt

21 PWM4_IRQn PWM4_IRQHandler PWM channel 4 interrupt

22 PWM5_IRQn PWMS5_IRQHandler PWM channel 5 interrupt

23 PWM6_IRQn PWM6_IRQHandler PWM channel 6 interrupt

24 PWM7_IRQn PWM7_IRQHandler PWM channel 7 interrupt

25 PWMS8_IRQn PWM8_IRQHandler PWM channel 8 interrupt

26 PWM9_IRQn PWM90_IRQHandler PWM channel 9 interrupt

27 PWM10_IRQn PWM10_IRQHandler PWM channel 10 interrupt

28 12C2_IRQn FLEXCOMM®6_DriverIRQHandler 12C 2 interrupt

29 RTC_IRQn RTC_IRQHandler Real Time Clock interrupt

30 NFCTag_IRQn NFCTag_IRQHandler NFC Tag interrupt (Device with internal
NTAG only)

32 ADC_SEQ_IRQn ADC_SEQ_IRQHandler ADC Sequence A interrupt

34 ADC_THCMP_OVR_IRQn |ADC_THCMP_OVR_IRQHandler ADC Threshold compare and overrun
interrupt

35 DMIC_IRQn DMICO_IRQHandler DMIC interrupt

JN5189 All information provided in this document is subject to legal disclaimers.

Rev. 1.4 — June 2020

© NXP B.V. 2020. All rights reserved.

70 of 350

User manual

NXP Semiconductors U M1 1 1 38

Chapter 9: Nested Vectored Interrupt Controller (NVIC)

Table 17. Connection of interrupt sources to the NVIC
Interrupt |Interrupt source name Interrupt Handler Descriptions
source
number
36 HWVAD_IRQn HWVADO_IRQHandler Hardware Voice activity detection interrupt
42 ZIGBEE_MAC_IRQn ZIGBEE_MAC_IRQHandler Zigbee/Thread MAC interrupt
43 ZIGBEE_MODEM_IRQn ZIGBEE_MODEM_IRQHandler Zigbee/Thread Modem interrupt
44 RFP_TMU_IRQn RFP_TMU_IRQHandler RFP Timing Management Unit (TMU)
interrupt
45 RFP_AGC_IRQn RFP_AGC_IRQHandler RFP AGC interrupt
46 1ISO7816_IRQnN ISO7816_IRQHandler ISO7816 controller interrupt
47 ANA COMP_IRQn ANA_COMP_IRQHandler Analog Comparator interrupt
48 WAKE_UP_TIMERO_IRQn |WAKE_UP_TIMERO_IRQHandler Wake up Timer 0 interrupt
49 WAKE_UP_TIMER1_IRQn |WAKE_UP_TIMER1_IRQHandler Wake up Timer 1 interrupt
55 SHA_IRQn SHA_IRQHandler SHA interrupt
9.3.2 Non-maskable interrupt

JIN5189

9.3.3

9.34

The NVIC supports a non-maskable interrupt (NMI) which is an interrupt source that can
not be disabled and is the second highest priority interrupt after the reset interrupt. This
feature is configured by the SYSCON_NMISRC register.

To use the NMI, it is necessary to enable it; it is disabled by default. The source for the
NMI can be any of the interrupt sources already identified in Section 9.3.1 “Interrupt
sources”.

The SYSCON_NMISRC[IRQM40] selects the interrupt source to drive the NMI of the
processor. For instance, setting this to 1 would select the DMA interrupt. The NMI is
enabled for the processor by setting the NMISRC[NMIENM40]. If the NMI interrupt can
cause the CPU to wake from sleep.

Vector table offset

Within the NVIC, it is possible to configure the location of the vector table using the
standard Cortex NVIC registers (SCB->VTOR). This is managed by the boot code.

Interrupt priorities

Each interrupt has a configurable priority; 8 different priority levels are supported. Priority
0 is the highest; this is the default setting. The lowest priority is 7. The priorities are
configured by the NVIC registers of each processor. Therefore, each processor can have
its own settings and priority settings can be set as required by the application.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 71 of 350

UM11138

Chapter 10: System Configuration (SYSCON)

Rev. 1.4 — June 2020 User manual

10.1 Introduction

The system configuration module is used for many different purposes. Located in power
domain "system", it is effective in most power modes: active, sleep, deep-sleep,
power-down. Thus the only power mode which is not supported is deep power-down.

It contains many registers either used for its own purpose or for independent slave
modules: sleep controller (SLEEPCON), reset controller, clock controller, analog interrupt
controller, timers. These latter are described in other chapters of the user manual and thus
will not be detailed further here.

The SYSCON registers are reset by pin reset, watchdog reset, brownout reset, power-on
reset, Arm System reset and software reset.

10.2 Flash remapping

JIN5189

The device provides hardware support for having two different applications, APP_0 and
APP_1 in the flash. In addition, each application area can be optionally divided into two so
that there can be an active and inactive images. This allows for OTA support where a new
image may arrive via the radio and then need to be switched to be the active image at a
certain point. It is also possible to just define one application space and have this divided
into an active and inactive region.

This feature is used by the boot loader and the selective OTA code; it should not be used
by application code.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 72 of 350

NXP Semiconductors U M1 1 1 38

Chapter 10: System Configuration (SYSCON)

10.3 System tick clock

System tick clock is a clock sent to the CPU to serve as a reference for counting delays.
Some calibration information can be provided for even better accuracy.

Two registers are used for this clock, which is derived from main clock: SYSTCKCAL and
SYSTICKCLKDIV.

The System tick timer calibration value can be configured by SYSTCKCAL[CAL] and also
read back from the register within the Cortex STCL, SysTick Calibration value register.
This calibration value is used to indicate the number of system tick clock periods to give a
10 ms period. For example, if the system tick clock period was 5 ps then it would require a
calibration value of 2000 (10 ms/5 ps). See also SYSTICKCLKDIV register.

SYSTCKCAL goes directly to an internal register of Cortex-M CPU, with a minor
re-mapping (e.g. CAL becomes TENMS):

Bits Name Function

[31] NOREF

Indicates whether the device provides a reference clock to the processor:
0 = reference clock provided

1

no reference clock provided

If your device does not provide a reference clock, the SYST CSR.CLKSOURCE bit
reads-as-one and ignores writes.

[30] SKEW
Indicates whether the TENMS value is exact:

0

TENMS value is exact
1 = TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time
clock.

[29:24]- Reserved.

[23:0] TENMSReload value for 10ms (100Hz) timing, subject to system clock skew errors.
If the value reads as zero, the calibration value is not known.

System tick clock comes from main clock, which is set by the MAINCLKSEL register,
divided by a rate which is set by SYSTICKCLKDIV register. Therefore, take care of actual
frequency of main clock to compute SYSTCK[CAL] value.

10.4 Non maskable interrupts

Some regular interrupts can be selected to trigger a non-maskable interrupts. See register
NMISRC for details.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 73 of 350

NXP Semiconductors U M1 1 1 38

Chapter 10: System Configuration (SYSCON)

10.5 Accessing peripherals through internal buses

There are several internal buses within the IC and consequently, some bridges between
these buses.

It is necessary to enable async APB bridge to access async system controller
(ASYNC_SYSCON) and timer modules (CTIMERO and CTIMER1), with the
ASYNCAPBCTRL register. The bridge can be enabled with the software function
CLOCK_EnableAPBBridge().

It is recommended to keep this bridge enabled, but a very small amount of power could be
saved by disabling it, using CLOCK_DisableAPBBridge(), when not required.

For each individual module connected on these buses, accessing its registers requires to
enable its own register clock. This is done through registers AHBCLKCTRLO and
AHBCLKCTRL1 of which all bits are configurable. Alternatively, use AHBCLKCTRLSETO
and AHBCLKCTRLSET1 to enable clocks and use AHBCLKCTRLCLRO and
AHBCLKCTRLCLR1 to disable clocks.

Note, accessing registers which do not have an active AHB clock may stall the bus and
consequently lead to a system failure. Some registers within the device are 'write only’
registers. If software attempts to read a 'write only' register, it may cause an exception or
potentially lock-up the device. Hence, software must not read a 'write only' register.

If a module's clock has been disabled to save power then care is required to ensure that
the clock is re-enabled before any further register accesses are made to the module.

Peripheral modules need to be released from their reset state before being used. This is
done through registers PRESETCTRLO and PRESETCTRL1, where block resets can be
set and cleared. For setting or clearing resets, the PRESETCTRLCLRO,
PRESETCTRLCLR1, PRESETCTRLSETO0 and PRESETCTRLSET1 can be used. The
function RESET_PeripheralReset() should be used to manage the resets of the peripheral
modules.

10.6 Clock selection

JIN5189

Chapter 6 “Clock Distribution” describes the system clocks; these are controlled and
configured by registers in the SYSCON module.

In general, clocks can be enabled, configured with a division ratio, driven with various
sources: FROs, oscillators, etc. See registers *CLKSEL for source selection (If it is
required to disable a clock, then the selection of TESTCLK will result in no clock since the
device is in functional mode.). Each clock divider has its own control register, these
registers are named *CLKDIV. Within these registers it is possible to set the divide ratio.
Also, using the RESET and HALT fields the divider can be stopped and started; by default
it is stopped due to the HALT field being set.

CLOCKGENUPDATELOCKOUT[LOCK] is a protection bit for the 2 sets of registers
above. Writing 1 to this bit prevents writing to registers *CLKSEL and *CLKDIV.

It is recommended to use CLOCK_AttacheCLK. For the SPI, the following clocks are
defined in fsl_clock:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 74 of 350

NXP Semiconductors U M1 1 1 38

Chapter 10: System Configuration (SYSCON)

* kOSC32M_to_SPI_CLK
* kFRO48M_to_SPI_CLK
* kNONE_to_SPI_CLK

Select one of these clock sources using CLOCK_AttachClk (kFRO48M_to SPI_CLK);

10.7 TRNG control

TRNG stands for true random number generation. Within the SYSCON module the
register RNGCLKCTRL[ENABLE] enables input clocks that are used within the TRNG to
generate randomness. In addition, the AHB clock for the random number generator must
be enabled within the AHBCLKCTRL1 register to allow monitoring of entropy creation
(CHI computing) and read back of the random numbers. Since the input clocks to the
TRNG are FRO32M and XTAL32M, those clocks need to be enabled as well.

If any of these clocks are lacking, access to the RNG IP will be blocked, which will lead to
a system failure.

The SDK supports use of the random number generator with the following functions:
status t TRNG GetDefaultConfig (trng config t *userConfig);

status_t TRNG Init (RNG Type *base, const trng config t *userConfig);

void TRNG Deinit (RNG Type *base);

status_t TRNG GetRandomData (RNG Type *base, void *data, size t data size);

10.8 Wake-up interrupts

In order to wake-up from low-power modes, some event sources must be enabled by
registers STARTER*, which are used by module SLEEPCON. These registers are
configured within POWER _SetLowPower() and thus are not expected to be used directly
by end user.

All sources of wake-up listed in STARTERO and STARTER1 registers can be used to exit
deep sleep-mode. But only a subset of them can be used to exit power down mode; they
are: WDT_BOD, USARTO, 12C0, SPI0, RTC, ANA_COMP, WAKE_UP_TIMERO,
WAKE_UP_TIMER1, GPIO (including NFC tag when available in the part).

10.9 PIO retention control

JIN5189

In power down mode (only), some PIO pins may need to be maintained as outputs. Since
most peripherals are powered-off at that time, they cannot drive these outputs directly. A
mechanism is available to latch and maintain current value which is put out on these PIO
pins.

If it is necessary to clamp at least one PIO pin during power down, then it necessary to
perform the following steps:

1. Activate IOCLAMP feature in appropriate IOCON_PIOn registers
2. Set RETENTIONCTRL[IOCLAMP] bit to enable the feature

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 75 of 350

NXP Semiconductors U M1 1 1 38

Chapter 10: System Configuration (SYSCON)

3. Disable peripherals
4. Go to power down mode

After wake-up from power-down, it is necessary to release the clamping to allow for
normal operation. However, to prevent the 10s from being disturbed, it is necessary to
follow this procedure:

1. Wake from power down mode

2. Activate peripherals

3. Disable RETENTIONCTRL[IOCLAMP] bit. This disables the whole clamp function
and so it is not necessary to change the IOCLAMP values within the
IOCON_PION[SSEL] or IOCON_PION[IO_CLAMP].

10.10 Interrupts from analog modules

SYSCON provides registers for analog interrupt controller module. Register
ANACTRL_CTRL controls on how the interrupts from analog interrupt controller module
are used (level, edge, etc).

Same mechanism for interrupts coming from BODs. Registers are ANACTRL_*.

10.11 Additional clock controls

On top of registers used to enable bus clocks of peripherals, SYSCON provides controls
for specific clocks. See register CLOCK_CTRL.

10.12 Low power wake-up timers

JIN5189

The Wakeup Timers provide a low-power timer function that can run in Sleep, Deep Sleep
or Power down modes. Software support of these functions is provided by fsl_wtimer
functions.

There are two low-power timers which can operate independently. The counter can be
programmed with a count value and enabled. The counter decrements until it reaches 0.
At this point, it can create an interrupt or, if the device is in power-down, a wakeup event.
The counter will wrap and then continue decrementing so that software can determine
how long ago the interrupt occurred.

Features:

* Wake timer O has 41 bits
* Wake timer 1 has 28 bits
® Setting start value for timers

— Wake timer 0 can be loaded by WKT_LOAD_WKTO_LSB register and then writing
the 9 most significant bits to WKT_LOAD WKTO0_MSB.

— Wake timer 1 can be loaded using WKT_LOAD_ WKT1 register
— Set start value when the timer is not enabled and then enable the timer
* \Wake timer current counter values can be read

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 76 of 350

NXP Semiconductors U M1 1 1 38

Chapter 10: System Configuration (SYSCON)

— Wake timerQ value can be read through WKT_VAL_WKTO0_LSB and
WKT_VAL_WKTO_MSB registers

— Wake timer1 value can be read through WKT_VAL_WKT1 register

— When reading the wake timers, it is necessary to re-read it until a consistent value
is read twice. This is because a minimal design is used to save power in the
low-power mode and a single read may give a value at the point the count value is
transitioning.

* Enable each timer with WKT_CTRL[WKTO_ENA] and WKT_CTRL[WKT1_ENA]

* Enable clocks for each timer by WKT_CTRL[WKTO_CLK ENA] and
WKT_CTRL[WKT1_CLK_ENA]

* The wakeup timers run on the OSC32K_CLK. The OSC32K_CLK is derived by either
kFRO32K or kXTAL32K. It defaults to kKFRO32K because not all hardware designs
have the 32K crystal fitted. To move the OSC32K_CLK onto the kXTAL32K, add the
following to your clock initialization:

CLOCK_EnableClock(kCLOCK_Xtal32k); // Switch on the crystal

CLOCK_AttachCIk(kXTAL32K_to_OSC32K_CLK); // Drive the OSC32K_CLK from
kXTAL32K_CLOCK

This should give you accurate sleep timings. Note, an external 32.768 kHz crystal
must be fitted for operation of the XTAL32K.

* Each Wake Timer can cause an interrupt to the processor which can be enabled
through the WKT_INTENSET, WKT_INTENCLR and WKT_INTSTAT registers

— Wake timer 0 uses interrupt bit 48
— Wake timer 1 uses interrupt bit 49

Specific interrupt handlers can be declared by overloading the weak function
definitions for the interrupts. In this case WAKE_UP_TIMERO_IRQHandler and
WAKE_UP_TIMER1_IRQHandler.

* Status flag in WKT_STAT to show if the timer has expired. Bit 0 for WKTO timeout and
Bit 1 for WKT1 timeout

— These status bits can be cleared by writing a 1 to the required bit.

* Counter running/enabled status bit is available for each timer:
WKT_STAT[WKTO_RUNNING], WKT_STAT[WKT1_RUNNING].

* The timers can cause wakeup from deep sleep and power down by configuring the
STARTERO[TIMERO] and STARTERO[TIMER1] fields.

* The operation of one timer will not alter the behavior of the other timer.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 77 of 350

UM11138

Chapter 11: Power Control API

Rev. 1.4 — June 2020 User manual

11.1 Introduction

JIN5189

The device has several power domains and low-power modes, as described in previous
chapters. To support software applications running on the device to use the power modes,
a power control API is provided. This supports functionality to configure and enter
low-power modes, identify the cause of a reset or a wake-up, to control the system
voltages and to generate a software reset or an Arm system reset.

In power-down mode, it is possible to keep radio calibration values held in retention
registers. This is a very low-power method for keeping the state of just the results of the
radio calibration operations such that full radio recalibration is not required on power-up.
The activation of this feature is controlled through the power control API.

See Chapter 8 “Power Management Controller and SLEEPCON” for full details of the
power modes. When using the power management software, the user identifies the
required functionality. The software then manages which power mode to use and the
functional blocks that need to be active.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 78 of 350

NXP Semiconductors U M1 1 1 38

Chapter 12: 1/0 Pin Configuration (IOCON)

UM11138

Chapter 12: 1/0 Pin Configuration (IOCON)

Rev. 1.4 — June 2020 User manual

12.1 How to read this chapter

The IOCON block is included on all JN5189(T)/JN5188(T) parts. Registers for pins that
are not available on a specific package are reserved.

JN5189(T)/UN5188(T) package is a HVQFN40 (6x6 mm).

Table 18. Available pins and configuration registers
‘Package ‘Total GPIOs GPIO Port
40-pin 22 PIO0_0 to PIO0_21

Remark: Some functions, such as SCTimer/PWM inputs, frequency measure, and ADC
triggers are not configured through IOCON. The connections for these functions are
described in either the Chapter 13 “Input Multiplexing (INPUTMUX)” or the chapter for the
specific function.

12.2 Features

The following electrical properties are configurable for standard port pins:

* Pull-up/pull-down resistor

* Open-drain mode

¢ Inverted function
Pins PIO0_10 through PIO0_11 (See Chapter 3 “Pin and Pad Descriptions” for details)
are true open-drain pins that can be configured for different 12C-bus speeds. Configuration

options are different for these pins, as described in this chapter. The data sheet for this
device gives full electrical details of all the PIO pins.

12.3 Basic configuration

Enable the clock to the IOCON by the SYSCON_AHBCLKCTRLO[IOCON] bit. Once the
pins are configured, the IOCON clock can be disabled to conserve power.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 79 of 350

NXP Semiconductors U M1 1 1 38

Chapter 12: 1/0 Pin Configuration (IOCON)

12.4 General description

12.4.1 Pin configuration

. \/DD \/DD
open-drain enable—|
output enable Yo 4%7 strong ['Egp
pull-up
pin configured data output
as digital output 3 P PIN
% strong ESD
pull-down
- = =
(Vb
| weak
pull-up
pull-up enable
repeater ™ weak
mode enable pull-down
pin configured p pull-down enable L
as digital input
i <
digital /
nput
enable
input invert
enable
\ filter
enable |
pin configured analog input
as analog input ai2?)|3t9 II;EII

160107

Fig 30. Pin configuration for standard digital 10 cell

12.4.2 10CON registers

The IOCON registers control the functions of device pins. Each GPIO pin has a dedicated
control register to select its function and characteristics. Each pin has a unique set of
functional capabilities. Not all pin characteristics are selectable on all pins. For instance,
pins that have an 12C function can be configured for different I2C bus modes, while pins
that have an analog alternate function can be selected to analog mode. The following
sections describe specific characteristics of pins.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 80 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

12.4.21

Chapter 12: 1/0 Pin Configuration (IOCON)

Multiple connections

Since a particular peripheral function may be allowed on more than one pin, it is possible
to configure more than one pin to perform the same function. If a peripheral output
function is configured on more than one pin, it will be routed to those pins. For correction
operation, a peripheral input function must be configured to come from only one source.

Pin function

To optimize functionality in small packages, pins have several functions available via
signal multiplexing.

The PIOn[FUNC] field can be set to GPIO (typically value 000b) or to a special function.
For pins set to GPIO, the GPIO_DIR register determines whether the pin is configured as
an input or output (see Section 14.5.4 “GPIO direction”). For any special function, the pin
direction is controlled automatically depending on the function. The GPIO_DIR register
has no effect for special functions.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 81 of 350

|enuew Jasn

0202 sunf — 'L "A9Yy

“ssewrejos|p [ebs] 0} 108[qNs SI JUBWNIOP SIL} Ul PapIACId UORBWLIOHUI ||

0G€ Jo 28

68LGNI

"pansasal siubU (I '020Z 'A'8 XN ©

Table 19. IOMUX functions
10 Value of FUNC field in PIOn registers Register |Default at |Default ISP Max.
names oo 001 010 011 100 101 110 111 reset/ internal mMode Freq
during pull-up /
boot
pull-down
PIO0_0 GPIOO USARTO_ USART1 — PWMO-P |SPI1_SC — PDMO_D PIOO 0 GPIOO(]) pullup — 10
SCK TXD2 U2 K ATAL MHz
PIO0_1 GPIO1 USART1_ — PWM1-P SPI1_MIS — PDMO_CL PIOO_1 GPIO1() pull-down — 10
RXDL1 D21 0 K2 MHz
PIO0 2 GPIO2 SPI0_ SC USARTO — PWM2-P |SPI1_MO 1SO7816_ MCLKL PIO0 2 GPIO2() pull-down — 10
K RXDL1] D21 s RST MHz
PIO0_3 GPIO3 SPI0_MIS USARTO_ — PWM3-P SPI1_SS ISO7816_ — PIO0_3 |GPIO3(l) pul-up | — 10
o TXD2 U2 ELNO CLK MHz
PIO0_4 GPIO4/IS SPI0_ MO USARTO | — PWM4-P SPI1_SS 1SO7816_ RFTX PIO0 4 GPIO4(l) pullup ISP_SEL 10
PSEL SI cTsll ui2l ELN1 10 MHz
PIO0_5 GPIO5/IS SPI0_SS USARTO_ — SPI1_MIS SPI1_SS — RFRXZ PIO0_ 5 GPIO5(I) pul-up ISP_ENT 10
P_ENTR ELN RTS[2) o) ELN2 RY MHz
Y
PIO0_6 GPIO6 SPI0_SC USARTO_ CT32B1_ PWM6-P 12C1_SCL USART1_ ADERZ PIO0_6 GPIO6(I) pull-down — 10
K RTS2 ~ MATOZ DI TXD2 MHz
PIO0_7 GPIO7 SPIO_MIS USARTO_ CT32B1_ PWM7-P 12C1_SD USART1_ ADOR PIO0_7 |GPIO7(l) pull-down — 10
o) cTsll ~ MAT12 D A RXDL!] MHz
PIO0_8 GPIO8 SPI0_MO USARTO_ CT32B0_ PWMS-P ANA_CO RFTXZ PDM1 D PIO0_ 8 GPIOS()2 pul-up USART_| 10
sl TXD2 ~ |MATOR U MP_OUTI ATA SP MHz
2
PIO0_9 GPIO9 SPI0_SS USARTO_ CT32B1_ PWM9-P USART1_ ADOEZ PDM1_CL PIO0_9 GPIO9()4 pul-up USART_| 10
ELN RXDI — CAP1™ |yl SCK K2 SP MHz
PIO0_1 GPIO10 CT32B0_ USART1 — RFTX2 12C0_SCL SPI0_SC PDMO_D PIO0_10 GPIO10 () external — 10
0 CAPOUI | TXDI2 K ATA pull-up MHz
PIO0_1 GPIO11 CT32B1_ USART1 — RFRX[12C0_ SD SPIO_MIS PDMO_CL PIO0_11 GPIO11(l) external — 10
1 CAPOl~ RXDL!I A o) K2 pull-up MHz
PIO0_1 GPIO12 IR_BLAS SWCLKI — PWMO-P 12C1_SCL SPIO_MO ANA_CO PIO0_12 SWCLK |pullup — 10
2 TERZ U S| MP_OUTI MHz
2
PIO0_1 GPIO13 SPI1_SS SWDIO | — PWM2-P 12C1_SD SPI0_SS — PIO0_13 SWDIO pullup — 10
3 ELN2 ul2l A ELN MHz

(NODOI) uoneinbyuog uid /1 -zt 193deyd

8ECLLLINN

$1039NpUO2IWAS XN

lenuew Jasn

0202 dunf — '} "AdY

“ssewrejos|p [ebs] 0} 108[qNs SI JUBWNIOP SIL} Ul PapIACId UORBWLIOHUI ||

0G€ Jo €8

68LGNI

"pansasal siubU (I '020Z 'A'8 XN ©

Table 19.

IOMUX functions ...continued

10 Value of FUNC field in PIOn registers Register |Default at Default ISP Max.
names ggo 001 010 011 100 101 110 11 reset/ linternal mode Freq
during pull-up /
boot
pull-down
PIO0_1 |GPIO14 |SPI1_SS USARTO_ CT32B0_ PWM1-P SWO MCLKIM |RFTXE2 PIO0_14 |GPIO14(l) |pull-up — 10
4/ADC ELN1 SCK CAP1U1] U2 MHz
PIO0_1 |GPIO15 | SPI1_SC ANA_CO |— PWM3-P |12C0_SCL PDM1 D |RFRXE PIO0 15 GPIO15(I) |pull-up — 10
5/ADC K MP_OUTIL u ATAM MHz
2]
PIO0_1 |GPIO16 | SPI1_SS 1SO7816_ |— PWM5-P |12C0_SD PDM1_CL |SPIFI_CS PIO0_16 |GPIO16(l) |pull-up — 33
6/ADC ELNO RST U2 A K2l N [set IO MHz
to high
drive]
PIO0O_1 |GPIO17 |SPI1_MO I1SO7816_ SwoO PWM6-P |CLK_OUT — SPIFI_IO3 PIO0_17 |GPIO17(l) |pull-down |— 33
7/ADC Sl CLK D2l 2 [set IO to MHz
high drive]
PIO0_1 |GPIO18 SPIM_MIS 1SO7816_ |CT32B0_ |PWM7-P USARTO_ |— SPIFI_CL |PIO0_18 |GPIO18(l) |pull-down |— 33
8/ADC (0] 10 MAT12] D2 TXDI2 K [set 10 MHz
to high
drive]
PIO0_1 |GPIO19 |ADO USART1_ |CLK_INMM PWM4-P |USARTO — SPIFI_IO0 [PIO0_19 |GPIO19(l) |pull-down |— 33
9/ADC RXDM D2 RXDL! [set IO to MHz
high drive]
PIO0_2 |GPIO20 |IR_BLAS USART1_ |— PWM8-P |RFTXEZ — SPIFI_IO2 [PIO0_20 |GPIO20(I) |pull-down |— 33
0/ACP TERE TXDE2 D2 [set 10O to MHz
high drive]
PIO0_2 |GPIO21 |IR_BLAS USART1_ |— PWM9-P RFRXE swoOll SPIFI_IO1 [PIO0_21 |GPIO21(l) |pull-up — 33
1/ACM TERE SCK U2 [set IO to MHz
high drive]
[11 Input mode only.
[2] Output mode only.
[3] In ISP mode, it is configured to USARTO_TXD.
[4] In ISP mode, it is configured to USARTO_RXD.

(NODOI) uoneinbyuog uid /1 -zt 193deyd

8ECLLLINN

$1039NpUO2IWAS XN

NXP Semiconductors U M1 1 1 38

JIN5189

12.4.2.2

12.4.2.3

12.4.2.4

12.4.2.5

12.4.2.6

Chapter 12: 1/0 Pin Configuration (IOCON)

Pin configuration
The 10 cells for PIO0_0 to PIO0_21 can all be configured for digital operation. To support
analog functionality, such as ADC inputs, they can also be configured in analog mode.

For analog IOs, you can use the following settings:

* Receiver can be disabled - DIGIMODE =0
¢ Enable weak pull-up can be disabled - MODE[1] = 1 (Only for MFIO pads)
* Enable weak pull-down can be disabled — MODE[0] = 0 (Only for MFIO pads)

Pin mode

The PIOn[MODE] field selects the on-chip pull-up or pull-down resistors for each pin or
select the repeater mode.

For standard 10 cells (all PIOs except PIO10 or 11):

* The possible on-chip resistor configurations are pull-up enabled (0x0), pull-down
enabled (0x3), or no pull-up/pull-down. The default value is pull-up or pull-down
enabled; Table 19 “IOMUX functions” shows which 10s have pull-up and pull-down
resistors by default.

* The repeater mode (0x1) enables the pull-up resistor if the pin is high and enables the
pull-down resistor if the pin is low. This causes the pin to retain its last known state if it
is configured as an input and is not driven externally. Such state retention is not
applicable in the deep power-down mode. Repeater mode may typically be used to
prevent a pin from floating (and potentially using significant power if it floats to an
indeterminate state) if it is temporarily not driven.

* No pull-up or pull-down enabled is referred to as plain mode and is available by
setting the PION[MODE] field to (0x2).
For 10 cells supporting true 12C (PIO10 & 11 only):
® 0x0: |12C standard/fast and FP transmit mode (SDA and SCL) and 12C high speed
transmit mode (only SDAH)

* 0x1/0x3: GPIO mode (high speed if EHS is high, low speed if EHS is low: see
SLEWO)

* 0x2: I2C high speed transmit mode (SCLH)

Hysteresis

The input buffer for digital functions has built-in hysteresis. See the appropriate specific
device data sheet for details.

Invert pin

This option is used to avoid including an external inverter on an input that is meant to be
the opposite polarity of the external signal.

Analog/digital mode

When not in digital mode (PIOn[DIGIMODE] = 0b), a pin is in analog mode, the digital
output buffer is disabled and analog pin functions are enabled. In digital mode
(PIONn[DIGIMODE] = 1b), analog pin functions are disabled and digital pin functions are

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 84 of 350

NXP Semiconductors U M1 1 1 38

12.4.2.7

12.4.2.8

12.4.2.9

12.4.2.10

Chapter 12: 1/0 Pin Configuration (IOCON)

enabled. This protects the analog input from voltages outside the range of the analog
power supply and reference that may sometimes be present on digital pins, since they are
typically 3.6 V tolerant. All pin types include this control, even if they do not support any
analog functions.

In order to use a pin that has an ADC input option for that purpose, select GPIO
(PIOn[FUNC] = 000b) and disable the digital pin function (PIOn[DIGIMODE] = Ob). The
P1On[MODE] field should also be set to 10b.

In analog mode, the PIOn[MODE] field should be “Plain Input' (10)”; the INVERT,
FILTEROFF, and OD fields settings have no effect. For an unconnected pin that has an
analog function, keep the DIGIMODE bit set to 1 (digital mode), and pull-up or pull-down
mode selected in the MODE field.

Input filter

Some pins include a filter that can be selectively disabled by setting the FILTEROFF bit.
The filter suppresses input pulses smaller than about 1 ns.

Output slew rate

The SLEW bits of digital outputs that do not need to switch state very quickly must be set
as “slow stew” (see Table 5). This setting allows multiple outputs to switch simultaneously
without noticeably degrading the power/ground distribution of the device, and has only a
small effect on signal transition time. This is particularly important if analog accuracy is
significant to the application. See the data sheet for more details.

I12C modes

Pins that support I2C with specialized 10 cells (PIO[10] and PIO[11]) have different
configuration bits and pin electronics (P0O[23] through P0[28]) have additional
configuration bits. These have multiple configurations to support I2C variants. These are
not hard-wired so that the pins can be more easily used for non-12C functions. See
Chapter 25 “Inter-Integrated Circuit (12C)” for 10 cell settings to support I2C operation.

For non-12C operation, these special 10 cells can be configured to operate as a standard
GPIO cell by setting PIOn[EGP].

Open-Drain mode

When output is selected, either by selecting a special function in the FUNC field, or by
selecting the GPIO function for a pin having a 1 in the related bit of that port's GPIO_DIR
register, a 1 in the OD bit selects open-drain operation, that is, a 1 disables the high-drive
transistor. This option has no effect on the primary I2C pins. Note that the properties of a
pin in this simulated open-drain mode are different from those of a true open drain output.

12.5 Software control

JIN5189

IOCON functions are defined in the fsl_iocon.h as below:
IOCON_PinMuxSet
This function is used to associate a single pin to a peripheral.

IOCON_SetPinMuxing

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 85 of 350

NXP Semiconductors U M1 1 1 38

Chapter 12: 1/0 Pin Configuration (IOCON)

This function is used to associate a multiple pins to a peripheral.
The following values are available:

* |OCON_FUNCO to IOCON_FUNCY: Selects the pin function to a value between 0
and 7

* |IOCON_ANALOG_EN: Enables analog function on the pin

* |OCON_DIGITAL_EN: Enables digital function on the pin

* |OCON_I2C_SLEW I2C: Slew Rate Control

¢ |[OCON_INV_EN: Enables invert function on input

¢ |OCON_INPFILT_OFF: Disable input filter

® IOCON_INPFILT_ON: Enable input filter Pulses of less than 10ns are ignored
* |OCON_SLEW1_OFF: Disable Slew Rate Control

* |IOCON_SLEW1_ON: Enable Slew Rate Control
IOCON_OPENDRAIN_EN: Enables open-drain function

The following additional options are for pullup control:

* |OCON_MODE_PULLUP: Enable the Pullup
* |[OCON_MODE_PULLDOWN: Enable the Pulldown
IOCON_MODE_INACT: Disable both the pullup and pulldown

IOCON_MODE_REPEATER: This mode allows a signal level to be ‘remembered’
after the drive is taken away

Setting UARTO0 RX/TX pins using IOCON_PinMuxSet

IOCON_PinMuxSet(IOCON, 0, 8, IOCON_MODE_INACT | IOCON_FUNC2 |
IOCON_DIGITAL_EN);

IOCON_PinMuxSet(IOCON, 0, 9, IOCON_MODE_INACT | IOCON_FUNC2 |
IOCON_DIGITAL_EN);

Setting UARTO RX/TX pins using IOCON_SetPinMuxing

iocon_group_t iopins[] ={

{0, 8, IOCON_MODE_INACT | IOCON_FUNC2 | IOCON_DIGITAL_EN},
{0, 9, IOCON_MODE_INACT | IOCON_FUNC2 | IOCON_DIGITAL_EN}};
IOCON_SetPinMuxing(IOCON,iopins,2);

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 86 of 350

UM11138

Chapter 13: Input Multiplexing (INPUTMUX)

Rev. 1.4 — June 2020 User manual

13.1 How to read this chapter

13.2 Features

Input multiplexing is present on all JN5189(T)/JN5188(T) devices.

* Configure the inputs to the pin interrupt block and pattern match engine.
* Configure the inputs to the DMA triggers.

* Configure the inputs to the frequency measure function. This function is controlled by
the ASYNC_SYSCON_FREQMECTRL register.

13.3 Basic configuration

Once set up, no clocks are needed for the input multiplexer to function. The system clock
is needed only to write to or read from the INPUTMUX registers. Once the input
multiplexer is configured, disable the clock to the INPUT MUX block by the
SYSCON_AHBCLKCTRLO[MUX].

13.4 Pin description

The input multiplexer has no dedicated pins. However, all digital pins can be selected as
inputs to the pin interrupts. Multiplexer inputs from external pins work independently of
any other function assigned to the pin as long as no analog function is enabled.

Table 20. INPUT MUX pin description

Pins Peripheral
Any existing pin on port 0 Pin interrupts 0 to 7
P10O0_4, PIO0_20, PIO0_16, PIO0_15 Frequency measure block

13.5 General description

JIN5189

The inputs to the DMA triggers, to the eight pin interrupts, and to the frequency measure
block are multiplexed to multiple input sources. The sources can be external pins,
interrupts, or output signals of other peripherals.

The input multiplexing makes it possible to design event-driven processes without CPU
intervention by connecting peripherals like the ADC.

The DMA can use trigger input multiplexing to sequence DMA transactions without the
use of interrupt service routines.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 87 of 350

NXP Semiconductors U M1 1 1 38

Chapter 13: Input Multiplexing (INPUTMUX)

13.5.1 Pin interrupt input multiplexing

13.5.1.1 Pin interrupt select register

Each of these 5 bits selects one pin from PIO inputs as the source of a pin interrupt or as
the input to the pattern match engine. To select a pin for any of the 8 pin interrupts or
pattern match engine inputs, write the GPIO port pin number as 0 to 21 for pins PIO0_0 to
P100_21 to the INTPIN field. For example, setting PINTSELO[INTPIN] to 0x5 selects pin
P100_5 as the source for the pin interrupt '0" signal, or the '0' input to the pattern match
engine. To determine the GPIO port pin number for a given device package, see

Section 3.3 “Pinout signaling descriptions”.

Each of the pin interrupts must be enabled in the NVIC before it becomes active. In
JN5189(T)/JN5188(T), only pin interrupt 0 to 3 is connected to the NVIC.

To use the selected pins for pin interrupts or the pattern match engine, see Chapter 15
“Pin Interrupt and Pattern Match (PINT)”

Table 21. Pin interrupt select registers (PINTSELn (n = 0-7), offsets [0x0C0:0x0DC]) bit

description
Bit Symbol |Descriptions Reset Value
4:0 INTPIN Pin number select for pin interrupt or pattern match 0x1F
engine input.
31:5 — 'Reserved —

13.5.1.2 Example

Pin Interrupt

PINTO PINT1 PINT2 PINT3

Pin Pin Pin Pin

i i int t2 || int t3

interruptO | [interruptl | [interrup interrup No pin interrupt

A

A

INPUT MUX

/PINTSELO \/PINTSELl \/PINTSELZ \/ PINTSEL3\ PINTSEL4 \/PINTSELS \/PINTSEL6 \/PINTSEL7\
7'} 7} 7} 7 Y

1/00

/02| 1/05 /08 || 1/04| |1/018]| |I/016 /03

JIN5189

Fig 31. Input Mux and PINTSEL values

In the Figure 31, 8 PIOs are connected to the Input Mux block. Here are the
corresponding values of each PINTSEL for this configuration:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 88 of 350

NXP Semiconductors U M1 1 1 38

Chapter 13: Input Multiplexing (INPUTMUX)

* PIOO0_0 is connected to PINTSELO — PINTSELO->INTPIN[4:0] = 0x0
* PIOO0_2 is connected to PINTSEL1 — PINTSEL1->INTPIN[4:0] = 0x2
® PIOO0_5 is connected to PINTSEL2 — PINTSEL2->INTPIN[4:0] = 0x5
* PIOO0_8 is connected to PINTSEL3 — PINTSEL3->INTPIN[4:0] = 0x8
* PIOO0_4 is connected to PINTSEL4 — PINTSEL4->INTPIN[4:0] = Ox4
* PIOO0_18 is connected to PINTSELS — PINTSEL5->INTPIN[4:0] = 0x12
* PIO0_16 is connected to PINTSEL6 — PINTSEL6->INTPIN[4:0] = 0x10
* PIOO0_3 is connected to PINTSEL7 — PINTSEL7->INTPIN[4:0] = 0x3

13.5.2 DMA trigger input multiplexing

INPUT MUX DMA_ITRIG_INMUX
(one per DMA channel)
DMA trigger trigger 0 |
inputs g
selected
DMA_OTRIG_INMUX ! trigger input N DMA
(one of four, each can Channel i
choose any OTRIG) trigger n :
> trigger
. INPi

from DMA channel 0 ‘W

>

from last DMA che;nnel |

INP(0..3)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
i output
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1

Fig 32. DMA trigger multiplexing

DMA operations can be triggered by on- or off-chip events. Each DMA channel can select
one trigger input from 18 sources. Trigger sources include ADC interrupts, timer
interrupts, pin interrupts, AES, HASH and DMA output triggers feedback.

13.5.2.1 DMA trigger input mux registers 0 to 18

With the DMA trigger input mux registers, one trigger input can be selected for each of the
19 DMA channels from the potential internal sources. By default, none of the triggers are
selected.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 89 of 350

NXP Semiconductors U M1 1 1 38

Chapter 13: Input Multiplexing (INPUTMUX)

Table 22. DMA trigger Input mux registers (DMA_ITRIG_INMUXn (n = 0-18), offsets
[0xE0:0x128]) bit description

Bit Symbol ’Descriptions Reset Value
4:0 INP Trigger input number (decimal value) for DMA channel |Ox1F
n(n=0to 17).

® (0 =ADCO Sequence A interrupt

® 1 =Reserved

® 2 =Timer CT32B0 Match 0

® 3 =Timer CT32B0 Match 1;

® 4 =Timer CT32B1 Match O;

® 5=Timer CT32B1 Match 1;

® 6 = Pin interrupt 0;

® 7 =Pininterrupt 1;

® 8 = Pin interrupt 2;

® 9 = Pin interrupt 3;

®* 10=AES RX;

* 11 =AESTX;

® 12 = Hash RX;

® 13 =Hash TX;

® 14 = DMA output trigger mux 0;

® 15 = DMA output trigger mux 1;

* 16 = DMA output trigger mux 2;

® 17 = DMA output trigger mux 3;
31:5 — Reserved —

13.5.2.2 DMA output trigger selection

In Section 13.5.2.1, it was shown that the DMA trigger for each DMA channel can be
selected from 18 different triggers. Four of these trigger sources are DMA output triggers
so that it is possible to chain DMA activities. For each of these four DMA output trigger
sources, there is a mux to select which of the 19 DMA channels will be selected. The four
muxes are controlled by the DMA_OTRIG_INMUX registers.

Table 23. DMA output trigger selection to become DMA trigger (DMA_OTRIG_INMUXn (n =
0-3), offsets [0x160:0x16C]) bit description

Bit Symbol ‘ Descriptions Reset Value
4:0 INP DMA trigger output number (decimal value) for DMA Ox1F
channel n (n =0 to 18).
315 — Reserved 0x0
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 90 of 350

UM11138

Chapter 14: General Purpose 1/0 (GPIO)

Rev. 1.4 — June 2020 User manual

14.1 How to read this chapter

GPIO registers support up to 22 pins (see Table 18).

14.2 Basic configuration

14.3 Features

For the GPIO registers, enable the clock to the GPIO block in the
SYSCON_AHBCLKCTRLO register.

GPIO pins can be configured as input or output by software.

All GPIO pins default to inputs with interrupt disabled at reset.
* Pin registers allow pins to be sensed and set individually.
* Direction (input/output) can be set and cleared individually.

14.4 General description

The GPIO pins can be used in several ways to set pins as inputs or outputs and use the
inputs as combinations of level and edge sensitive interrupts.

The GPIOs can be used as external interrupts together with the pin interrupt and group
interrupt blocks, see Chapter 15 and Chapter 16.

The GPIO registers configure each GPIO pin as input or output, and read the state of
each pin if the pin is configured as input, or set the state of each pin if the pin is configured
as output.

14.5 Functional description

14.5.1

JIN5189

Reading pin state

Software can read the state of all GPIO pins except those selected for analog input or
output in the “I/O Configuration” logic. A pin does not have to be selected for GPIO in “I/O
Configuration” in order to read its state; it can be assigned to another digital function.
There are four ways to read pin state:

* The state of a single pin can be read with 7 high-order zeros from a Byte Pin register.

* The state of a single pin can be read in all bits of a byte, halfword, or word from a
Word Pin register.

* The state of multiple pins can be read from the PIN register.

* The state of a selected subset of the pins can be read from a Masked Pin (MPIN)
register. Pins having a 1 in the Mask register will read as 0 from its MPIN register.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 91 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

14.5.2

14.5.3

Chapter 14: General Purpose 1/O (GPIO)

GPIO output

Each GPIO pin has an output bit in the GPIO block. These output bits are the targets of
write operations to the pins. Two conditions must be met in order for a pin’s output bit to
be driven onto the pin:

1. The pin must be selected for GPIO operation via IOCON (this is the default
configuration except for PIOs 8, 9, 12 and 13), and

2. The pin must be selected for output by a 1 in its port’s DIR register.
If either or both of these conditions is (are) not met, writing to the pin has no effect.
There are seven ways to change GPIO output bits:

* Writing to the Byte Pin register loads the output bit from the least significant bit.

* Writing to the Word Pin register loads the output bit with the OR of all of the bits
written. (This feature follows the definition of truth of a multi-bit value in programming
languages.)

* Writing to the PIN register loads the output bits of all the pins written to.

* Writing to the MPIN register loads the output bits of pins identified by zeros in
corresponding positions of the MASK register.

* Writing ones to the SET register sets output bits.
* Writing ones to the CLR register clears output bits.

* Writing ones to the NOT register toggles/complements/inverts output bits.

The state of the output bits can be read from its SET register. Reading any of the registers
described in 14.5.1 returns the state of pins, regardless of their direction or alternate
functions.

Masked 1/0

The MASK register defines which of its pins should be accessible in its MPIN register.
Zeroes in MASK enable the corresponding pins to be read from and written to MPIN.
Ones in MASK force a pin to read as 0 and its output bit to be unaffected by writes to
MPIN. When a port's MASK register contains all zeros, its PIN and MPIN registers
operate identically for reading and writing.

Applications in which interrupts can result in Masked GPIO operation, or in task switching
among tasks that do Masked GPIO operation, must treat code that uses the Mask register
as a protected/restricted region. This can be done by interrupt disabling or by using a
semaphore.

The simpler way to protect a block of code that uses a MASK register is to disable
interrupts before setting the MASK register, and re-enable them after the last operation
that uses the MPIN or MASK register.

More efficiently, software can dedicate a semaphore to the MASK register, and
set/capture the semaphore controlling exclusive use of the MASK register before setting
the MASK register, and release the semaphore after the last operation that uses the MPIN
or MASK registers.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 92 of 350

NXP Semiconductors U M1 1 1 38

Chapter 14: General Purpose 1/O (GPIO)

14.5.4 GPIO direction

Each GPIO pin can be configured as input or output using the DIR register. The direction
of individual pins can be set, cleared, or toggled using the DIRSET, DIRCLR, and DIRNOT
registers. When configuring a single GPIO direction, it is faster to use these registers.

14.5.5 Recommended practices

The following lists some recommended uses for using the GPIO registers:

For initial setup after Reset or re-initialization, write the DIR and PIN registers.
To change the state of one pin, write a Byte Pin or Word Pin register.
To change the state of multiple pins at a time, write the SET and/or CLR registers.

To change the state of multiple pins in a tightly controlled environment like a software
state machine, consider using the NOT register. This can require less write operations
than SET and CLR.

To read the state of one pin, read a Byte PIN or Word PIN register.

To make a decision based on multiple pins, read and mask the PIN register.

14.6 Software control

To support the use of the GPIOs the following functions are provided within the SDK:

JIN5189

GPIO_WritePinOutput
GPIO_ReadPinInput
GPIO_SetPinsOutput
GPIO_ClearPinsOutput
GPIO_TogglePinsOutput
GPIO_ReadPinsInput
GPIO_SetPortMask
GPIO_WriteMPort
GPIO_ReadMPort

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 93 of 350

UM11138

Chapter 15: Pin Interrupt and Pattern Match (PINT)

Rev. 1.4 — June 2020 User manual

15.1 How to read this chapter

15.2 Features

The pin interrupt generator and the pattern match engine are available on all
JN5189(T)/UN5188(T) parts.

This block has two mutually exclusive features:

* Pin interrupts

Up to four pins can be selected from all GPIO pins as edge- or level-sensitive
interrupt requests. Each request creates a separate interrupt in the NVIC.

Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.
Level-sensitive interrupt pins can be HIGH- or LOW-active.

* Pattern match engine

Up to 8 pins can be selected from all digital pins to contribute to a boolean
expression. The boolean expression consists of specified levels and/or transitions
on various combinations of these pins.

Each bit slice minterm (product term) comprising the specified boolean expression
can generate its own, dedicated interrupt request.

Any occurrence of a pattern match can be programmed to also generate a receive
event, RXEV, notification to the CPU.

Pattern match can be used, in conjunction with software, to create complex state
machines based on pin inputs.

15.3 Basic configuration

JIN5189

* Pin interrupts:

Select up to four external interrupt pins from all digital port pins in the Input Mux
block (using INPUTMUX_PINTSEL register). The pin selection process is the
same for pin interrupts and the pattern match engine. The two features are
mutually exclusive.

Enable the clock to the pin interrupt register block in the
SYSCON_AHBCLKCTRLO register

In order to use the pin interrupts to wake up the part from deep-sleep mode, enable
the pin interrupt wake-up feature in the SYSCON_STARTERQO register for pin
interrupt 0 through 3.

Remark: The PINT block can not cause a wake-up from Power-down and deep
power-down states. However, individual I0s can be configured to cause wake-ups
from these states. See Section 5.3.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 94 of 350

NXP Semiconductors U M1 1 1 38

Chapter 15: Pin Interrupt and Pattern Match (PINT)

— Pininterrupts 0 to 3 are assigned to an interrupt in the NVIC (Table 17 “Connection
of interrupt sources to the NVIC”). Interrupt 4 to 7 are not supported in this
processor. (see Chapter 9 “Nested Vectored Interrupt Controller
(NVIC)").Section 5.3

Pin Interrupt

PINTO PINT1 PINT2 PINT3
Pin Pin Pin Pin

i i interrupt2 || interrupt3

|r1"ierrupt0 interruptl AP p No pin interrupt

INPUT MUX

/PINTSELO \/PINTSELl \/PINTSELZ \/ PINTSEL3\ PINTSEL4 \/PINTSELS \/PINTSEL6 \/PINTSEL7\
7'} 7} 7} 7}

/00| |1/02]||1/0O5 /08 || /04| |1/018| |I/016 /03

Fig 33. Pin Interrupts

® Pattern match engine:

— Select up to eight external pins from all digital port pins in the Input mux block (See
Pin interrupt select registers for details). The pin selection process is the same for
pin interrupts and the pattern match engine. The two features are mutually
exclusive.

— Enable the clock to the pin interrupt register block in the
SYSCON_AHBCLKCTRLO register.

— Only the first 4 bit slices of the pattern match engine are assigned to an interrupt in
the NVIC (Table 17 “Connection of interrupt sources to the NVIC”)

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 95 of 350

NXP Semiconductors U M1 1 1 38

Chapter 15: Pin Interrupt and Pattern Match (PINT)

Pin Interrupt

7'} A A A A A
PINTO PINT1 PINT2 PINT3 INPUT4 INPUT5S INPUT6 INPUT7
Pin Pin Pin Pin No No No No
interruptO | |interruptl | |interrupt2 || interrupt3 interrupt interrupt | [interrupt [|interrupt

A A

/PINTSELO \/PINTSELl \/PINTSELZ \/ PINTSEL3\/PINTSEL4 \/PINTSELS \/PINTSEL6 \/PINTSEL7 \
A 7} 7} 7 Y y 7} A

1/00| | 1/02||1/O5 /08 || 1I/O4| |I/018| |I/016| |1/O3

Fig 34. Pattern Match Engine

15.3.1 Configure pins as pin interrupts or as inputs to the pattern match
engine
Follow these steps to configure pins as pin interrupts:
1. Determine which digital pins are required for the pin interrupt or pattern match
function.

2. For each pin interrupt, program the GPIO port pin number into one of the eight
INPUTMUX_PINTSEL register in the Input mux block.

Remark: The port pin number serves to identify the pin to the INPUTMUX_PINTSEL
register. Any function, including GPIO, can be assigned to this pin via IOCON.

3. Enable each pin interrupt in the NVIC.

Once the pin interrupts or pattern match inputs are configured, the pin interrupt detection
levels or the pattern match boolean expression can set up.

See Section 13.5.1.1 “Pin interrupt select register” in the Input mux block for the
INPUTMUX_PINTSEL registers.

Remark: The inputs to the Pin interrupt select registers bypass the IOCON function
selection. They do not have to be selected as GPIO in IOCON. Make sure that no analog
function is selected on pins that are input to the pin interrupts.

15.4 Pin description

The inputs to the pin interrupt and pattern match engine are determined by the
INPUTMUX _PINTSEL. See Section 13.5.1.1 “Pin interrupt select register”.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 96 of 350

NXP Semiconductors U M1 1 1 38

Chapter 15: Pin Interrupt and Pattern Match (PINT)

15.5 General description

JIN5189

15.5.1

15.5.2

Pins with configurable functions can serve as external interrupts or inputs to the pattern
match engine. Up to eight pins can be configured using the INPUTMUX_PINTSEL
registers for these features.

Pin interrupts

From all available GPIO pins, up to four pins can be selected in the system control block
to serve as external interrupt pins (see Chapter 13 “Input Multiplexing (INPUTMUX)” and
Section 13.5.1.2 “Example”).

Pattern match engine

The pattern match feature allows complex boolean expressions to be constructed from
the same set of eight GPIO pins that were selected for the GPIO pin interrupts. Each term
in the boolean expression is implemented as one slice of the pattern match engine. A slice
consists of an input selector and a detect logic that monitors the selected input
continuously and creates a HIGH output if the input qualifies as detected, that is as true.
Several terms can be combined to a minterm and a pin interrupt is asserted when the
minterm evaluates as true.

The detect logic of each slice can detect the following events on the selected input:

* Edge with memory (sticky): Arising edge, a falling edge, or a rising or falling edge that
is detected at any time after the edge-detection mechanism has been cleared. The
input qualifies as detected (the detect logic output remains HIGH) until the pattern
match engine detect logic is cleared again.

* Event (non-sticky): Every time an edge (rising or falling) is detected, the detect logic
output for this pin goes HIGH. This bit is cleared after one clock cycle, and the detect
logic can detect another edge,

* Level: AHIGH or LOW level on the selected input.
Figure 36 shows the details of the edge detection logic for each slice.

Sticky events can be combined with non-sticky events to create a pin interrupt whenever a
rising or falling edge occurs after a qualifying edge event.

A time window can be created during which rising or falling edges can create a pin
interrupt by combining a level detect with an event detect. See Section 15.6.3 for details.

The connections between the pins and the pattern match engine are shown in Figure 35.
All pins that are inputs to the pattern match engine are selected in the Syscon block and
can be GPIO port pins or other pin function depending on the IOCON configuration.

Remark: The pattern match feature requires clocks in order to operate, and can thus not
generate an interrupt or wake up the device during reduced power modes below sleep
mode.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 97 of 350

NXP Semiconductors U M1 1 1 38

all pins PIO[0:1]_m

all pins PIO[0:1]_m

JIN5189

Chapter 15: Pin Interrupt and Pattern Match (PINT)

to IN7
slicen-1 .
from slice
to INO n-1
slice n - 1 (tied HIGH for slice 0)
INPUT MUX slice n endpoint
configured?
PMCFG bit n=1
\I INO (PROD_ENDPTS)
C
oY
) 2
PINTSEL ° — NVIC pin interrupt n
SELO [., |2 DETECT P P
. . > LOGIC
[&]
\I (é)
) IN7 g
PINTSEL7
slice n+1 endpoint
configured?
PMCFG bit n+1 =1
(PROD_ENDPTS,
INO [] tied HIGH for slice 7)
+
o
&
vee : 2 DETECT —> NVIC pin interrupt n+1
. 3 LOGIC
o
IN7 8
=
Y =3
to IN7
slicen+2 l
A n+2
to INO to slice

slicen +2

See Figure 36 for the detect logic block.

Fig 35. Pattern match engine connections

The pattern match logic continuously monitors the eight inputs and generates interrupts
when any one or more minterms (product terms) of the specified boolean expression is
matched. A separate interrupt request is generated for the first 4 minterms (no separate
interrupt for the last four minterms).

In addition, the pattern match module can be enabled to generate a Receive Event
(RXEV) output to the Arm core when the entire boolean expression is true (i.e. when any
minterm is matched).

The pattern match function utilizes the same eight interrupt request lines as the pin
interrupts so these two features are mutually exclusive as far as interrupt generation is
concerned. A control bit is provided to select whether interrupt requests are generated in
response to the standard pin interrupts or to pattern matches. Note that, if the pin
interrupts are selected, the RXEV request to the CPU can still be enabled for pattern
matches.

Remark: Pattern matching cannot be used to wake the part up from deep-sleep mode.
Pin interrupts must be selected in order to use the GPIO for wake-up.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 98 of 350

NXP Semiconductors U M1 1 1 38

Chapter 15: Pin Interrupt and Pattern Match (PINT)

The pattern match module is constructed of eight bit-slice elements. Each bit slice is
programmed to represent one component of one minterm (product term) within the
boolean expression. The interrupt request associated with the last bit slice for a particular
minterm will be asserted whenever that minterm is matched (only for the 4 first minterms).
(See bit slice drawing Figure 36).

The pattern match capability can be used to create complex software state machines.
Each minterm (and its corresponding individual interrupt, for minterms 0 to 3) represents a
different transition event to a new state. Software can then establish the new set of
conditions (that is a new boolean expression) that will cause a transition out of the current
state.

INO C=>— 0
INT C=>— i
IN2 C>— From Previous
IN3 >—] H Slice
MUX Rise Detect
IN4 D_ (sticky with synch 1
IN5 —>—)
IN6 —>— PMCFG
IN7 C—>—— Fall Detect 2 Prod_Endpts(i)
(sticky with synch
clear)
3 Pattern_Match(i)
PMSRC Intr_Req(i)
SRC() MUX >—:>
4
™S~ 5
L
6
Rise Detect
(non-sticky) —
L jii\/ : :
Fall Detect To Next Slice

(non-sticky

PMCFG
CFG(i)

Fig 36. Pattern match bit slice with detect logic

15.5.2.1 Example

Assume the expression: (INO)~(IN1)(IN3)* + (IN1)(IN2) + (INO)~(IN3)~(IN4) is specified
through the registers PMSRC and PMCFG. Each term in the boolean expression, (INO),
~(IN1), (IN3)*, etc., represents one bit slice of the pattern match engine.

® In the first minterm (INO)~(IN1)(IN3)", bit slice O monitors for a high-level on input
(INO), bit slice 1 monitors for a low level on input (IN1) and bit slice 2 monitors for a
rising-edge on input (IN3). If this combination is detected, that is if all three terms are
true, the interrupt associated with bit slice 2 will be asserted.

¢ In the second minterm (IN1)(IN2), bit slice 3 monitors input (IN1) for a high level, bit
slice 4 monitors input (IN2) for a high level. If this combination is detected, the
interrupt associated with bit slice 4 will be asserted.

¢ In the third minterm (INO)~(IN3)~(IN4), bit slice 5 monitors input (INO) for a high level,
bit slice 6 monitors input (IN3) for a low level, and bit slice 7 monitors input (IN4) for a
low level. If this combination is detected, the interrupt associated with bit slice 7 will be
asserted.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 99 of 350

NXP Semiconductors U M1 1 1 38

Chapter 15: Pin Interrupt and Pattern Match (PINT)

* The ORed result of all three minterms asserts the RXEV request to the CPU. That is,
if any of the three terms are true, the output is asserted.

Related links: Section 15.6.2

15.6 Functional description

JIN5189

15.6.1

15.6.2

Pin interrupts

In this interrupt facility, up to 4 pins are identified as interrupt sources by the Pin Interrupt
Select registers (INPUTMUX_PINTSEL[2:0]). All registers in the pin interrupt block
contain 8 bits, corresponding to the pins called out by the PINTSELO-7 registers. The
ISEL register defines whether each interrupt pin is edge- or level-sensitive. The RISE and
FALL registers detect edges on each interrupt pin, and can be written to clear (and set)
edge detection. The IST register indicates whether each interrupt pin is currently
requesting an interrupt, and this register can also be written to clear interrupts.

The other pin interrupt registers play different roles for edge-sensitive and level-sensitive
pins, as described in Table 24.

Table 24. Pin interrupt registers for edge- and level-sensitive pins

Name Edge-sensitive function Level-sensitive function
IENR ‘Enables rising-edge interrupts. iEnabIes level interrupts.
SIENR Write to enable rising-edge interrupts. Write to enable level interrupts.
CIENR \Write to disable rising-edge interrupts. \Write to disable level interrupts.
IENF Enables falling-edge interrupts. Selects active level.

SIENF \Write to enable falling-edge interrupts. ‘Write to select high-active.
CIENF Write to disable falling-edge interrupts. Write to select low-active.

Pattern Match engine example

Suppose the desired boolean pattern to be matched is:
(IN1) + (IN1 * IN2) + (~IN2 * ~IN3 * IN6fe) + (IN5 * IN7ev)
with:

IN6fe = (sticky) falling-edge on input 6
IN7ev = (non-sticky) event (rising or falling edge) on input 7
Each individual term in the expression shown above is controlled by one bit-slice. To

specify this expression, program the pattern match bit slice source and configuration
register fields as follows:

* PMSRC register:

— Since bit slice 5 will be used to detect a sticky event on input 6, a 1 can be written
to the SRCS5 bits to clear any pre-existing edge detects on bit slice 5.

— SRCO0: 001 - select input 1 for bit slice 0
— SRC1: 001 - select input 1 for bit slice 1
— SRC2: 010 - select input 2 for bit slice 2
— SRC3: 010 - select input 2 for bit slice 3

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 100 of 350

NXP Semiconductors

UM11138

Chapter 15: Pin Interrupt and Pattern Match (PINT)

SRC4: 011 - select input 3 for bit slice 4
SRC5: 110 - select input 6 for bit slice 5
SRC6: 101 - select input 5 for bit slice 6
SRC7: 111 - select input 7 for bit slice 7

* PMCFG register:

PROD_ENDPTSO0 = 1
PROD_ENDPTS2 = 1
PROD_ENDPTSS = 1

All other slices are not product term endpoints and their PROD_ENDPTS bits are
0. Slice 7 is always a product term endpoint and does not have a register bit
associated with it.

= 0100101 - bit slices 0, 2, 5, and 7 are product-term endpoints. (Bit

slice 7 is an endpoint by default - no associated register bit).

CFGO0: 000 - high level on the selected input (input 1) for bit slice 0

CFG1: 000 - high level on the selected input (input 1) for bit slice 1

CFG2: 000 - high level on the selected input (input 2) for bit slice 2

CFG3: 101 - low level on the selected input (input 2) for bit slice 3

CFG4: 101 - low level on the selected input (input 3) for bit slice 4

CFG5: 010 - (sticky) falling edge on the selected input (input 6) for bit slice 5
CFG6: 000 - high level on the selected input (input 5) for bit slice 6

CFG7: 111 - event (any edge, non-sticky) on the selected input (input 7) for bit
slice 7

* PMCTRL register:

JIN5189

Bit0: Setting this bit will select pattern matches to generate the pin interrupts in
place of the normal pin interrupt mechanism.

For this example, pin interrupt O will be asserted when a match is detected on the
first product term (which, in this case, is just a high level on input 1).

Pin interrupt 2 will be asserted in response to a match on the second product term.
Pin interrupt 5 will be asserted when there is a match on the third product term.
Pin interrupt 7 will be asserted on a match on the last term.

Bit1: Setting this bit will cause the RxEv signal to the CPU to be asserted whenever
a match occurs on ANY of the product terms in the expression. Otherwise, the
RXEV line will not be used.

Bit31:24: At any given time, bits 0, 2, 5 and/or 7 may be high if the corresponding
product terms are currently matching.

The remaining bits will always be low.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 101 of 350

NXP Semiconductors U M1 1 1 38

Chapter 15: Pin Interrupt and Pattern Match (PINT)

15.6.3 Pattern match engine edge detect examples

slice 0 (INOre)

INO |

SRCO0 =0, CFGO = 0x3, PROD_ENDPTSO0 = 0x0 (sticky rising edge detection)

slice 1 (IN1ev) minterm
IN1 | (I_NQre)(IN1ev)'
pin interrupt raised on
falling edge on input 1 any time
after INO has gone HIGH

NVIC pin interrupt 1
and GPIO_INT_BMAT output

SRC1 =1, CFG1 = 0x7, PROD_ENDPTS1 = 0x1 (non-sticky edge detection)

Figure shows pattern match functionality only and accurate timing is not implied. Inputs (INn) are shown synchronized to the
system clock for simplicity.

Fig 37. Pattern match engine examples: sticky edge detect

slice 0 (INO)

INO |

SRCO = 0, CFGO = 0x4, PROD_ENDPTSO0 = 0x0 (high level detection)

slice 1 (IN1ev) minterm

INT | (INO)(IN1ev)
pin interrupt raised

on rising edge of IN1 during
the HIGH level of INO

NVIC pin interrupt 1
and GPIO_INT_BMAT output

SRC1 =1, CFG1 = 0x7, PROD_ENDPTS1 = 0x1 (non-sticky edge detection)

Figure shows pattern match functionality only and accurate timing is not implied. Inputs (INn) are shown synchronized to the
system clock for simplicity.

Fig 38. Pattern match engine examples: Windowed non-sticky edge detect evaluates as true

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 102 of 350

NXP Semiconductors

UM11138

Chapter 15: Pin Interrupt and Pattern Match (PINT)

slice 0 (INO)

INO

SRCO = 0, CFGO = 0x4, PROD_ENDPTSO0 = 0x0 (high level detection)

slice 1 (IN1ev)

IN1

NVIC pin interrupt 1
and GPIO_INT_BMAT output

I

SRC1 =1, CFG1 = 0x7, PROD_ENDPTS1 = 0x1 (non-sticky edge detection)

system clock for simplicity.

minterm

(INO)(IN1ev)

no pin interrupt raised

IN1 does not change while
INO level is HIGH

Figure shows pattern match functionality only and accurate timing is not implied. Inputs (INn) are shown synchronized to the

Fig 39. Pattern match engine examples: Windowed non-sticky edge detect evaluates as false

15.7 Software control

To use the functionality of the PINT module, it is recommended to use software functions
from within fsl_pint.c.

JIN5189

All information provided in this document is subject to legal disclaimers.

User manual

Rev. 1.4 — June 2020

© NXP B.V. 2020. All rights reserved.

103 of 350

16.1 Features

UM11138

Chapter 16: Group GPIO Input Interrupt (GINT)

Rev. 1.4 — June 2020 User manual

* The inputs from any number of digital pins can be enabled to contribute to a combined
group interrupt.

* The polarity of each input enabled for the group interrupt can be configured HIGH or
LOW.

* Enabled inputs can be logically combined through an OR or AND operation.
* The group interrupt can wake up the part from sleep or deep-sleep modes.

16.2 Basic configuration

For the group interrupt feature, enable the clock to the GINT register interfaces in the
SYSCON_AHBCLKCTRLO register. The group interrupt wake-up feature is enabled in the
SYSCON_STARTERO register for GINT (see GINT register descriptions). The interrupt
must also be enabled in the NVIC (see Table 17 “Connection of interrupt sources to the
NVIC").

The pins can be configured as GPIO pins through IOCON, but they don't have to be; if
they are under control of a functional block then they must be configured as an input due
to the blocks functionality. The GINT block reads the input from the pin bypassing IOCON
multiplexing. Make sure that no analog function is selected on pins that are input to the
group interrupt. Selecting an analog function in IOCON disables the digital portion of the
pin and the digital signal is tied to 0.

16.3 General description

JIN5189

16.3.1

For each port/pin connected to the GPIO Grouped Interrupt block, the GPIO grouped
interrupt registers determine which pins are enabled to generate interrupts and what the
active polarities of each of those inputs are.

The GPIO grouped interrupt registers also select whether the interrupt output will be level
or edge triggered and whether it will be based on the OR or the AND of all of the enabled
inputs.

When the designated pattern is detected on the selected input pins, the GPIO grouped
interrupt block generates an interrupt. If the part is in sleep or deep-sleep state, it first
asynchronously wakes the part up prior to asserting the interrupt request. When using
edge triggered interrupts, the interrupt request line can be cleared by writing a one to the
interrupt status bit in the control register.

Contrast between the GPIO Pattern Match Interrupt (PINT) and the
GPIO Group Interrupt (GINT) features

Although these two features both enable interrupt generation based on patterns of GPIO
inputs, they are different. The group interrupt allows a specified subset of the available
inputs to generate one single interrupt request, either when any one of the enabled inputs

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 104 of 350

NXP Semiconductors U M1 1 1 38

Chapter 16: Group GPIO Input Interrupt (GINT)

is active or when all of the enabled inputs are active. It cannot, however, respond to

AND/OR Boolean expressions. The pattern matching function (PINT) can be used to
specify complex AND/OR Boolean expressions and can generate multiple, separate
interrupt requests for each AND term within the expression.

16.4 Functional description

16.5 Example

Any subset of the GPIO pins can be selected to contribute to a common group interrupt
(GINT) and can be enabled to wake the part up from sleep or deep-sleep mode.

An interrupt can be requested based on any selected subset of pins. The pins that
contribute to the interrupt are selected by 1s in the port Enable register (PORT_ENADO),
and an pin polarity can be selected for each pin in the port Polarity register
(PORT_POLO). The level on each pin is exclusive-ORed with its polarity bit, and the result
is ANDed with its enable bit. The results for all enabled bits are used to create an array
that is fed into the AND/OR function. If CTRL[COMB] control bit is set then the block is
operating in AND mode; if all bits in the array are set then the group interrupt condition is
met. If CTRL[COMB] control bit is clear then the block is operating in OR mode; if any bit
in the array is set then the group interrupt condition is met.

If the block is operating in edge triggered mode (CTRL[TRIG]=0) then the interrupt flag
(CTRL[INT]) will be set at the instant that the group interrupt condition is set. It can be
cleared by writing a 1 to this bit. Alternatively, the block can operate in level triggered
mode (CTRL[TRIG]=1), then the interrupt flag reflects whether the group interrupt
condition is currently met or not. It can be observed in the status bit (CTRL[INT]) but will
only be cleared when the group interrupt condition is no longer met.

The raw interrupt request from the group interrupt is sent to the NVIC, which can be
programmed to treat it as level- or edge-sensitive, or it can be edge-detected by the
wake-up interrupt logic.

JIN5189

16.5.1

Example 1

The following example shows some example waveforms input into the GINT block. For
the GINT configuration specified here it is shown when interrupts would be generated.

The GINT block is configured to generate an interrupt for "(100 asserted) OR (102
asserted) OR (104 asserted)". This is achieved with the configuration:

* GINT->CTRL =0x0 - OrComb/EdgeTrigint
¢ GINT->POL_PIO =0x15 - High pol on 100, 102 and 104
® GINT->ENA_PIO = 0x15 - Enable int on 100, 102 and 104

The following figure shows example inputs and when interrupts are generated.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 105 of 350

NXP Semiconductors U M1 1 1 38

Chapter 16: Group GPIO Input Interrupt (GINT)

100
102
104

GPIO init Rising edge on|100: Rising ‘edge on 100: Rising edge onll00 and Rising edge on 102:

GINT init No Interrupt No Interrupt Rising edge on 104: 102: Interrupt No Interrupt
Rising edge on 102: Rising edge on 104: Interrupt Rising edge on 100: Rising edge on 104:
Interrupt No Interrupt Interrupt No Interrupt Rising edge on 100:
No Interrupt GPIO
and
GINT
Deinit

Fig 40. GINT Example for “(100 asserted) OR (102 asserted) OR (104 asserted)

16.5.2 Example 2
The following example shows some example waveforms input into the GINT block. For
the GINT configuration specified here it is shown when interrupts would be generated.

The GINT block is configured to generate an interrupt for "(100 asserted) AND (102
asserted)". This is achieved with the configuration:

* GINT->CTRL =0x2 -AndComb/EdgeTrigint

* GINT->POL_PIO = 0x5 - High pol on 100 and 102

¢ GINT->ENA_PIO = 0x5 - Enable int on 100 and 102

The following figure shows example inputs and when interrupts are generated by the
GINT block in this configuration.

100
102
Rising edge on 100: GPIo
INT init and
Interrupt
GPIO init Rising edge on 102: Rising edge on both 10s: SINT't
Interrupt Interrupt eint

Fig 41. GINT example for “(100 asserted) AND (102 asserted)”

16.6 Software control

To use the functionality of the GINT module, it is recommended to use software functions
from within fsl_gint.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 106 of 350

17.1 How to read

UM11138

Chapter 17: Direct Memory Access (DMA)
Rev. 1.4 — June 2020 User manual

this chapter

The DMA controller is available on all JN5189(T)/JN5188(T) devices.

17.2 Features

19 channels which are connected to peripheral DMA requests. These come from the
USART, I12C, SPI and SPIFI Interfaces, the hash peripheral and digital microphone
peripheral. Any unused channel can also be used for memory-to-memory transfers.

DMA operations can be triggered by on- or off-chip events. Each DMA channel can
select one trigger input from 18 sources. Trigger sources include ADC interrupts,
Timer interrupts, pin interrupts, and the SCT DMA request lines.

Priority is user selectable for each channel (up to eight priority levels).
Continuous priority arbitration.

Address cache with four entries (each entry is a pair of transfer addresses).
Efficient use of data bus.

Supports single transfers up to 1,024 words.

Address increment options allow packing and/or unpacking data.

17.3 Basic configuration

Configure the DMA as follows:
Use the SYSCON_AHBCLKCTRLO register to enable the clock to the DMA registers
interface.

Clear the DMA peripheral reset using the SYSCON_PRESETCTRLO register.
The DMA controller provides an interrupt to the NVIC.

Most peripherals that support DMA, the ADC being an exception, have at least one
DMA request line associated with them. The related channel(s) must be set up
according to the desired operation. the ADC uses a trigger instead of a DMA request.
DMA requests and triggers are described in detail in Section 17.5.1

For peripherals using DMA requests, DMA operation must be triggered before any
transfer will occur. This can be done by software, or can optionally be signaled by one
of 18 hardware triggers, through the input mux registers
INPUTMUX_DMA_ITRIG_INMUX[4:0]. DMA requests and triggers are described in
detail in Section 17.5.1

Trigger outputs may optionally cause other DMA channels to be triggered for more
complex DMA functions. Trigger outputs are connected to
INPUTMUX_DMA_INMUX_INMUX as inputs to DMA triggers.

For details on the trigger input and output multiplexing, see Section 13.5.2 “DMA trigger
input multiplexing”.

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 107 of 350

NXP Semiconductors U M1 1 1 38

Chapter 17: Direct Memory Access (DMA)

17.4 Pin description

The DMA controller has no direct pin connections. However, some DMA triggers can be
associated with pin functions (see Section 17.5.1.2).

17.5 General description

DMA request <

clears
DMA_OTRIG_INMUXn trigger
outputs
A 4
—
DMA . _’
triggers : :
N y
DMA <Y€, Arbiter || Control
DMA_ITRIG_INMUXn Config
—>
DMA 7
requests :
— T > AHB
» master
interface
y .' - i ﬁ’
IRQ AHB slave Source Destination
“« i address fetch| _ Jaddress fetch Source Destination
interface 1 [data [’] data
address cache address cache
complete < |

Reload
150114

Fig 42. DMA block diagram

17.5.1 DMA requests and triggers

In general, DMA requests are intended to pace transfers to match what the peripheral
(including its FIFO if it has one) can do. For example, the USART will issue a transmit
DMA request when its transmit FIFO is not full, and a receive DMA request when its
receive FIFO is not empty. DMA requests are summarized in Table 25.

Triggers start the transfer. In typical cases, only a software trigger will probably be used.
Other possibilities are provided for, such as starting a DMA transfer when certain timer or
pin related events occur. Those transfers would usually still be paced by a peripheral DMA
request if a peripheral is involved in the transfer. Note that no DMA activity will take place
for any particular DMA channel unless that channel has been triggered, either by software
or hardware. DMA triggers are summarized in Table 25.

There is one specific exception to the above description, which is the ADC. The ADC
doesn’t fit the simple pacing signal model very well because of the possibilities
represented by the programmable conversion sequences. A sequence complete DMA

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 108 of 350

NXP Semiconductors U M1 1 1 38

Chapter 17: Direct Memory Access (DMA)

request is likely to require transferring several non-contiguous result registers at once
(see Chapter 27 “12-bit ADC Controller (ADC)"). It might also require other things to be
done that can be done by the DMA without software intervention. This model fits better
with the trigger facility, so that is how the ADC is connected to the DMA controller.

Once triggered by software or hardware, a DMA operation on a specific channel is
initiated by a DMA request if it is enabled for that channel.

A DMA channel using a trigger can respond by moving data from any memory address to
any other memory address. This can include fixed peripheral data registers, or
incrementing through RAM buffers. The amount of data moved by a single trigger event
can range from a single transfer to many transfers. A transfer that is started by a trigger
can still be paced using the channel’s DMA request. This allows sending a string to a
serial peripheral, for instance, without overrunning the peripheral’s transmit buffer.

Each DMA channel also has an output that can be used as a trigger input to another
channel. The trigger outputs appear in the trigger source list for each channel and can be
selected through the INPUTMUX_DMA_OTRIG_INMUX register as inputs to other
channels.

17.5.1.1 DMA requests

DMA requests are directly connected to the peripherals. Each channel supports one DMA
request line and one trigger input which is multiplexed to many possible input sources, as
shown in Table 25.

Table 25. DMA requests & trigger muxes

DMA channel # Requestinput |DMA trigger mux

0 USART 0 RX DMA_ITRIG_INMUXO0
1 USART 0 TX ‘DMA_ITRIG_INMUX1
2 USART 1 RX DMA_ITRIG_INMUX2
3 USART 1 TX ‘DMA_ITRIG_INMUXS
4 I2C 0 Slave DMA_ITRIG_INMUX4
5 I2C 0 Master ‘DMA_ITRIG_INMUXS
6 I2C 1 Slave DMA_ITRIG_INMUX6
7 I2C 1 Master ‘DMA_ITRIG_INMUXY
8 SPI 0 RX DMA_ITRIG_INMUX8
9 SPIOTX ‘DMA_ITRIG_INMUXQ
10 SPI 1 RX DMA_ITRIG_INMUX10
11 SPI1TX ‘DMA_ITRIG_INMUX11
12 SPIFI DMA_ITRIG_INMUX12
13 I2C 2 Slave ‘DMA_ITRIG_INMUX13
14 I2C 2 Master DMA_ITRIG_INMUX14
15 DMIC Channel 0 ‘DMA_ITRIG_INMUX15
16 DMIC Channel 1 DMA_ITRIG_INMUX16
17 Hash RX ‘DMA_ITRIG_INMUX17
18 Hash TX DMA_ITRIG_INMUX18

[11 See Section 17.5.1.1.1 below for information about DMA for the 12C Monitor function.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 109 of 350

NXP Semiconductors U M1 1 1 38

1

7.51.1.1

Chapter 17: Direct Memory Access (DMA)

DMA with I12C monitor mode

The I2C monitor function may be used with DMA if one of the channels related to the same
12C Interface is available.

Table 26. DMA with the 12C Monitor function
I12C Master DMA |12C Slave DMA |I12C Monitor DMA

Not enabled

Enabled

Enabled

If 12C Monitor DMA is enabled, it will use the DMA channel for the Master function of the
same |2C Interface.

vNot enabled ‘If I2C Monitor is DMA enabled, it will use the DMA channel for the Slave function of the

same |2C Interface.

iEnabIed ‘The [2C Monitor function cannot use DMA.

JIN5189

17.5.1.2

17.5.1.3

17.5.1.4

Hardware triggers

Each DMA channel can use one trigger that is independent of the request input for this
channel. The trigger input is selected in the INPUTMUX_DMA_ITRIG_INMUX register.
There are 18 possible internal trigger sources for each DMA channel. In addition, the DMA
trigger output can be routed to the trigger input of another channel through the trigger
input multiplexing. See Table 25 and Section 13.5.2 “DMA trigger input multiplexing”.

Note that the ADC is unique in that it uses DMA triggers only, and has no DMA requests.

Trigger operation detail

Atrigger of some kind is always needed to start a transfer on a DMA channel. This can be
a hardware or software trigger, and can be used in several ways.

If a channel is configured with the XFERCFGn[SWTRIG] bit equal to 0, the channel can
be later triggered either by hardware or software. Software triggering is accomplished by
writing a 1 to the appropriate bit in the SETTRIG register. Hardware triggering requires
setup of the HWTRIGEN, TRIGPOL, TRIGTYPE, and TRIGBURST fields in the CFG
register for the related channel. When a channel is initially set up, the
XFERCFGNn[SWTRIG] can be set, causing the transfer to begin immediately.

Once triggered, transfer on a channel will be paced by DMA requests if the
CFGn[PERIPHREQEN] bit is set. Otherwise, the transfer will proceed at full speed.

The CTLSTATN[TRIG] bit can be cleared at the end of a transfer, determined by the value
XFERCFGn[SWTRIG]. When a 1 is found in XFERCFGn[CLRTRIG], the trigger is cleared
when the descriptor is exhausted.

Trigger output detail

Each channel of the DMA controller provides a trigger output. This allows the possibility of
using the trigger outputs as a trigger source to a different channel in order to support
complex transfers on selected peripherals. This kind of transfer can, for example, use
more than one peripheral DMA request. An example use would be to input data to a
holding buffer from one peripheral, and then output the data to another peripheral, with
both transfers being paced by the appropriate peripheral DMA request. This kind of
operation is called “chained operation” or “channel chaining”.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 110 of 350

NXP Semiconductors U M1 1 1 38

Table 28:

Chapter 17: Direct Memory Access (DMA)

17.5.2 DMA Modes

The DMA controller doesn'’t really have separate operating modes, but there are ways of
using the DMA controller that have commonly used terminology in the industry.

Once the DMA controller is set up for operation, using any specific DMA channel requires
initializing the registers associated with that channel (see Table 25), and supplying at least
the channel descriptor, which is located somewhere in memory, typically in on-chip
SRAM. The channel descriptor is shown in Table 27.

Table 27: Channel descriptor
Offset Description

+0x0 | Reserved
+ 0x4 | Source data end address

+ 0x8 |Destination end address

+ 0xC ‘Link to next descriptor

The source and destination end addresses, as well as the link to the next descriptor are
just memory addresses that can point to any valid address on the device. The starting
address for both source and destination data is the specified end address minus the
transfer length (XFERCOUNT * the address increment as defined by SRCINC and
DSTINC). The link to the next descriptor is used only if it is a linked transfer.

After the channel has had a sufficient number of DMA requests and/or triggers, depending
on its configuration, the initial descriptor will be exhausted. At that point, if the transfer
configuration directs it, the channel descriptor will be reloaded with data from memory
pointed to by the “Link to next descriptor” entry of the initial channel descriptor.
Descriptors loaded in this manner look slightly different the channel descriptor, as shown
in Table 28. The difference is that a new transfer configuration is specified in the reload
descriptor instead of being written to the XFERCFG register for that channel.

This process repeats as each descriptor is exhausted as long as reload is selected in the
transfer configuration for each new descriptor.

Reload descriptors

Offset Description

+0x0 Transfer configuration.

+ 0x4 |Source end address. This points to the address of the last entry of the source address range if the address is
incremented. The address to be used in the transfer is calculated from the end address, data width, and transfer
size.

+0x8 Destination end address. This points to the address of the last entry of the destination address range if the address
is incremented. The address to be used in the transfer is calculated from the end address, data width, and transfer
size.

+ 0xC |Link to next descriptor. If used, this address must be aligned to a multiple of 16 bytes (i.e., the size of a descriptor).

JIN5189

17.5.3 Single buffer

This generally applies to memory to memory moves, and peripheral DMA that occurs only
occasionally and is set up for each transfer. For this kind of operation, only the initial
channel descriptor shown in Table 29 is needed.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 111 of 350

NXP Semiconductors U M1 1 1 38

17.5.4

Chapter 17: Direct Memory Access (DMA)

Table 29: Channel descriptor for a single transfer
Offset Description

+0x0 |Reserved

+ 0x4 ‘Source data end address

+ 0x8 | Destination data end address
+ 0xC | (not used)

This case is identified by the XFERCFGn[RELOAD] = 0. When the DMA channel receives
a DMA request or trigger (depending on how it is configured), it performs one or more
transfers as configured, then stops. Once the channel descriptor is exhausted, additional
DMA requests or triggers will have no effect until the channel configuration is updated by
software.

Ping-Pong

Ping-pong is a special case of a linked transfer. It is described separately because it is
typically used more frequently than more complicated versions of linked transfers.

A ping-pong transfer uses two buffers alternately. At any one time, one buffer is being
loaded or unloaded by DMA operations. The other buffer has the opposite operation being
handled by software, readying the buffer for use when the buffer currently being used by
the DMA controller is full or empty. Table 30 shows an example of descriptors for
ping-pong from a peripheral to two buffers in memory.

Table 30: Example descriptors for ping-pong operation: peripheral to buffer

17.5.5

JIN5189

Channel Descriptor Descriptor B Descriptor A

+ 0x0 (not used) '+0x0 Buffer B transfer configuration + 0x0 Buffer A transfer configuration
+ 0x4 Peripheral data end address + 0x4 Peripheral data end address + 0x4 Peripheral data end address
+ 0x8 Buffer Amemory end address '+ 0x8 Buffer B memory end address + 0x8 Buffer Amemory end address
+ 0xC Address of descriptor B + 0xC Address of descriptor A + 0xC Address of descriptor B

In this example, the channel descriptor is used first, with a first buffer in memory called
buffer A. The configuration of the DMA channel must have been set to indicate a reload.
Similarly, both descriptor A and descriptor B must also specify reload. When the channel
descriptor is exhausted, descriptor B is loaded using the link to descriptor B, and a
transfer interrupt informs the CPU that buffer A is available.

Descriptor B is then used until it is also exhausted, when descriptor A is loaded using the
link to descriptor A contained in descriptor B. Then a transfer interrupt informs the CPU
that buffer B is available for processing. The process repeats when descriptor A is
exhausted, alternately using each of the 2 memory buffers.

Interleaved transfers

One use for the XFERCFGNn[SRCINC] and XFERCFGNn[DSTINC] configurations is to
handle data in a buffer such that it is interleaved with other data.

For example, if 4 data samples from several peripherals need to be interleaved into a
single data structure, this may be done while the data is being read in by the DMA. Setting
SRCINC to 4x width for each channel involved will allow room for 4 samples in a row in
the buffer memory. The DMA will place data for each successive value at the next location
for that peripheral.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 112 of 350

NXP Semiconductors U M1 1 1 38

Chapter 17: Direct Memory Access (DMA)

The reverse of this process could be done using XFERCFGn[DSTINC] to de-interleave
combined data from the buffer and send it to several peripherals or locations.

JIN5189

17.5.6

17.5.7

17.5.8

Buffer start " | Entry 0, first pass

Entry 0, second pass

Entry 1, first pass
Entry 1, second pass

Entry 2, first pass
Entry 2, second pass

Entry 3, first pass
Entry 3, second pass

160519

Fig 43. Interleaved transfer in a single buffer

Linked transfers (linked list)

A linked transfer can use any number of descriptors to define a complicated transfer. This
can be configured such that a single transfer, a portion of a transfer, one whole descriptor,
or an entire structure of links can be initiated by a single DMA request or trigger.

An example of a linked transfer could start out like the example for a ping-pong transfer
(Table 30). The difference would be that descriptor B would not link back to descriptor A,
but would continue on to another different descriptor. This could continue as long as
desired, and can be ended anywhere, or linked back to any point to repeat a sequence of
descriptors. Of course, any descriptor not currently in use can be altered by software as
well.

Address alignment for data transfers

Transfers of 16-bit width require an address alignment to a multiple of 2 bytes. Transfers
of 32-bit width require an address alignment to a multiple of 4 bytes. Transfers of 8-bit
width can be at any address.

Channel chaining

Channel chaining is a feature which allows completion of a DMA transfer on channel x to
trigger a DMA transfer on channel y. This feature can for example be used to have DMA
channel x reading n bytes from USART to memory, and then have DMA channel y
transferring the received bytes to the CRC engine, without any action required from the
Arm core.

To use channel chaining, first configure DMA channels x and y as if no channel chaining
would be used. Then:

* For channel x:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 113 of 350

NXP Semiconductors

UM11138

Chapter 17: Direct Memory Access (DMA)

If channel x is configured to auto reload the descriptor on exhausting of the
descriptor (XFERCFGN[RELOAD] is set), then enable 'clear trigger on descriptor
exhausted' by setting bit XFERCFGn[CLRTRIG].

® For channel y:

Configure the input trigger input mux register
(INPUTMUX_DMA_ITRIG_INMUX[4:0]) for channel y to use any of the available
DMA trigger muxes (DMA trigger mux 0/1).

Configure the chosen DMA trigger mux to select DMA channel x.

Enable hardware triggering by setting bit CFGn[HWTRIGEN].

Set the trigger type to edge sensitive by clearing bit CFGn[TRIGTYPE].
Configure the trigger edge to falling edge by clearing bit CFGn[TRIGPOL].

Note that after completion of channel x the descriptor may be reloaded (if configured so),
but remains un-triggered. To configure the chain to auto-trigger itself, setup channels x
and y for channel chaining as described above. In addition to that:

* A ping-pong configuration for both channel x and y is recommended, so that data
currently moved by channel y is not altered by channel x.

* For channel x:

Configure the input trigger input mux register
(INPUTMUX_DMA_ITRIG_INMUX]4:0]) for channel y to use the same DMA trigger
mux as chosen for channel y.

Enable hardware triggering by setting bit CFGn[HWTRIGEN].
Set the trigger type to edge sensitive by clearing bit CFGn[TRIGTYPE].
Configure the trigger edge to falling edge by clearing bit CFGn[TRIGPOL]..

17.5.9 DMA in reduced power modes

DMA in sleep mode

In sleep mode, the DMA can operate and access all enabled SRAM blocks, without
waking the CPU.

DMA in deep-sleep mode

DMA operation is not possible in deep-sleep mode.

17.6 Functional Description

JIN5189

17.6.1 Control Register

17.6.2

The control register contains the control bit to enable the DMA controller.

Interrupt Status Register

The read-only INTSTAT register provides an overview of DMA status. This allows quick
determination of whether any enabled interrupts are pending. Details of which channels
are involved can be found in the interrupt type specific registers.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 114 of 350

NXP Semiconductors

UM11138

JIN5189

17.6.3 SRAM Base address register

17.6.4

17.6.5

Chapter 17: Direct Memory Access (DMA)

The DMA function uses a DMA descriptor table which is located in SRAM. The
SRAMBASE register must be configured with an address where DMA descriptors will be
stored. Software must set up the descriptors for those DMA channels that will be used in

the application.

Each DMA channel has an entry for the channel descriptor in the SRAM table. The values
for each channel start at the address offsets found in Table 31. Only the descriptors for
channels in use are used. The contents of each channel descriptor are described in

Table 27.

Table 31: Channel descriptor map

Descriptor
Channel descriptor for DMA channel 0

Offset
0x000

Channel descriptor for DMA channel 1

Channel descriptor for DMA channel 2

0x010
0x020

Channel descriptor for DMA channel 3
Channel descriptor for DMA channel 4

0x030
0x040

Channel descriptor for DMA channel 5
Channel descriptor for DMA channel 6

0x050
0x060

Channel descriptor for DMA channel 7
Channel descriptor for DMA channel 8

0x070
0x080

Channel descriptor for DMA channel 9
Channel descriptor for DMA channel 10

0x090
0x0A0

Channel descriptor for DMA channel 11
Channel descriptor for DMA channel 12

0x0BO
0x0CO0

Channel descriptor for DMA channel 13
Channel descriptor for DMA channel 14

0x0DO0
OxO0EO

Channel descriptor for DMA channel 15
Channel descriptor for DMA channel 16

0xOFO0
0x100

Channel descriptor for DMA channel 17
Channel descriptor for DMA channel 18

0x110
0x120

Enable Set Register

The ENABLESETO register determines whether each DMA channel is enabled or
disabled. Disabling a DMA channel does not reset the channel in any way. A channel can
be paused and restarted by clearing, then setting the Enable bit for that channel. Reading
ENABLESETO provides the current state of all of the DMA channels represented by that
register. Writing a 1 to a bit position in ENABLESETO that corresponds to an implemented
DMA channel sets the bit, enabling the related DMA channel. Writing a 0 to any bit has no
effect. Enables are cleared by writing to ENABLECLRO.

Enable Clear Register

The ENABLECLRO, write-only, register is used to clear the enable of one or more DMA

channels.

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

115 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

17.6.6

17.6.7

17.6.8

17.6.9

17.6.10

17.6.11

Chapter 17: Direct Memory Access (DMA)

Active status register

The ACTIVEDO register indicates which DMA channels are active at the point when the
read occurs. The register is read-only.

A DMA channel is considered active when a DMA operation has been started but not yet
fully completed. The Active status will persist from a DMA operation being started, until
the pipeline is empty after end of the last descriptor (when there is no reload). An active
channel may be aborted by software by setting the appropriate bit in one of the Abort
register (see Section 17.6.15)

Busy Status register

The BUSYO register indicates which DMA channels are busy at the point when the read
occurs. This register is read-only.

A DMA channel is considered busy when there is any operation related to that channel in
the DMA controller's internal pipeline. This information can be used after a DMA channel
is disabled by software (but still active), allowing confirmation that there are no remaining
operations in progress for that channel.

Error Interrupt register

The ERRINTO register contains flags for each DMA channel's Error Interrupt. Any pending
interrupt flag in the register will be reflected on the DMA interrupt output.

Reading the registers provides the current state of all DMA channel error interrupts.
Writing a 1 to a bit position in ERRINTO that corresponds to an implemented DMA channel
clears the bit, removing the interrupt for the related DMA channel. Writing a 0 to any bit
has no effect.

Interrupt Enable read and Set register

The INTENSETO register controls whether the individual Interrupts for DMA channels
contribute to the DMA interrupt output.

Reading the registers provides the current state of all DMA channel interrupt enables.
Writing a 1 to a bit position in INTENSETO that corresponds to an implemented DMA
channel sets the bit, enabling the interrupt for the related DMA channel. Writing a 0 to any
bit has no effect. Interrupt enables are cleared by writing to INTENCLRO.

Interrupt Enable Clear register

The INTENCLRO register is used to clear interrupt enable bits in INTENSETO. The
register is write-only.

Interrupt A register

The INTAO register contains the interrupt A status for each DMA channel. The status will
be set when the SETINTA bit is 1 in the transfer configuration for a channel, when the
descriptor becomes exhausted. Writing a 1 to a bit in this register clears the related INTA
flag. Writing 0 has no effect. Any interrupt pending status in the registers will be reflected
on the DMA interrupt output if it is enabled in the related INTENSETO register.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 116 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

17.6.12

17.6.13

17.6.14

17.6.15

17.6.16

Chapter 17: Direct Memory Access (DMA)

Interrupt B register

The INTBO register contains the interrupt B status for each DMA channel. The status will
be set when the SETINTB bit is 1 in the transfer configuration for a channel, when the
descriptor becomes exhausted. Writing a 1 to a bit in the register clears the related INTB
flag. Writing 0 has no effect. Any interrupt pending status in this register will be reflected
on the DMA interrupt output if it is enabled in the INTENSETO register.

Set valid register

The SETVALIDO register allows setting the Valid bit in the CTLSTATn register for one or
more DMA channels. See Section 17.6.17 for a description of the VALID bit. This register
is write-only.

The XFERCFGNn[CFGVALID] and SV (set valid) bits allow more direct DMA block timing
control by software. Each Channel Descriptor, in a sequence of descriptors, can be
validated by either the setting of the CFGVALID bit or by setting the channel's SETVALID
flag. Normally, the CFGVALID bit is set. This tells the DMA that the Channel Descriptor is
active and can be executed. The DMA will continue sequencing through descriptor blocks
whose CFGVALID bit are set without further software intervention. Leaving a CFGVALID
bit set to 0 allows the DMA sequence to pause at the Descriptor until software triggers the
continuation. If, during DMA transmission, a Channel Descriptor is found with CFGVALID
set to 0, the DMA checks for a previously buffered SETVALIDO setting for the channel. If
found, the DMA will set the descriptor valid, clear the SV setting, and resume processing
the descriptor. Otherwise, the DMA pauses until the channels SETVALIDO bit is set.

Set Trigger register

The SETTRIGO register allows setting the CTLSTATn[TRIG] for one or more DMA
channel. See Section 17.6.17 for a description of the TRIG bit, and Section 17.5.1 for a
general description of triggering. This register is write-only.

Abort Register

The ABORTO register allows aborting operation of a DMA channel if needed. To abort a
selected channel, the channel should first be disabled by clearing the corresponding
Enable bit by writing a 1 to the proper bit in ENABLECLRO register. Then wait until the
channel is no longer busy by checking the corresponding bit in BUSYO register. Finally,
write a 1 to the proper bit of ABORTO register. This prevents the channel from restarting
an incomplete operation when it is enabled again. This register is write-only.

Channel Configuration registers

The CFGn register contains various configuration options for DMA channel n.

* PERIPHREQEN: control if channel is to be linked to its peripheral

* HWTRIGEN: control if hardware triggering is to be used

* TRIGPOL: configure trigger to be rising or falling edge

* TRIGTYPE: configure if trigger is edge triggered or level triggered

* TRIGBURST: configure if the trigger causes a single transfer or a burst
* BURSTPOWER: configure the size of a burst, up to 1024 transfers

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 117 of 350

NXP Semiconductors U M1 1 1 38

Chapter 17: Direct Memory Access (DMA)

¢ SRCBURSTWRAP: configure whether the source address range for each burst is the
same

* DSTBURSTWRAP: configure whether the source address range for each burst is the
same

* CHPRIORITY: configure channel priority

Table 32: Trigger setting summary
TrigBurst | TrigType |TrigPol Description

0 0 0 Hardware DMA trigger is falling edge sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap.

0 0 1 Hardware DMA trigger is rising edge sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap.

0 1 0 Hardware DMA trigger is low level sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap.

0 1 1 'Hardware DMA trigger is high level sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap.

1 0 0 Hardware DMA trigger is falling edge sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap, and also
determines how much data is transferred for each trigger.

1 0 1 Hardware DMA trigger is rising edge sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap, and also
determines how much data is transferred for each trigger.

1 1 0 Hardware DMA trigger is low level sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap, and also
determines how much data is transferred for each trigger.

1 1 1 Hardware DMA trigger is high level sensitive. The
BURSTPOWER field controls address wrapping if enabled
via SrcBurstWrap and/or DstBurstWrap, and also
determines how much data is transferred for each trigger.

17.6.17 Channel Control and Status Registers

The CTLSTATN, read only, register provides status flags specific to DMA channel n.
Status information indicates the 'Valid pending' status and the trigger status.These
registers are read-only.

17.6.18 Channel transfer configuration registers
The XFERCFGn register contains transfer related configuration information for DMA
channel n.
* CFGVALID: this indicates if the channel descriptor is valid

* RELOAD: Using the Reload bit, this register can optionally be automatically reloaded
when the current settings are exhausted (the full transfer count has been completed),
allowing linked transfers with more than one descriptor to be performed.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 118 of 350

NXP Semiconductors U M1 1 1 38

Chapter 17: Direct Memory Access (DMA)

* SWTRIG: Used to trigger the DMA channel by SW

* CLRTRIG: Controls if trigger is cleared when the descriptor is exhausted
* SETINTA: control if INTA flag is set when the descriptor is exhausted

* SETINTB controls if INTB flag is set when the descriptor is exhausted

* WIDTH configured if 8, 16 or 32 bit transfers are performed

* SRCINC: configure increment mode for source address

* DSTINC: configure increment mode for the destination address

e XFERCOUNT: configures the number of transfers to be performed

See Section 17.5.1.3 “Trigger operation detail” for details on trigger operation.

17.7 Software control

To use the functionality of the DMA module, it is recommended to use software functions
from within fsl_dma.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 119 of 350

UM11138

Chapter 18: Pulse Width Modulation (PWM)

Rev. 1.4 — June 2020 User manual

18.1 How to read this chapter

The PWM is available on all JN5189(T)/JN5188(T) devices.

18.2 Features

The features of the PWM are:

* Ten 16-bit auto reload down counters

* QOperate on APB clock

* Programmable 10-bit prescaler for the ten channels

* Predictable PWM initial output state

¢ Buffered compare register and polarity register to ensure correct PWM output
* Programmable overflow interrupt generation

* Configurable level (high or low) of PWM output when PWM is disabled

* QOption to drive all ten outputs from a single PWM channel

18.3 Basic configuration

Configure the PWM as follows:

* Enable the clock to the PWM by setting SYSCON_AHBCLKCTRL1[PWM] to enable
the register interface and the peripheral clock.

* The PWM provides interrupt to the NVIC, PWMO_IRQn to PWM10_IRQn, see
Table 17 “Connection of interrupt sources to the NVIC”

* Configure the required connections to the device 10 pins

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 120 of 350

NXP Semiconductors U M1 1 1 38

Chapter 18: Pulse Width Modulation (PWM)

18.4 Pin description

See Chapter 12 “I/O Pin Configuration (IOCON)” to assign PWM functions to external
pins.

Two of the PWM channels, PWM8 and PWM?9, can be used as a trigger for the ADC SEQ
controller. See Chapter 27 “12-bit ADC Controller (ADC)” for this configuration.

Table 33. PWM possible output connections

PWM output 10 with pull-down default |10 with pull-up default
PWMO PIO0 and PIO12
PWM1 PIO1 PIO14

PWM2 PIO2 PIO13

PWM3 PIO3 or PIO15
PWM4 PIO19 PIO4

PWM5 PIO16

PWM6 'PIO6 or PIO17

PWM7 PIO7 or PIO18

PWMS 'PI020 PIO8

PWM9 PIO9 or PIO21

18.5 General description

The general architecture of the PWM block is shown in Figure 44. The PWM block can
control up to ten PWM channels. These are either ten independent channels or they can
all be driven from one PWM channel (PWM10). The block receives only the APB clock
and there is a prescaler of each PWM channel to support a wide range of PWM periods.
Each of the PWM channels, including pwm10, can generate an interrupt to the
processors.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 121 of 350

NXP Semiconductors U M1 1 1 38

Chapter 18: Pulse Width Modulation (PWM)

r— - == —— = — = — = — = — = — . — —
| I
I : : wm_en_10 I
<€ — Register Count Unit pwm_en_ .
[I
| Yy |
wn 0 .
g | o pwm 0 pwm o 0
_ pwm I wm_o_1
m > > —|—> pwm_0_
% I P It I Wavef I 9 I)
| rescalers | > averorm gen 1 pwm_: > | pwm 0 9
o pwm_10 1 |
I > N ;
I » pwm_intr 0
I Tnterrupt | —» pwm_intr 1
|
\ I generator ! I o
™ pwm _intr 9
| pwm_intr_
i I P 5wm_intr 10
| I
- J
Fig 44. PWM Architecture
JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 122 of 350

NXP Semiconductors U M1 1 1 38

Chapter 18: Pulse Width Modulation (PWM)

18.6 Functional description

18.6.1

18.6.2

18.6.3

JIN5189

Prescaler

There are eleven 10-bit prescalers. The frequency of the scaled clock enable is calculated
as follows.

Fscaled = Feik / (pscl +1)

Where F is the frequency of the AHB clock, pscl is the prescaler setting for the PWM
channel.

Counter Unit

The main part of the counter unit is eleven 16-bit counters and its control logic. The
following figure shows a block diagram of the counter unit (n=0,1,2 . .. 10)

dec

Control
Logical n

clk ——» CNTn

clk en n —— | 10-bit counter | set

———® ovfn

Fig 45. PWM Counter Block

Waveform generator

There is one compare, polarity, disable state level and period register for each channel.
The PWM period is updated at the end of each PWM period, and the compare and polarity
are loaded from their buffers respectively.

* Compare: when the compare value is reached the PWM output will change on the
next counter decrement and be stable from 'compare-1' to 0

¢ Disable state level: when the PWM channel is disabled, this sets the level of the PWM
channel. Note: the common PWM channel (PWM10) does not have this setting; when
it is not enabled each of the ten PWM channel will then take settings based on their
own control registers.

* Period register: PWM counter will decrement from the period value and give actual
period of 'Period +1'

* Polarity: when configured low then the PWM o/p is set high on a compare match;
when configured high then the PWM o/p is set low on a compare match

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 123 of 350

NXP Semiconductors U M1 1 1 38

Chapter 18: Pulse Width Modulation (PWM)

I’ - - - — T/
|____—[___|_—|'_———|'—|—I——]——[———]—|Comparematch|
Lo
I I [[[I
I I | [| I
I I | [| I
l | [\ [[I
I I [| I
I I [. [I
I N N I
TCNT ¢ v BN ¢ ' v v
v
pwm_o POL=1
pwin o] 1] BER [POL=0
W p—
period }471—><—2—><—3—><—4—><—5—><—6—><—7—><—8 >€9>e 10—»{

Fig 46. PWM Waveform

18.6.4 Interrupt generator

There are eleven overflow interrupts which connect directly to the NVIC interface of the
MCU. There interrupts can be read from the PWM status registers PSTO to PST2.
Pending status bits can be cleared by writing 1 to the corresponding bit.

The interrupts can be enabled in the control register CTRLO; there is a separate enable bit
for each channel.

18.6.5 Common PWM mode

By enabling PWM10, all 10 PWM outputs are driven by the PWM10 channel and so they
will all have the same output.

18.6.6 PWM trigger for ADC

PWM8 and PWMS9 can be used as trigger sources for ADC SEQ sequencer. Apart from
configuring the PWMS8 or 9 channels, no extra configuration is required within the PWM
block to enable this feature.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 124 of 350

NXP Semiconductors U M1 1 1 38

Chapter 18: Pulse Width Modulation (PWM)

18.7 Software control

To use the functionality of the PWM module it is recommended to use software functions
from within fsl_pwm.c.

JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 125 of 350

UM11138

Chapter 19: Standard Counter/Timers (CT32B)

Rev. 1.4 — June 2020 User manual

19.1 How to read this chapter

19.2 Features

These two standard timers are available on all JN5189(T)/JN5188(T) devices.

Each is a 32-bit counter/timer with a programmable 32-bit prescaler. Both of the
timers include two capture and two match pin connections.

Counter or timer operation.

Up to four 32-bit captures that can take a snapshot of the timer value when an input
signal transitions. A capture event may also optionally generate an interrupt.

The timer and prescaler may be configured to be cleared on a designated capture
event. This feature permits easy pulse-width measurement by clearing the timer on
the leading edge of an input pulse and capturing the timer value on the trailing edge.

Four 32-bit match registers that allow:

— Continuous operation with optional interrupt generation on match.
— Stop timer on match with optional interrupt generation.

— Reset timer on match with optional interrupt generation.

Up to 2 external outputs corresponding to match registers with the following
capabilities (the number of match outputs for each timer that are actually available on
device pins may vary by part number):

— Set LOW on match.
— Set HIGH on match.
— Toggle on match.

— Do nothing on match.

Up to 4 match registers can be configured for PWM operation, allowing up to 2 single
edged controlled PWM outputs.

Up to 2 match registers can be used to generate DMA requests.

19.3 Basic configuration

JIN5189

Set the appropriate bits to enable clocks to timers that will be used: CTIMERO and
CTIMER1 in the ASYNCAPBCLKCTRL register.

Clear the timer reset using the ASYNCPRESETCTRL register. Note that bit positions
in the reset control registers match the bit positions in the clock control registers.

Pins: Select timer pins and pin modes as needed through the relevant IOCON
registers (Chapter 12 “I/O Pin Configuration (IOCON)").

Interrupts: See register MCR and CCR for match and capture events. Interrupts must
be enabled in the NVIC, see Table 17 “Connection of interrupt sources to the NVIC”
for information on enabling interrupts.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 126 of 350

NXP Semiconductors U M1 1 1 38

Chapter 19: Standard Counter/Timers (CT32B)

* DMA: Some timer match conditions can be used to generate timed DMA requests,
see Table 25 “DMA requests & trigger muxes”.

19.4 Applications

* |Interval Timer for counting internal events.
* PWM outputs
Pulse Width Demodulator via Capture inputs.

® Free running timer.

19.5 General description

JIN5189

19.5.1

19.5.2

19.5.3

The counter/timer block is used to count cycles of the APB bus clock or an externally
supplied clock and can optionally generate interrupts or perform other actions at specified
timer values based on four match registers. Each counter/timer also includes capture
inputs to trap the timer value when an input signal transitions, optionally generating an
interrupt.

In PWM mode, three match registers can be used to provide a single-edge controlled
PWM output on the match output pins. One match register is used to control the PWM
cycle length.

Capture inputs

The capture signal can be configured to load the CCR register (CRO or CR1) with the
value in the counter/timer and optionally generate an interrupt. The capture signal is
generated by one of the pins with a capture function. Each capture signal is connected to
one capture channel of the timer.

The Counter/Timer block can select a capture signal as a clock source instead of the APB
bus clock.

Match outputs

When a March register (MRO, MR1, MR2 or MR3) equals the timer counter (TC), the
corresponding match output can either toggle, go LOW, go HIGH, or do nothing. The
External Match Register (EMR) and the PWM Control Register (PWMC) control the
functionality of this output.

Architecture
The block diagram for the timers is shown in Figure 47.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 127 of 350

NXP Semiconductors U M1 1 1 38

Chapter 19: Standard Counter/Timers (CT32B)

Match reload 161220
registers 0 to 3

v
| Match registers 0 to 3 Ii
—| Match Control register |

External Match register |

| Interrupt register |

- Control
<« MAT[1:0]
<«— Interrupt v
<«— DMA request 4—@pare
—>{ CAP[1:0] x

Stop on match
Reset on match
LOADI1:0]

Capture Control register |

Capture registers 0 & 1 |<7

Reset
e Timer / Counter (TC) |
Enable
]
=)
M\

T 3——>| Prescale Counter (PC) |<PCA

Reset ’7Enable | Prescale Register (PR) |
Timer Control Register (TCR) |

Fig 47. 32-bit counter/timer block diagram

19.6 Pin description

Table 34 gives a summary of each of the Timer/Counter related pins. This is followed by
information about IOs that could be used and the configuration for these 10s. Also refer to
Table 19 “IOMUX functions”. Recommended IOCON settings are shown in Table 35,
Table 36, and Table 37.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 128 of 350

NXP Semiconductors

UM11138

Table 34. Timer/Counter pin description

Chapter 19: Standard Counter/Timers (CT32B)

Pin

Type

Description

CTIMER1_CAP1:0

CTIMER1_MAT1:0

JIN5189

CTIMERO_CAP1:0 |Input

CTIMERO_MAT1:0 Output

clock.

Capture Signals- A transition on a capture pin can be configured to load one of the Capture
Registers with the value in the Timer Counter and optionally generate an interrupt.

Timer/Counter block can select a capture signal as a clock source instead of the APB bus

External Match Output - When a match register (MR3:0) equals the timer counter (TC) this
output can either toggle, go low, go high, or do nothing. The External Match Register (EMR)
controls the functionality of this output. Note that match conditions may be used internally
without the use of a device pin.

Table 35. CTIMER possible 10 connections
CTIMER signal 10 10 cell type
TimerQ Cap0 YPIOO_‘IO Combo IO cell
Timer0 Cap1 PIO0_14 Standard GPIO IO cell
TimerQ Mat0 VPIOO_8 Standard GPIO 10 cell
Timer0 Mat1 PI1O0_18 Standard GPIO IO cell
Timer1 Cap0 VPIOO_‘I‘I Combo IO cell
Timer1 Cap1 PIO0_9 Standard GPIO IO cell
Timer1 Mat0 VPIOO_6 Standard GPIO 10 cell
Timer1 Mat1 PIO0_7 Standard GPIO IO cell
Table 36: Suggested CTIMER pin setting for standard GPIO 10
IOCON (Field Setting Comment
bit(s)
2:0 Func Set for CTIMER
function
4:3 Mode 2 iNo pullup or pull-down
5 Slew0 0 See slew1
6 Invert 0 'No need to invert
7 Digimode 1 Digital mode
8 FilterOff 1 iGeneraIIy disable filter
9 Slew1 0 With slew0: generally set to O for low speed
signals
10 oD 0 'Normal GPIO mode
1" 10_clamp 0 Clamp Off
Table 37: Suggested CTIMER pin setting for combo 10 cells (PIO10 and PIO11)
IOCON (Field Setting Comment
bit(s)
2:0 Func Set for CTIMER
function

EGP 1 'GPIO mode

ECS 0 Standard GPIO mode

EHS 0 Low speed GPIO. Generally set to 0 for low

speed signals

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

129 of 350

NXP Semiconductors U M1 1 1 38

Chapter 19: Standard Counter/Timers (CT32B)

Table 37: Suggested CTIMER pin setting for combo 10 cells (PIO10 and PIO11)

IOCON Field Setting Comment

bit(s)

6 Invert 0 No need to invert

7 Digimode 1 Digital mode

8 FilterOff 1 vGeneraIIy disable filter

9 Fsel 0 Not valid for GPIO mode
10 oD 0 'Normal GPIO mode

12 10_clamp 0 Clamp Off

19.7 Functional description

Figure 48 shows a timer configured to reset the count and generate an interrupt on match.
The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle
where the match occurs, the timer count is reset. This gives a full length cycle to the
match value. The interrupt indicating that a match occurred is generated in the next clock
after the timer reached the match value.

Figure 49 shows a timer configured to stop and generate an interrupt on match. The
prescaler is again set to 2 and the match register set to 6. In the next clock after the timer
reaches the match value, the timer enable bit in TCR is cleared, and the interrupt
indicating that a match occurred is generated.

prescale y 5

counter

timer
counter

timer counter
reset

interrupt

Fig 48. A timer cycle in which PR=2, MRx=6, and both interrupt and reset on match are enabled

prescale counter

timer counter

(counter enable)

|
I

TCRI0] y ; X 5
I

interrupt

Fig 49. A timer cycle in which PR=2, MRx=6, and both interrupt and stop on match are enabled

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 130 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

19.7.1

19.7.2

Chapter 19: Standard Counter/Timers (CT32B)

Rules for single edge controlled PWM outputs

1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle
(timer is set to zero) unless their match value is equal to zero.

2. Each PWM output will go HIGH when its match value is reached. If no match occurs
(i.e. the match value is greater than the PWM cycle length), the PWM output remains
continuously LOW.

3. If a match value larger than the PWM cycle length is written to the match register, and
the PWM signal is HIGH already, then the PWM signal will be cleared with the start of
the next PWM cycle.

4. If a match register contains the same value as the timer reset value (the PWM cycle
length), then the PWM output will be reset to LOW on the next clock tick after the
timer reaches the match value. Therefore, the PWM output will always consist of a
one clock tick wide positive pulse with a period determined by the PWM cycle length
(i.e. the timer reload value).

5. If a match register is set to zero, then the PWM output will go to HIGH the first time the
timer goes back to zero and will stay HIGH continuously.

Note: When the match outputs are selected to perform as PWM outputs, the timer reset
and timer stop bits (MCR[MRnR] and MCR[MRnS]) must be set to zero except for the
match register setting the PWM cycle length. For this register, set the MRnR bit to 1 to
enable the timer reset when the timer value matches the value of the corresponding
match register.

I I
I I

PWM2/MAT2 !
|

PWM1/MAT1 ‘ /
|
PWMOMATO |
|

|
|
:A_MRZ =100

]
‘ MR1 = 41
|

} k MRO = 65

| |

| | |

| | |

0 41 65 100
(counter is reset)

Fig 50. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR3) and
MAT3:0 enabled as PWM outputs by the PWCON register.

DMA operation

DMA requests are generated by a match of the Timer Counter (TC) register value to either
Match Register 0 (MRO) or Match Register 1 (MR1). This is not connected to the operation
of the Match outputs controlled by the EMR register. Each match sets a DMA request flag,
which is connected to the DMA controller. In order to have an effect, the DMA controller
must be configured correctly.

When a timer is initially set up to generate a DMA request, the request may already be
asserted before a match condition occurs. An initial DMA request may be avoided by

having software write a 1 to the interrupt flag location, as if clearing a timer interrupt. A
DMA request will be cleared automatically when it is acted upon by the DMA controller.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 131 of 350

NXP Semiconductors U M1 1 1 38

Chapter 19: Standard Counter/Timers (CT32B)

Note: Because timer DMA requests are generated whenever the timer value is equal to
the related Match Register value, DMA requests are always generated when the timer is
running, unless the Match Register value is higher than the upper count limit of the timer.
It is important not to select and enable timer DMA requests in the DMA block unless the
timer is correctly configured to generate valid DMA requests.

Note: To ensure proper operation when using DMAs with this peripheral, the DMA clock
must be configured to be greater than the peripheral clock.

19.8 Software control

To use the functionality of the CTIMER modules, it is recommended to use software
functions from within fsl_ctimer.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 132 of 350

UM11138

Chapter 20: Windowed Watchdog Timer (WWDT)

Rev. 1.2 — June 2020 User manual

20.1 How to read this chapter

20.2 Features

The watchdog timer is available on all JN5189(T)/JN5188(T) devices.

Internally resets chip if not reloaded during the programmable time-out period.

Optional windowed operation requires reload to occur between a minimum and
maximum time-out period, both programmable.

Optional warning interrupt can be generated at a programmable time prior to
watchdog time-out.

Programmable 24-bit timer with internal fixed pre-scaler.

Selectable time period from 1,024 watchdog clocks (TwpcLk % 256 x 4) to over 67
million watchdog clocks (TwpcLk x 224 x 4) in increments of 4 watchdog clocks.

“Safe” watchdog operation. Once enabled, requires a hardware reset or a Watchdog
reset to be disabled.

Incorrect feed sequence causes immediate watchdog event if enabled.

The watchdog reload value can optionally be protected such that it can only be
changed after the “warning interrupt” time is reached.

Flag to indicate Watchdog reset.

The Watchdog clock (WDCLK) source is a selectable frequency in the range of 6 kHz
to 1.5 MHz. The accuracy of this clock is limited to £+15% over temperature, voltage,
and silicon processing variations. To determine the actual watchdog oscillator output,
use the frequency measure block. See Section 37.6 “Frequency measurement”.

The Watchdog timer can be configured to run in deep-sleep mode.
Debug mode.

20.3 Basic configuration

JIN5189

Configuration of the WWDT is accomplished as follows:

* Enable the watchdog oscillator using the software APIs, see Section 6.4 “Clock

control software functions”.

* Enable the register interface (WWDT bus clock): set the

SYSCON_AHBCLKCTRLO[WWDT].

* For waking up from a WWDT interrupt, enable the watchdog interrupt for wake-up in

the SYSCON_STARTERO[WDT_BOD].

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 133 of 350

NXP Semiconductors U M1 1 1 38

Chapter 20: Windowed Watchdog Timer (WWDT)

SYSCON

SYSAHBCLKCTRLO
(WWDT clock enable)

watchdog oscillator —

Windowed Watchdog Timer

system clock —

\ 4

WWDT registers

6 kHz to

1.5 MHz .
» TV: 24-bit timer

170315

U

PDRUNCFG J_

Fig 51. WWDT clocking

20.4 Pin description

The WWDT has no external pins.

20.5 General description

JIN5189

The purpose of the Watchdog Timer is to reset or interrupt the microcontroller within a
programmable time if it enters an erroneous state. When enabled, a watchdog reset is
generated if the user program fails to feed (reload) the Watchdog within a predetermined
amount of time.

When a watchdog window is programmed, an early watchdog feed is also treated as a
watchdog event. This allows preventing situations where a system failure may still feed
the watchdog. For example, application code could be stuck in an interrupt service that
contains a watchdog feed. Setting the window such that this would result in an early feed
will generate a watchdog event, allowing for system recovery.

The Watchdog consists of a fixed (divide by 4) pre-scaler and a 24-bit counter which
decrements when clocked. The minimum value from which the counter decrements is
OxFF. Setting a value lower than OxFF causes OxFF to be loaded in the counter. Hence the
minimum Watchdog interval is (TwpcLk x 256 x 4) and the maximum Watchdog interval is
(TwpeLk x 224 x 4) in multiples of (TwpcLk x 4). The Watchdog should be used in the
following manner:

* Enable and configure the Watchdog oscillator as described in Section 20.3 “Basic
configuration”

* Set the Watchdog timer constant reload value in the TC register.

* Set the Watchdog timer operating mode in the WWDT_MOD register.

* Set a value for the watchdog window time in the WINDOW register if windowed
operation is desired.

* Set a value for the watchdog warning interrupt in the WARNINT register if a warning
interrupt is desired.

¢ Enable the Watchdog by writing OxAA followed by 0x55 to the FEED register.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 134 of 350

NXP Semiconductors

UM11138

JIN5189

20.5.1

Chapter 20: Windowed Watchdog Timer (WWDT)

* The Watchdog must be fed again before the Watchdog counter reaches zero in order
to prevent a watchdog event. If a window value is programmed, the feed must also
occur after the watchdog counter passes that value.

When the Watchdog Timer is configured so that a watchdog event will cause a reset and
the counter reaches zero, the CPU will be reset, loading the stack pointer and program
counter from the vector table as for an external reset. The Watchdog time-out flag
(MOD[WDTOF]) can be examined to determine if the Watchdog has caused the reset
condition. The MOD[WDTOF] flag must be cleared by software.

When the Watchdog Timer is configured to generate a warning interrupt, the interrupt will
occur when the counter is no longer greater than the value defined by the WARNINT

register.

Block diagram

The block diagram of the Watchdog is shown below in the Figure 52. The synchronization
logic (APB bus clock to WDCLK) is not shown in the block diagram.

N/

TV: 24-bit down counter

feed_ok

wdt_clk enable count

A

A.

.|.
S
A 4

feed sequence

detectand
protection 0 WARNINT
A
g3
NE
2|7 feederror underflow
interrupt
compare
X
shadow bit
feed_ok
Y y
WDPROTECT WDTOF WDINT WDRESET WDEN MOD
(bit 4) (bit 2) (bit 3) (bit 1) (bit 0) register
c/c chip reset R
170220 watchdog interrupt

Fig 52. Windowed Watchdog timer block diagram

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 135 of 350

NXP Semiconductors U M1 1 1 38

20.5.2

20.5.3

Chapter 20: Windowed Watchdog Timer (WWDT)

Clocking and power control

The watchdog timer block uses two clocks: APB bus clock and WDCLK. The APB bus
clock is used for the APB accesses to the watchdog registers and is derived from the
system clock (see Figure 10). The WDCLK is used for the watchdog timer counting and is
derived from the watchdog oscillator.

The synchronization logic between the two clock domains works as follows: When the
MOD and TC registers are updated by APB operations, the new value will take effect in 3
WDCLK cycles on the logic in the WDCLK clock domain.

When the watchdog timer is counting on WDCLK, the synchronization logic will first lock
the value of the counter on WDCLK and then synchronize it with the APB bus clock, so
that the CPU can read the TV register.

Remark: Because of the synchronization step, software must add a delay of three
WDCLK clock cycles between the feed sequence and the time the MOD[WDPROTECT] is
enabled. The length of the delay depends on the selected watchdog clock WDCLK.

Using the WWDT protect features

If MOD[WDPROTECT] is set, the watchdog time-out value (TC) can be changed only
after the counter is below the value of WARNINT and WINDOW.

The reload overwrite lock mechanism can only be disabled by a reset of any type.

20.6 Functional description

WDCLK/ 4

Watchdog
Counter

Early Feed
Event

Watchdog
Reset

Conditions;
WINDOW
WARNINT
TC

The following figures illustrate several aspects of Watchdog Timer operation.

A WAWAWAWAWAWAWAWAWRAWAW

—{125A) 1259 X 1258 X 1257 X

[
/

= 0x1200
= OX3FF
= 0x2000

Fig 53. Early watchdog feed with windowed mode enabled

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 136 of 350

NXP Semiconductors U M1 1 1 38

Chapter 20: Windowed Watchdog Timer (WWDT)

wock/4 [\ S\ /\ S\ S\ S\ S \S S S

Watchdog
Counter

——(1201 X 1200 X 11FF X11FE X11FD X11FC X 2000 X 1FFF X1FFE \1FFDX1FFC)

Correct Feed |—|
Event

Watchdog
Reset

Conditions;

WINDOW = 0x1200
WARNINT = Ox3FF
TC = 0x2000

Fig 54. Correct watchdog feed with windowed mode enabled

wock/4 [\ SN/ /S S\ S

W?;gﬂﬂfegr ——{0403 X 0402 X 0401 X 0400 X 03FF X 03FE X03FD X03FC X 03FB X 03FA X 03F9)
Watchdog /
Interrupt
Conditions;
WINDOW = 0x1200
WARNINT = Ox3FF
TC = 0x2000

Fig 55. Watchdog warning interrupt

In all power modes except deep power-down mode, a Watchdog reset or interrupt can
occur when the watchdog is running and has an operating clock source. The watchdog
oscillator can be configured to keep running in sleep and deep-sleep modes.

If a watchdog interrupt occurs in sleep or deep-sleep mode, and the WWDT interrupt is
enabled in the NVIC, the device will wake up. Note that in deep-sleep mode, the WWDT
interrupt must be enabled in the SYSCON_STARTERO[WDT_BOD] in addition to the
NVIC.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 137 of 350

NXP Semiconductors U M1 1 1 38

Chapter 20: Windowed Watchdog Timer (WWDT)

Table 38. Watchdog operating modes selection
WDEN WDRESET Mode of operation

0 X (0or1) Debug/Operate without the Watchdog running.
1 0 Watchdog interrupt mode: the watchdog warning interrupt will be generated but watchdog reset
will not.

When this mode is selected, the watchdog counter reaching the value specified by WARNINT will
set the WDINT flag and the Watchdog interrupt request will be generated

1 1 Watchdog reset mode: both the watchdog interrupt and watchdog reset are enabled.

When this mode is selected, the watchdog counter reaching the value specified by WARNINT will
set the WDINT flag and the watchdog interrupt request will be generated, and the watchdog
counter reaching zero will reset the microcontroller. A watchdog feed prior to reaching the value of
WINDOW will also cause a watchdog reset.

20.7 Software control

To use the functionality of the WWDT module it is recommended to use software functions
from within fsl_wwdt.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 138 of 350

UM11138

Chapter 21: Real-Time Clock (RTC)

Rev. 1.4 — June 2020 User manual

21.1 How to read this chapter

21.2 Features

The RTC is available on all JN5189(T)/JN5188(T) devices.

The RTC is driven by either the 32K FRO or XTAL

From the selected 32 kHz clock lower speed clocks are generated:
— 1 Hz clock for RTC timing.

— 1 kHz clock for high-resolution RTC timing.

Alarm timer: 32-bit, 1 Hz RTC counter and associated match register for alarm
generation.

Wake timer: separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms
resolution; allowing for a maximum nominal period of 65 seconds.

RTC Wake Timer can generate an interrupt for the CPU.

Either Wake timer or the Alarm timer can wake up the part from sleep, deep sleep and
power down modes.

21.3 Basic configuration

JIN5189

Configure the RTC as follows:

Use the SYSCON_AHBCLKCTRLO[RTC] to enable the clock to the RTC register
interface and peripheral clock.

Enable the 32K clock source to be used, see Section 6.3 “Clock generation
(CLK_GEN) module”

Use the SYSCON_OSC32CLKSEL register to select the required 32 kHz clock
source

Configure the RTC clock divider to divide by 32 in order to generate the required 1
kHz clock

For RTC software reset, use the CTRL register. The RTC is reset only by initial
power-up of the device or when an RTC software reset is applied, it is not initialized by
other system resets.

The RTC provides an interrupt to the NVIC for the RTC_WAKE function.

To enable the RTC interrupts for waking up from deep-sleep mode, keep the selected
32 kHz clock running in deep-sleep and enable the interrupts in the
SYSCON_STARTERO register and the NVIC.

To enable the RTC interrupts for waking up from power down mode, keep the selected
32 kHz clock running in power down mode and enable the wakeup interrupt in the
SYSCON_STARTERO register.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 139 of 350

NXP Semiconductors U M1 1 1 38

Chapter 21: Real-Time Clock (RTC)

Fig 56. RTC clocking

21.3.1

RTC CTRL '
| RTC_EN |
32 kHz XTAL '
RTC Divider | RTCTHZCLK | zD—P RTC Count
> by 32768 : '
' RTC MATCH Alarm i RTC Alarm
MAALALILEN _
FRO32K Clock RTCAKHZOLK ! compare ! interrupt to NVIC
Divider B
| | Wake-Up ; RTC Wake
T ' | Timer i > interrupt to NVIC
OSC32CLKSEL[1] RTCCLKDIV i .

RTC timers

The RTC contains two timers:

1. The main RTC timer. This 32-bit timer uses a 1 Hz clock and is intended to run
continuously as a real-time clock. When the timer value reaches a match value, an
interrupt is raised. The alarm interrupt can also wake up the part from sleep,
deep-sleep and power-down modes if enabled.

2. The high-resolution/wake-up timer. This 16-bit timer uses a 1 kHz clock and operates
as a one-shot down timer. Once the timer is loaded, it starts counting down to 0 at
which point an interrupt is raised. The interrupt can wake up the part from sleep,
deep-sleep and power down modes if enabled. This timer is intended to be used for
timed wake-up from deep-sleep or power-down modes. The high-resolution wake-up
timer can be disabled to conserve power if not used.

21.4 General description

21.4.1

21.4.2

JIN5189

Real-time clock

The real-time clock is a 32-bit up-counter which can be cleared or initialized by software.
Once enabled, it counts continuously at a 1 Hz clock rate as long as the device is powered
up and the RTC remains enabled.

The main purpose of the RTC is to count seconds and generate an alarm interrupt to the
processor whenever the counter value equals the value programmed into the associated
32-bit MATCH register.

If the part is in one of the reduced-power modes (deep-sleep, power-down) an RTC alarm
interrupt can also wake up the part to exit the power mode and begin normal operation.

High-resolution/wake-up timer

The time interval required for many applications, including waking the part up from a
low-power mode, will often demand a greater degree of resolution than the one-second

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 140 of 350

NXP Semiconductors U M1 1 1 38

Chapter 21: Real-Time Clock (RTC)

minimum interval afforded by the main RTC counter. For these applications, a higher
frequency secondary timer has been provided.

This secondary timer is an independent, stand-alone wake-up or general-purpose timer
for timing intervals of up to 64 seconds with approximately one millisecond of resolution.

The High-Resolution/Wake-up Timer is a 16-bit down counter which is clocked at a 1 kHz
rate when it is enabled. Writing any non-zero value to this timer will automatically enable
the counter and launch a countdown sequence. When the counter is being used as a
wake-up timer, this write can occur just prior to entering a reduced power mode.

When a starting count value is loaded, the High-Resolution/Wake-up Timer will turn on,
count from the pre-loaded value down to zero, generate an interrupt and/or a wake-up
command, and then turn itself off until re-launched by a subsequent software write.

21.5 Functional Description

The RTC is controlled from the CTRL register controls the clock enables within the block
and the wakeup source at the block level.

The 1 Hz timer will generate an alarm when its 32-bit value equals the Match value in the
MATCH register. The counter value can be read and configured using the COUNT
register.

The 1 kHz 16-bit timer is configured and read through the WAKE register.

21.6 Software control

To use the functionality of the RTC module it is recommended to use software functions
from within fsl_rtc.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 141 of 350

UM11138

Chapter 22: CPU System Tick Timer (SYSTICK)

Rev. 1.4 — June 2020 User manual

22.1 How to read this chapter

The system tick timer (SysTick timer) is present on all JN5189(T)/JN5188(T) devices.

Refer to “Cortex-M4 TRM” for full details of the functionality and registers of this block.

22.2 Basic configuration

Configuration of the system tick timer is accomplished as follows:

1. Pins: The system tick timer uses no external pins.

2. Power: The system tick timer is enabled through the SysTick control register. The
system tick timer clock is fixed to half the frequency of the system clock.

3. Enable the clock source for the SysTick timer in the SYST_CSR register and
configuring the systick clock divider if required.

22.3 Features

* Simple 24-bit timer.
* Uses dedicated exception vector.
® Clocked internally by the system clock or the SYSTICKCLK.

22.4 General description

Block diagram of the SysTick timer for the CPU is shown in Figure 57.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 142 of 350

NXP Semiconductors

UM11138

Chapter 22: CPU System Tick Timer (SYSTICK)

|
|
SYSTCKCAL i
|
|
|
|
|
|
|
|
CPU clock K
—
Clock ! ‘
Main_clk Divider i 1
T |
SYSTICKCLKDIV I
|
|
|
|
|
|
|
[

Fig 57. System tick timer block diagram

SYST_CALIB

A

h

A

SYST_RVR.RELOAD

A

v

clock

load

Load data

SYST_CVR.
CURRENT
24-bit

A

Down
counter

Under Count
-flow enable

A

A

CLKSOURCE

SYST_CSR €

COUNTFLAG

System Tick
Function

| TICKINT

Private
Peripheral bus

>

>

System Tick
Interrupt

The SysTick timer is an integral part of the Cortex-M4. The SysTick timer is used to
generate a fixed 10 ms interrupt for use by an operating system or other system

management software.

Since the SysTick timer is a part of the CPU, it facilitates porting of software by providing a
standard timer that is available on Arm Cortex-based devices. The SysTick timer can be

used for:

* An RTOS tick timer which fires at a programmable rate (for example 100 Hz) and
invokes a SysTick routine.

* A high-speed alarm timer using the core clock.

¢ A simple counter. Software can use this to measure time to completion and time used.

* An internal clock source control based on missing/meeting durations. The
COUNTFLAG bit-field in the SYST_CSR control and status register can be used to
determine if an action completed within a set duration, as part of a dynamic clock
management control loop.

Refer to Ref. 1 “Cortex-M4 TRM” for full details of the functionality and registers of this

block.

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

143 of 350

NXP Semiconductors U M1 1 1 38

Chapter 22: CPU System Tick Timer (SYSTICK)

22.5 Functional description

The SysTick timer is a 24-bit timer that counts down to zero and generates an interrupt.
The intent is to provide a fixed 10 millisecond time interval between interrupts. The
SysTick timer is clocked from the CPU clock (the system clock, see Figure 57)
[SYST_CSR.CLKSOURCE = 1] or from a generated clock [SYST_CSR.CLKSOURCE
=0].

The generated clock is the output of the SYSTICK clock divider. Therefore its frequency
depends on Main_Clk frequency and the clock divider settings See Figure 11 “CPU
SYSTICK and TRACECLK clock generation” for details of the generation of the SYSTICK
clock..

In order to generate recurring interrupts at a specific interval, the SYST_RVR register
must be initialized with the correct value for the desired interval.

The Sys Tick register, SYST_CALIB, is a read only register. The field TENMS can be used
to indicate the number of ticks needed for a 10 ms period. This field will read 0 until the
SYST_CALIB values are written. To set this value write the required value to
SYSCON_SYSTCKCAL register. This value is based on the clock settings previously
described. SYST_RVR.RELOAD field should be set to the number of ticks that will be
counted. Setting a value of 0 will cause the systick interrupt handler (void
SysTick_Handler(void) to never fire.

The two further fields in SYST_CALIB are also driven from the SYSTCKCAL registers
using the SKEW and NOREF fields.

22.6 Example timer calculations

JIN5189

To use the system tick timer, do the following:

1. Program the SYST_RVR register with the reload value calculated as shown below to
obtain the desired time interval.

2. Clear the SYST_CVR register by writing to it. This ensures that the timer will count
from the SYST_RVR value rather than an arbitrary value when the timer is enabled.

The following examples illustrate selecting SysTick timer reload values for different
system configurations. All of the examples calculate an interrupt interval of

10 milliseconds, as the SysTick timer is intended to be used, and there are no rounding
errors.

System tick timer clock = 24 MHz, System clock = 48 MHz

Program the SYST_CSR register with the value 0x3 which selects the clock from the
system tick clock divider as the clock source and enables the SysTick timer and the
SysTick timer interrupt. Use DIV of the SYSCON_SYSTICKCLKDIV setting to divide the
system clock by 2 to create the 24 MHz clock for the SysTick timer.

SYST_RVR = (system tick timer clock frequency x 10 ms) -1 = (24 MHz x 10 ms) -1 =
240000-1 = 239999 = 0x0003 A97F

System clock = 12 MHz

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 144 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 22: CPU System Tick Timer (SYSTICK)

Program the SYST_CSR register with the value 0x7 which selects the system clock as the
clock source and enables the SysTick timer and the SysTick timer interrupt.

In this case the system clock is derived from the FRO 12 MHz clock.

SYST_RVR = (system clock frequency x 10 ms) -1 = (12 MHz x 10 ms) -1 = 120000 -1 =
119999 = 0x0001 D4BF

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 145 of 350

UM11138

Chapter 23: Universal Synchronous/Asynchronous
Receiver/Transmitter (USART)

Rev. 1.4 — June 2020 User manual

23.1 How to read this chapter

23.2 Features

Two USART functions are available on all JN5189(T)/JN5188(T) devices.

7, 8, or 9 data bits and 1 or 2 stop bits.

Synchronous mode with master or slave operation. Includes data phase selection and
continuous clock option.

Multiprocessor/multidrop (9-bit) mode with software address compare.
RS-485 transceiver output enable.

Parity generation and checking: odd, even, or none.

Software selectable oversampling from 5 to 16 clocks in asynchronous mode.
One transmit and one receive data buffer.

The USART function supports separate transmit and receive FIFO with 4 entries
each.

RTS/CTS for hardware signaling for automatic flow control. Software flow control can
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an
RTS output.

Break generation and detection.

Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.
Built-in Baud Rate Generator.

Auto-baud mode for automatic baud rate detection.

Special operating mode allows operation at up to 9600 baud using the 32 kHz RTC
oscillator as the USART clock. This mode can be used while the device is in
deep-sleep mode and can wake-up the device when a character is received.

A fractional rate divider is shared among all USARTSs.

Interrupts available for FIFO receive level reached, FIFO transmit level reached, FIFO
overflow or underflow, Transmitter Idle, change in receiver break detect, Framing
error, Parity error, Delta CTS detect, and receiver sample noise detected (among
others).

USART transmit and receive functions can operated with the system DMA controller.
Loopback mode for testing of data and flow control.

23.3 Basic configuration

JIN5189

Initial configuration of a USART peripheral is accomplished as follows:

¢ |f needed, use the SYSCON_PRESETCTRLA1 register to reset the USARTO or

USART1 Interface.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 146 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

¢ Enable the USART function by writing to the PSELID register of the related USART
Interface.

® Configure the FIFOs for operation.
* Configure USART for receiving and transmitting data:

— Inthe SYSCON_AHBCLKCTRLA1 register, set the appropriate bit for the related
USART Interface in order to enable the clock to the register interface.

— Enable or disable the related USART Interface interrupt in the NVIC (see
Table 17).

— Configure the related USART Interface pin functions via IOCON, see Chapter 12.
— Configure the USART Interface clock and USART baud rate. See Section 23.3.1.

* Configure the USART to wake up the part from low-power modes. See
Section 23.3.2.

* Configure the USART to receive and transmit data in synchronous slave mode. See
Section 23.3.2.

23.3.1 Configure the USART Interface clock and USART baud rate

Each USART Interface has a separate clock selection, which can include a shared
fractional divider (also see Section 23.6.2.3 “32 kHz mode”). The function clock and the
fractional divider for the baud rate calculation are set up in the SYSCON block as follows:

1. If a fractional value is needed to obtain a particular baud rate, program the fractional
rate divider (FRG, controlled by SYSCON_FRGCTRL). The fractional divider value is
the fraction of MULT/DIV. The MULT and DIV values are programmed in the
SYSCON_FRGCTRL register. The DIV value must be programmed with the fixed
value of 256.

USART Interface clock = (FRG input clock) / (1+(MULT / DIV))
The following rules apply for MULT and DIV:

— Always set DIV to 256 by programming the FRGCTRL register with the value of
OxFF.

— Set the MULT to any value between 0 and 255.

2. In asynchronous mode: configure the baud rate divider by BRG[BRGVAL]. The baud
rate divider divides the USART Interface function clock (FCLK) to create the clock
needed to produce the desired baud rate.

Generally: baud rate = [FCLK / oversample rate] / BRG divide
With specific register values: baud rate = [FCLK / (OSRVAL+1)] / (BRGVAL + 1)
Generally: BRG divide = [FCLK / oversample rate] / baud rate
With specific register values: BRGVAL = [[FCLK / (OSRVAL + 1)] / baud rate] - 1
See Section 23.6.2.2 “Baud Rate Generator (BRG)".

3. In synchronous master mode: The serial clock is Un_SCLK = FCLK / (BRGVAL+1).

The USART can also be clocked by the 32 kHz RTC oscillator. Set the CFG[MODE32K]
bit to enable this 32 kHz mode. See also Section 23.6.2.3 “32 kHz mode”.

For details on the clock configuration see:

Section 23.6.2 “Clocking and baud rates”

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 147 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

23.3.2 Configure the USART for wake-up

A USART can wake up the system from sleep mode in asynchronous or synchronous
mode on any enabled USART interrupt.

In deep-sleep mode, there are two options for configuring USART for wake-up:

If the USART is configured for synchronous slave mode, the USART block can create
an interrupt on a received signal even when the USART block receives no on-chip
clocks - that is in deep-sleep mode.

As long as the USART receives a clock signal from the master, it can receive up to
one byte in the FIFORD[RXDAT] while in deep-sleep mode. Any interrupt raised as
part of the receive data process can then wake up the part.

If the 32 kHz mode is enabled, the USART can run in asynchronous mode using the
32 kHz RTC oscillator and create interrupts.

23.3.2.1 Wake-up from sleep mode

Configure the USART in either asynchronous mode or synchronous mode.
Enable the USART interrupt in the NVIC.
Any enabled USART interrupt wakes up the part from sleep mode.

23.3.2.2 Wake-up from deep-sleep mode

Configure the USART in synchronous slave mode. The SCLK function must be
connected to a pin and also connect the pin to the master. Alternatively, the 32 kHz
mode can be enabled and the USART operated in asynchronous mode with the 32
kHz RTC oscillator.

Enable the USART interrupt in the SYSCON_STARTERO register.
Enable the USART interrupt in the NVIC.

The USART wakes up the part from deep-sleep mode on all events that cause an
interrupt and are enabled. Typical wake-up events are:

— A start bit has been received.
— Received data becomes available.

— In synchronous mode, data is available in the FIFO to be transmitted, and a serial
clock from the master has been received.

— Achange in the state of the CTS pin if the CTS function is connected.

Remark: By enabling or disabling specific USART interrupts, you can customize
when the wake-up occurs.

23.3.2.3 Wake-up from power down mode

Only the USARTO is possible to wake from power down mode.

Configure the USART in synchronous slave mode. The SCLK function must be
connected to a pin and also connect the pin to the master. Alternatively, the 32 kHz
mode can be enabled and the USART operated in asynchronous mode with the 32
kHz RTC oscillator

Enable the USART interrupt in the SYSCON_STARTERO register

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 148 of 350

NXP Semiconductors U M1 1 1 38

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

* The USART wakes up the part from power down mode on all events that cause an
interrupt and are enabled. Typical wake-up events are:

— Astart bit is received.

— received data becomes available. In synchronous mode, data is available in the
FIFO to be transmitted, and a serial clock from the master has been received.

— Achange in the state of the CTS pin if the CTS function is connected

* Ensure that the CommO power domain will be active during the power cycle, using the
power control APls.

* Perform power down request. Note, the Low Power API should be used to perform
the configuration and execution of power down cycles.

23.4 Pin description

The USART receive, transmit, and control signals are assigned to external pins through
via IOCON. See the IOCON description (Chapter 12) to assign the USART functions to
pins on the device package.

Table 39. USART pin description

Pin | Type 'Name used in Pin 'Description
Configuration chapter
XD |O ’USARTn_TXD ‘Transmitter output for USART Interface n. Serial transmit data.
RXD |1 USARTn_RXD Receiver input for USART Interface n. Serial receive data.
RTS O USARTO_RTS ‘Request To Send output for USARTO Interface. This signal supports

inter-processor communication through the use of hardware flow control.
This signal can also be configured to act as an output enable for an external
RS-485 transceiver. RTS is active when the USART RTS signal is configured
to appear on a device pin.

CTS | USARTO_CTS Clear To Send input for USARTO Interface. Active low signal indicates that
the external device that is in communication with the USART is ready to
accept data. This feature is active when enabled by the CFG[CTSEN] bit and
when configured to appear on a device pin. When deasserted (high) by the
external device, the USART will complete transmitting any character already
in progress, then stop until CTS is again asserted (low).

SCLK [I/0 |USARTn_SCK Serial clock input/output for USART Interface n in synchronous mode. Clock
input or output in synchronous mode.

Remark: When the USART is configured as a master, such that SCK is an
output, it must actually be connected to a pin in order for the USART to work
properly.

Recommended IOCON settings are shown in Table 40. See Chapter 12 for definitions of

pin types.
Table 40: Suggested USART pin setting for standard GPIO 10
IOCON bit(s) Field Setting Note
2:0 ‘Func Set for USART function
4:3 Mode 2 No pullup or pull-down
5 Slew0 0 see slew1
6 Invert 0 No need to invert
7 Digimode 1 Digital mode

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 149 of 350

NXP Semiconductors U M1 1 1 38

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

Table 40: Suggested USART pin setting for standard GPIO 10

IOCON bit(s)]Field Setting Note

8 FilterOff 1 Generally disable filter

9 Slew1 0 With slewO: generally set to 0. Settings to 1,2 or 3 at
high usary rates may improve performance

10 oD Normal GPIO mode

1" I0_clamp 0 Clamp Off

Table 41: Suggested USART pin setting for combo 10 cells (PIO10 and PIO11)

IOCON bit(s)]Field Setting Note

2:0 Func Set for USART function

3 EGP 1 GPIO mode

4 ECS 0 Standard GPIO mode

5 EHS 0 Low speed GPIO. Setting to 1 may be beneficial with
higher speed USART signals.

6 Invert 0 No need to invert

7 Digimode 1 Digital mode

8 FilterOff 1 Generally disable filter

9 Fsel 0 Not valid for GPIO mode

10 oD 0 Normal GPIO mode

11 'Reserved 0 Entry should be blank

12 IO_clamp 0 Clamp Off

Software configuration of the 10 cell setting can be achieved with the IOCON_PinMuxSet
or IOCON_SetPinMuxing function. As an example for using USART RX and TX pins on
P108 and PIO9 then the following SW functions could be used. To have USART on these
IOs requires the setting of Function value of 2:

I0CON_PinMuxSet(I0CON, 0, 8,
I0CON_MODE_INACT |
IOCON_FUNC2 |

[OCON _DIGITAL EN);
[OCON_PinMuxSet(IOCON, 0, 9,
[OCON_MODE_INACT |
IOCON_FUNC2 |

IOCON _DIGITAL EN);

23.5 General description

JIN5189

The USART receiver block monitors the serial input line, Un_RXD, for valid input. The
receiver shift register assembles characters as they are received, after which they are
passed to the receiver FIFO to await access by the CPU or DMA controller.

The USART transmitter block accepts data written by the CPU or DMA controller to the
transmit FIFO. When the transmitter is available, the transmit shift register takes that data,
formats it, and serializes it to the serial output, Un_TXD.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 150 of 350

NXP Semiconductors U M1 1 1 38

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

The Baud Rate Generator block divides the incoming clock to create an oversample clock
(typically 16x) in the standard asynchronous operating mode. The BRG clock input source
is the shared Fractional Rate Generator that runs from the USART function clock. The 32
kHz operating mode generates a specially timed internal clock based on the RTC
oscillator frequency.

In synchronous slave mode, data is transmitted and received using the serial clock
directly. In synchronous master mode, data is transmitted and received using the baud
rate clock without division.

Status information from the transmitter and receiver is provided via the STAT register.
Many of the status flags are able to generate interrupts, as selected by software. The
INTSTAT register provides a view of all interrupts that are both enabled and pending.

; Transmitter
Transmit
DMA request Transmit Transmit Holding | | Transmit Shift TXIL&
- FIFO Register Register i’
A A
USART Interface
function clock SCLK out SCLK -
» Baud rate and [g >
32kHz clock clocking SCLK in
» generation
CTS
Interrupt request Interrupt Generation, Status, [€ E
< Flow Control, Break & parity ;x
generation & detection < RTS
\ 4 A\ 4
. Receiver
Receive
DMA request Receive Receiver Buffer | Receiver Shift | RXD <
- FIFO Register Register N
Fig 58. USART block diagram

23.6 Functional description

23.6.1 AHB bus access

The bus interface to the USART registers contained in the USART Interface supports only
word writes. Byte and halfword writes are not supported in conjunction with the USART
function.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 151 of 350

NXP Semiconductors U M1 1 1 38

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

23.6.2 Clocking and baud rates

In order to use the USART, clocking details must be defined such as setting up the clock
source selection, the BRG, and setting up the FRG if it is the selected clock source.

Also see Section 23.3.1 “Configure the USART Interface clock and USART baud rate”.

23.6.2.1 Fractional Rate Generator (FRG)

The Fractional Rate Generator can be used to obtain more precise baud rates when the
function clock is not a good multiple of standard (or otherwise desirable) baud rates.

The FRG is typically set up to produce an integer multiple of the highest required baud
rate, or a very close approximation. The BRG is then used to obtain the actual baud rate
needed.

The FRG register controls the Fractional Rate Generator, which provides the base clock
that may be used by any USART Interface. The Fractional Rate Generator creates a lower
rate output clock by suppressing selected input clocks. When not needed, the value of 0
can be set for the FRG, which will then not divide the input clock.

The FRG output clock is defined as the input clock divided by 1 + (MULT / 256), where
MULT is in the range of 1 to 255. This allows producing an output clock that ranges from
the input clock divided by 1+1/256 to 1+255/256 (just more than 1 to just less than 2). Any
further division can be done specific to each USART block by the integer BRG divider
contained in each USART.

The base clock produced by the FRG cannot be perfectly symmetrical, so the FRG
distributes the output clocks as evenly as is practical. Since USARTs normally uses 16x
overclocking, the jitter in the fractional rate clock in these cases tends to disappear in the
ultimate USART output.

For setting up the fractional divider, see SYSCON_FRGCTRL register and Section 23.3.1
“Configure the USART Interface clock and USART baud rate”.

23.6.2.2 Baud Rate Generator (BRG)

The Baud Rate Generator (see BRG register) is used to divide the base clock to produce
a rate 16 times the desired baud rate. Typically, standard baud rates can be generated by
integer divides of higher baud rates.

Note that in 32 kHz mode, the baud rate generator is still used and must be set to 0 if 9600
baud is required.

Remark: In order to change a baud rate after a USART is running, the following sequence
should be used:
1. Make sure the USART is not currently sending or receiving data.
2. Disable the USART by writing a 0 to the CFG[ENABLE] (0 may be written to the entire
register).
3. Write the new BRG[BRGVAL].
4. Write 1 to the CFG[ENABLE].

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 152 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

23.6.2.3

23.6.3

23.6.4

23.6.5

23.6.5.1

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

32 kHz mode

In order to use a 32 kHz clock to operate a USART at any reasonable speed, a number of
adaptations need to be made. First, 16x overclocking has to be abandoned. Otherwise,
the maximum data rate would be very low. For the same reason, multiple samples of each
data bit must be reduced to one. Finally, special clocking has to be used for individual bit
times because 32 kHz is not particularly close to an even multiple of any standard baud
rate.

When 32 kHz mode is enabled, clocking must come from the 32k XTAL. Hence the XTAL
must be enabled and running; also SYSCON_OSC32CLKSEL[SEL32KHZ] must be set.
The 32 kHz clock must be enabled to the USART using
SYSCON_MODEMCTRL[BLE_LP_OSC32K_EN]. The FRG is bypassed, and the BRG
can be used to divide down the default 9600 baud to lower rates. Other adaptations
required to make the USART work for rates up to 9600 baud are done internally. Rate
error will be less than one half percent in this mode, provided the XTAL is operating at the
intended frequency of 32.768 kHz.

DMA

A DMA request is provided for each USART direction, and can be used in lieu of interrupts
for transferring data by configuring the DMA controller and FIFO level triggering
appropriately. The DMA controller provides an acknowledgement signal that clears the
related request when it completes handling a that request. The transmitter DMA request is
asserted when the transmitter can accept more data. The receiver DMA request is
asserted when received data is available to be read.

When DMA is used to perform USART data transfers, other mechanisms can be used to
generate interrupts when needed. For instance, completion of the configured DMA
transfer can generate an interrupt from the DMA controller. Also, interrupts for special
conditions, such as a received break, can still generate useful interrupts.

Synchronous mode

In synchronous mode, a master generates a clock as defined by the clock selection and
BRG, which is used to transmit and receive data. As a slave, the external clock is used to
transmit and receive data. There is no overclocking in either case.

Flow control

The USARTO supports hardware flow control. Both USARTO and USART1 support
software flow control.

Hardware flow control

The USART supports hardware flow control using RTS and/or CTS signaling. If RTS is
configured to appear on a device pin so that it can be sent to an external device, it
indicates to an external device the ability of the receiver to receive more data. It can also
be used internally to throttle the transmitter from the receiver, which can be especially
useful if loopback mode is enabled.

If connected to a pin, and if enabled to do so, the CTS input can allow an external device
to throttle the USART transmitter. Both internal and external CTS can be used separately
or together.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 153 of 350

NXP Semiconductors U M1 1 1 38

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

Figure 59 shows an overview of RTS and CTS within the USART.

» STAT.CTS

Y

Change detect —> STAT.DELTACTS

CFG.LOOP
CFG.CTSEN

Y

CTS |
0 ‘:>—> Transmitter

Y
[Eny

RTS
Receiver »X]

Fig 59. Hardware flow control using RTS and CTS

JIN5189

23.6.5.2

23.6.6

Software flow control

Software flow control could include XON / XOFF flow control, or other mechanisms. these
are supported by the ability to check the current state of the CTS input, and/or have an
interrupt when CTS changes state (via the STAT[CTS] and STAT[DELTACTS] bits), and
by the ability of software to gracefully turn off the transmitter (via the CTL[TXDIS] bit).

Auto-baud function

The auto-baud functions attempts to measure the start bit time of the next received
character. For this to work, the measured character must have a 1 in the least significant
bit position, so that the start bit is bounded by a falling and rising edge. Before an
auto-baud operation is requested, the BRG value must be set to 0. The measurement is
made using the current clocking settings, including the oversampling configuration. The
result is that a value is stored in the BRG register that is as close as possible to the correct
setting for the sampled character and the current clocking settings. The sampled
character is provided in the FIFORD[RXDATA], allowing software to double check for the
expected character.

Auto-baud includes a time-out that is flagged by STAT[ABERR] if no character is received
at the expected time. It is recommended that auto-baud only be enabled when the USART
receiver is idle. Once enabled, either data will become available in the FIFO or ABERR
will be asserted at some point, at which time software should turn off auto-baud.

Auto-baud has no meaning and should not be enabled when the USART is in
synchronous mode.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 154 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

23.6.7

23.6.8

23.6.9

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

RS-485 support

RS-485 support requires some form of address recognition and data direction control.

This USART has provisions for hardware address recognition (see the CFG[AUTOADDR]
and the ADDR register), as well as software address recognition (see the CTL[ADDRDET]
bit).

Automatic data direction control with the RTS pin can be set up using the CFG[OESEL],
CFG[OEPOL], and CFGI[[OETA] bits). Data direction control can also be implemented in
software using a GPIO pin.

Oversampling

Typical industry standard USARTs use a 16x oversample clock to transmit and receive
asynchronous data. This is the number of BRG clocks used for one data bit. The
Oversample Select Register (OSR) allows this USART to use a 16x down to a 5x
oversample clock. There is no oversampling in synchronous modes.

Reducing the oversampling can sometimes help in getting better baud rate matching
when the baud rate is very high, or the function clock is very low. For example, the closest
actual rate near 115,200 baud with a 12 MHz function clock and 16x oversampling is
107,143 baud, giving a rate error of 7%. Changing the oversampling to 15x gets the actual
rate to 114,286 baud, a rate error of 0.8%. Reducing the oversampling to 13x gets the
actual rate to 115,385 baud, a rate error of only 0.16%.

There is a cost for altering the oversampling. In asynchronous modes, the USART takes
three samples of incoming data on consecutive oversample clocks, as close to the center
of a bit time as can be done. When the oversample rate is reduced, the three samples
spread out and occupy a larger proportion of a bit time. For example, with 5x
oversampling, there is one oversample clock, then three data samples taken, then one
more oversample clock before the end of the bit time. Since the oversample clock is
running asynchronously from the input data, skew of the input data relative to the
expected timing has little room for error. At 16x oversampling, there are several
oversample clocks before actual data sampling is done, making the sampling more
robust. Generally speaking, it is recommended to use the highest oversampling where the
rate error is acceptable in the system.

Break generation and detection

Aline break may be sent at any time, regardless of other USART activity. Received break
is also detected at any time, including during reception of a character. Received break is

signaled when the RX input remains low for 16 bit times. Both the beginning and end of a
received break are noted by the STAT[DELTARXBRK] status flag, which can be used as

an interrupt. See Section 23.6.10 for details of LIN mode break.

In order to avoid corrupting any character currently being transmitted, it is recommended
that the USART transmitter be disabled by setting the CTL[TXDIS] bit, then waiting for the
STST[TXDISSTAT] flag to be set prior to sending a break. Then a 1 may be written to the
CTL[TXBRKEN] bit. This sends a break until TXBRKEN is cleared, allowing any length
break to be sent.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 155 of 350

NXP Semiconductors U M1 1 1 38

Chapter 23: Universal Synchronous/Asynchronous Receiver/Transmitter

23.6.10 LIN bus

The only difference between standard operation and LIN mode is that LIN mode alters the
way that break generation and detection is performed (see Section 23.6.9 for details of
the standard break). When a break is requested by setting the CTL[TXBRKEN], then
sending a dummy character, a 13-bit time break is sent. A received break is flagged when
the RX input remains low for 11-bit times. As for non-LIN mode, a received character is
also flagged, and accompanied by a framing error status.

As a LIN slave, the auto-baud feature can be used to synchronize to a LIN sync byte, and
will return the value of the sync byte as confirmation of success.

Wake-up for LIN can potentially be handled in a number of ways, depending on the
system, and what clocks may be running in a slave device. For instance, as long as the
USART is receiving internal clocks allowing it to function, it can be set to wake up the CPU
for any interrupt, including a received start bit. If there are no clocks running, the GPIO
function of the USART RX pin can be programmed to wake up the device.

23.7 Software control

JIN5189

To use the functionality of the USART module it is recommended to use software
functions from within fsl_usart.c.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 156 of 350

UM11138

Chapter 24: Serial Peripheral Interfaces (SPI)
Rev. 1.4 — June 2020 User manual

24.1 How to read this chapter

24.2 Features

Two SPI functions (SPI0 and SPI11) are available on all JN5189(T)/JN5188(T) devices.

Master and slave operation.
Data transmits of 4 to 16 bits supported directly.
Larger frames supported by software.

The SPI function supports separate transmit and receive FIFOs with 4 16-bit entries
each.

Supports DMA transfers: SPIn transmit and receive functions can be operated with
the system DMA controller.

Data can be transmitted to a slave without the need to read incoming data. This can
be useful while setting up an SPI memory.

Up to three Slave Select input/outputs, for SPI1; one slave select input/output for
SPI0. Slave selects have selectable polarity.

Options on assignment of SPI functions to 10s for flexible usage

Remark: Texas Instruments SSI and National Microwire modes are not supported.

24.3 Basic configuration

JIN5189

Initial configuration of an SPI peripheral is accomplished as follows:

If needed, use the SYSCON_PRESETCTRL1 register to reset the SPI Interface that
is about to be used.

Configure PSELID register of the related SPI Interface.
Configure the FIFOs for operation.
Configure the SPI for receiving and transmitting data:

— Inthe SYSCON_AHBCLKCTRLA1 register, set the appropriate bit for the related
SPI Interface in order to enable the clock to the register interface.

— Enable or disable the related SPI Interface interrupts in the NVIC
— Configure the required SPI Interface pin functions through IOCON.

— Configure the SPI Interface clock and SPI data rate (see Section 24.6.4 “Clocking
and data rates”).

— Set the TXCTL[RXIGNORE] bit to only transmit data and not read the incoming
data. Otherwise, the transmit halts when the FIFORD buffer is full.

Enable the FIFO, then enable the SPI function.

Configure the SPI function to wake up the part from low-power modes. See
Section 24.3.1 “Configure the SPI for wake-up”.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 157 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

24.3.1 Configure the SPI for wake-up

In sleep mode, any signal that triggers an SPI interrupt can wake the part, provided that
the interrupt is enabled in the INTENSET register and the NVIC. As long as the SPI clock
is configured to be active in sleep mode, the SPI can wake up the part independently of
whether the SPI block is configured in master or slave mode.

In deep-sleep mode, the SPI clock is turned off. However, if the SPI is configured in slave
mode and an external master on the provides the clock signal, the SPI can create an
interrupt asynchronously and wake up the device. The appropriate interrupt(s) must be
enabled in the SPI and the NVIC.

24.3.1.1 Wake-up from sleep mode

* Configure the SPI in either master or slave mode.
¢ Enable the SPI interrupt in the NVIC.

* Any enabled SPI interrupt wakes up the part from sleep mode.

24.3.1.2 Wake-up from deep-sleep mode

* Configure the SPI in slave mode. The SCK function must be connected to a pin and
the pin connected to the slave.

* Enable the SPI interrupt in the SYSCON_STARTERO register.

¢ Enable the SPI interrupt in the NVIC.

* Enable desired SPI interrupts. The following wake-up events are examples:
— Achange in the state of the SSEL pins.
— Data available to be received.
— Receive FIFO overflow.

24.3.1.3 Wake-up from power down
Only the SPIO is possible to wake-up from power down mode.

* Configure the SPI in slave mode. The SCK function must be connected to a pin and
the pin connected to the slave.

* Enable the SPI interrupt in the SYSCON_STARTERO register

* Enable the desired SPI interrupts. The following wake-up events are examples:
— Achange in state of the SSEL pins
— Data available to be received
— Receive FIFO overflow

¢ Ensure that the CommO power domain will be active during the power cycle, using the
power control APls.

* Perform power down request. Note, the Low Power API should be used to perform
the configuration and execution of power down cycles.

24.4 Pin description

The SPI interface signals are assigned to external pins via IOCON.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 158 of 350

NXP Semiconductors

UM11138

Table 42: SPI Pin Description

Function vape

SCK /0

MOSI 1/0

Pin name used in Pin
Description chapter

SPIn_SCK

SPIn_MOSI

Chapter 24: Serial Peripheral Interfaces (SPI)

Description

Serial Clock for SPI on SPI Interface n. SCK is a clock signal used to
synchronize the transfer of data. It is driven by the master and received
by the slave. When the SPI interface is used, the clock is programmable
to be active-high or active-low. SCK only switches during a data transfer.
It is driven whenever the CFGIMASTER] = 1, regardless of the state of
the Enable bit.

Master Out Slave In for SPI on SPI Interface n. The MOSI signal transfers
serial data from the master to the slave. When the SPI is a master, it
outputs serial data on this signal. When the SPlI is a slave, it clocks in
serial data from this signal. MOSI is driven whenever the CFG[MASTER]
equals 1, regardless of the state of the CFG[ENABLE] bit.

MISO I/0

SPIn_MISO

Master In Slave Out for SPI on SPI Interface n. The MISO signal transfers
serial data from the slave to the master. When the SPI is a master, serial
data is input from this signal. When the SPl is a slave, serial data is output
to this signal. MISO is driven when the SPI block is enabled, the
CFG[MASTER] = 0, and when the slave is selected by one or more SSEL
signals.

SSELO |I/O

SSEL1 1O

SSEL2 1/0

SPIO_SSELN or
SPI1_SSELNO

SPI1_SSELN1

SPI1_SSELN2

Slave Select 0 for SPI on SPI Interface n. When the SPI interface is a
master, it will drive the SSEL signals to an active state before the start of
serial data and then release them to an inactive state after the serial data
has been sent. By default, this signal is active low but can be selected to
operate as active high. When the SPl is a slave, any SSEL in an active
state indicates that this slave is being addressed. The SSEL pin is driven
whenever the CFG[MASTER] = 1, regardless of the state of the
CFG[ENABLE].

Slave Select 1 for SPI on SPI Interface 1. This feature is not supported on
SPIO.

Slave Select 2 for SPI on SPI Interface 1. This feature is not supported on
SPIO.

Recommended IOCON settings are shown in Table 44. See Chapter 12 for definitions of

pin types.

The following table shows the pin locations that can be configured for SPI functionality.
See IOCON configuration for FUNC settings associated with these mappings.

Table 43: Pins for SPI functionality

Pin Possible Pin Assignments

SPI0_SCK ‘GPIO2 GPIO6 GPIO10

SPI0_MISO GPIO3 GPIO7 GPIO11

SPI0_MOSI ‘GPIO4 ‘GPIO8 GPIO12

SPI0_SSELN GPIO5 GPIO9 GPIO13

SPI1_SCK ‘GPIO15 ‘GPIOO

SPI1_MISO GPIO18 GPIO5 GPIO1

SPI1_MOSI ‘GPIO17 ‘GPIO2

SPI1_SSELNO GPIO16 GPIO3

SPI1_SSELN1 GPIO14 ‘GPIO4

SPI1_SSELN2 GPIO13 GPIO5
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 159 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

Table 44: Suggested SPI pin settings

IOCON Standard IO pin GPIO10 or 11
bit(s) Name Setting Name Setting
12 — — I0_CLAMP Set to 0, normal operation
1" 10_CLAMP Set to 0, normal operation SSEL Setto 0
10 oD Set to 0, unless open-drain outputis |OD Set to 0, unless open-drain
desired output is desired
9 SLEW1 With SLEWO: Generally set to 0. FSEL Set to 0, unless input filtering is
Setting to 1,2,0r 3 at higher SPI rates required
may improve performance
8 FILTEROFF Generally set to 1 FILTEROFF Generally set to 1
7 DIGIMODE Setto 1 DIGIMODE Setto 1
6 INVERT Setto 0 INVERT Setto 0
5 SLEWO See SLEW1 EHS Set to 0 unless at higher SPI
rates when setting to 1 may
improve performance
4 MODE[1] With MODE[0]: Setto 0 ECS Set to 0 when using standard
(pull-down/pull-up resistor not GPIO mode
enabled).
Could be another setting if the input
might sometimes be
floating (causing leakage within the
pin input).
MODE[0] See MODE[0] EGP Set to 1 for standard GPIO mode
2:0 FUNC[2:0] Must select the correct function for FUNCI2:0] Must select the correct function
this peripheral for this peripheral
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 160 of 350

UM11138

Chapter 24: Serial Peripheral Interfaces (SPI)

NXP Semiconductors

24.5 General description

SPI Interface | TxShift Register & |_ <_’I:] SCK
transmit FIFO State Machine N

¥ «—{ | miso

Y

A

interrupt <
P Interrupt Hl:] MOsl
Control

General controls & > o

format configurations ! ——— 1 =

v 5

Q

SPI Interface receive | Rx Shift Register & ®

FIFO N State Machine

«—>{ | SSELNO
SSELfield — | [«>[] SSELN1

’ SPOL2:0 —» e[| SSELN2

Internal
clock(s)

DivVal

SPIn CLK — ! clock Divider |

(1) Includes CPOL, CPHA, LSBF, LEN, master, enable, transfer_delay, frame_delay, pre_delay,
post_delay, SOT, EOT, EOF, RXIGNORE and individual interrupt enables.

Fig 60. SPI block diagram

24.6 Functional description

24.6.1 AHB bus access

With the exception of the FIFOWR register, the bus interface to the SPI registers
contained in the SPI Interface support only word writes. Byte and halfword writes are not
supported in conjunction with the SPI function for those registers.

The FIFOWR register also supports byte and halfword (data only) writes in order to allow
writing FIFO data without affecting the SPI control fields FIFOWR[31:16].

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 161 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

24.6.2 Operating modes: clock and phase selection

SPI interfaces typically allow configuration of clock phase and polarity. These are
sometimes referred to as numbered SPI modes, as described in Table 45 and shown in
Figure 61. CPOL and CPHA are configured by bits in the CFG register.

Table 45: SPI mode summary
CPOL CPHA SPI Description SCKrest SCK data SCK data
Mode state | change edge sample edge
The SPI captures serial data on the first clock transition of
0 0 0 the transfer (when the clock changes away from the rest low falling rising
state). Data is changed on the following edge.
The SPI changes serial data on the first clock transition of
0 1 1 the transfer (when the clock changes away from the rest low rising falling
state). Data is captured on the following edge.
1 0 Same as mode 0 with SCK inverted. high rising falling
1 3 |Same as mode 1 with SCK inverted. high falling rising
CPHA=0
Modeo(cPoL=0) sck [/ \ [/ \./ \/ L/
Modez(cPoL=1) sck — \ [\ /NSNS
sl \ .
mosi X wMsB X)C s
mso —{ wmsB)G X X Y —
) Data frame .
CPHA =1
Modet(cPoL=0) sck /[\ [\ /\/ L/
wodezcpoL=1) sck \ S\ S\ N\ \ [
el \
MosI ¥ Y wss) (X Y Lss ¥
MISO — X msB X)C X X LsB }—
) Data frame .
Fig 61. Basic SPI operating modes
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 162 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

24.6.3 Frame delays

Several delays can be specified for SPI frames. These include:

* Pre_delay: delay after SSEL is asserted before data clocking begins

Post_delay: delay at the end of a data frame before SSEL is deasserted
* Frame_delay: delay between data frames when SSEL is not deasserted
¢ Transfer_delay: minimum duration of SSEL in the deasserted state between transfers

24.6.3.1 Pre_delay and Post_delay

Pre_delay and Post_delay are illustrated by the examples in Figure 62. The Pre_delay
value controls the amount of time between SSEL being asserted and the beginning of the
subsequent data frame. The Post_delay value controls the amount of time between the
end of a data frame and the deassertion of SSEL.

Pre- and post-delay: CPHA = 0, Pre_delay = 2, Post_delay = 1

Mode 0 (CPOL=0) SCK

Mode 2 (CPOL=1) SCK

MOSI “MSB“X (X X'—SB):(“X:
>§< I

L
MSB

Pre_delay Data frame Post_delay

Pre- and post-delay: CPHA = 1, Pre_delay = 2, Post_delay = 1

Mode 1 (CPOL=0) SCK

Mode 3 (CPOL=1) SCK

SSEL

D e Py S
Pre_delay Data frame Post_delay

Fig 62. Pre_delay and Post_delay

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 163 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

24.6.3.2 Frame_delay

The Frame_delay value controls the amount of time at the end of each frame. This delay
is inserted when the TXCTL[EOFR] = 1. Frame_delay is illustrated by the examples in
Figure 63. Note that frame boundaries occur only where specified. This is because frame
lengths can be any size, involving multiple data writes. See Section 24.6.7 for more
information.

Frame delay: CPHA = 0, Frame_delay = 2, Pre_delay = 0, Post_delay = 0

| | | | | | | |
Mode 0 (CPOL=0) scK ['\ N\
Mode2(CPOL=1) SCK = \ / W
I I

SSEL

T T T T		
! ! ! !		
[[[[

)7

| | | |

| | | |

MOS| MSB)C \Lse) MSB)C
T T T | T T T T
I

v
| |

| | |
MISO —{ MsB)C X LsB MSB)C
: I I | : : | I I I I I |

T
| | | |

I
First data frame Frame_delay Second data frame

Frame delay: CPHA = 1, Frame_delay = 2, Pre_delay = 0, Post_delay = 0

First data frame Frame_delay Second data frame

Fig 63. Frame_delay

24.6.3.3 Transfer_delay

The Transfer_delay value controls the minimum amount of time that SSEL is deasserted
between transfers, because the FIFOWR[EOT] = 1. When Transfer_delay = 0, SSEL may
be deasserted for a minimum of one SPI clock time. Transfer_delay is illustrated by the
examples in Figure 64.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 164 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

Transfer delay: Transfer_delay = 1, Pre_delay = 0, Post_delay =0

| |
| | | Lo
SSEL o -/ \ L
: : =S : | | : —————————— : ! : ¢ | | }
MOSI MSB)C Y se X) { wmsB X:: (s X X
L
Miso —{ MSB)C (LtsB Y ————{ wmsB)C (LsB Y)
(wes X, Xossf———A wss N e X)—
l «—> l
First data frame Transfer _delay Second data frame

Transfer delay: Transfer_delay = 1, Pre_delay = 0, Post_delay = 0

SSEL ol / \ o
: 7 | : | 7 |
| Ua) = = —m ==y | | 146
Mosl X X MsB X LsB). (X MsB)C
MISO — (MsSB)(: (LsB }—————{ X msB)C LSB
|] | | | T | | | | | | | | | | | T |
i <«
First data frame Transfer _delay Second data frame

Fig 64. Transfer_delay

24.6.4 Clocking and data rates

In order to use the SPI, clocking details must be defined. The system clock must be
selected with the SYSCON_SPICLKSEL; both SPI0 and SPI1 receive the same clock.
Within each SPI peripheral a divider can be configured with the SPI DIV register.

24.6.4.1 Data rate calculations

The SPI interface is designed to operate asynchronously from any on-chip clocks, and
without the need for overclocking.

In slave mode, this means that the SCK from the external master is used directly to run
the transmit and receive shift registers and other logic.

In master mode, the SPI rate clock produced by the SPI clock divider is used directly as
the outgoing SCK.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 165 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

24.6.5

24.6.6

24.6.6.1

Chapter 24: Serial Peripheral Interfaces (SPI)

The SPI clock divider is an integer divider. The SPI in master mode can be set to run at
the same speed as the selected SPICLK, or at lower integer divide rates. The SPI rate will
be = SPICLK/ DIVVAL.

In slave mode, the clock is taken from the SCK input and the SPI clock divider is not used

Slave select

The SPI1 block provides for three Slave Select inputs in slave mode or outputs in master
mode. Each SSEL can be set for normal polarity (active low), or can be inverted (active
high). Representation of the 3 SSELs in a register is always active low. If an SSEL is
inverted, this is done as the signal leaves/enters the SPI block.

In slave mode, any asserted SSEL that is connected to a pin will activate the SPI.
Therefore care is needed to ensure that inactive SSEL lines return to inactive state;
abnormal operation may result if this is not done.

In master mode, all SSELSs that are connected to a pin will be output as defined in the SPI
registers. In the latter case, the SSELs could potentially be decoded externally in order to
address more than three slave devices. Note that at least one SSEL is asserted when
data is transferred in master mode.

In master mode, Slave Selects come from the TXSSEL bits in the FIFOWR register. In
slave mode, the state of all three SSELs is saved along with received data in the
FIFORD[RXSSELN_N] field.

For SPI0 block only one slave select is supported.

DMA operation

A DMA request is provided for each SPI direction, and can be used in lieu of interrupts for
transferring data by configuring the DMA controller appropriately. The DMA controller
provides an acknowledgment signal that clears the related request when it completes
handling that request.

The transmitter DMA request is asserted when Tx DMA is enabled and the transmitter can
accept more data.

The receiver DMA request is asserted when Rx DMA is enabled and received data is
available to be read.

DMA master mode End-Of-Transfer

When using polled or interrupt mode to transfer data in master mode, the transition to
end-of-transfer status (drive SSEL inactive) is straightforward. The FIFOWR[EQOT] bit
would be set just before or along with the writing of the last data to be sent.

When using the DMA in master mode, the end-of-transfer status (drive SSEL inactive) can
be generated in a number of ways:

1. Using DMA interrupt and a second DMA transfer:

To use only 8 or 16 bit wide DMA transfers for all the data, a second DMA transfer can
be used to terminate the transfer (drive SSEL inactive).

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 166 of 350

NXP Semiconductors U M1 1 1 38

Chapter 24: Serial Peripheral Interfaces (SPI)

The transfer would be started by setting the control bits and then initiating the DMA
transfer of all but the last byte/halfword of data. The DMA completion interrupt
function must modify the control bits to set FIFOWR[EQOT] and then set-up DMA to
send the last data.

2. Using DMA and SPI interrupts (or background SPI status polling):

To use only one 8 or 16 bit wide DMA transfer for all the data, two interrupts would be
required to properly terminate the transfer (drive SSEL inactive).

The SPI Tx DMA completion interrupt function sets the FIFOTRIG[TXLVL] to 0 and
sets the interrupt enable bit in the FIFOINTENSET[TXLVL].

The interrupt function handling the SPI TXLVL would set the STAT[ENDTRANSFER],
to force termination after all data output is complete.

3. Using DMA linked descriptor:

The DMA controller provides for a linked list of DMA transfer control descriptors. The
initial descriptor(s) can be used to transfer all but the last data byte/halfword. These
data transfers can be done as 8 or 16 bit wide DMA operations. A final DMA
descriptor, linked to the first DMA descriptor, can be used to send the last data along
with control bits to the FIFOWR register. The control bits would include the setting of
the FIFOWR[EOT] bit.

Note: The DMA interrupt function cannot set the STAT[ENDTRANSFER] bit. This may
terminate the transfer while the FIFO still has data to send.

4. Using 32 bit wide DMA:

Write both data and control bits to FIFOWR for all data. The control bits for the last
entry would include the setting of the FIFOWR[EOT] bit. This also allows a series of
SPI transactions involving multiple slaves with one DMA operation, by changing the
TXSSELN_N bits.

24.6.7 Data lengths greater than 16 bits

The SPI interface handles data frame sizes from 4 to 16 bits directly. Larger sizes can be
handled by splitting data up into groups of 16 bits or less. For example, 24 bits can be
supported as 2 groups of 16 bits and 8 bits or 2 groups of 12 bits, among others. Frames
of any size, including greater than 32 bits, can supported in the same way.

Details of how to handle larger data widths depend somewhat on other SPI configuration
options. For instance, if it is intended for Slave Selects to be deasserted between frames,
then this must be suppressed when a larger frame is split into more than one part.
Sending 2 groups of 12 bits with SSEL deasserted between 24-bit increments, for
instance, would require changing the value of the FIFOWR[EOF] bit on alternate 12-bit
frames.

24.7 Data stalls

JIN5189

A stall for Master transmit data can happen in modes 0 and 2 when SCK cannot be
returned to the rest state until the MSB of the next data frame can be driven on MOSI. In
this case, the stall happens just before the final clock edge of data if the next piece of data
is not yet available.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 167 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 24: Serial Peripheral Interfaces (SPI)

A stall for Master receive can happen when a FIFO overflow (see FIFOSTAT[RXERR])
would otherwise occur if the transmitter was not stalled. In modes 0 and 2, this occurs if
the FIFO is full when the next piece of data is received. This stall happens one clock edge
earlier than the transmitter stall.

In modes 1 and 3, the same kind of receiver stall can occur, but just before the final clock
edge of the received data. Also, a transmitter stall will not happen in modes 1 and 3
because the transmitted data is complete at the point where a stall would otherwise occur,
so it is not needed.

Stalls are reflected in the STAT[STALLED], which indicates the current SPI status. The
transmitter will be stalled until data is read from the receive FIFO. Use the RXIGNORE
control bit setting to avoid the need to read the received data.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 168 of 350

169 of 350

UM11138

Chapter 24: Serial Peripheral Interfaces (SPI)

NXP Semiconductors

0, Post_delay = 0, 2 clock stall

y:

0, Pre dela

Transmitter stall: CPHA = 0, Frame_delay

\\\\\\\\\\\\\ N U N N
— — as}
\\\\\\\\\\\ N r © T Y O r © N] w\
o0 g » m 2 k7
““““““ ol | § e S~ ol | § I T T
= (] = [&)
““““““ >< o S>< - | & 2 A < <= K e
M (&) M (&) J L
““““““ I D= N GO B A S R
1 CT | § o LT | § o m
\\\\\\\\\\ LI I $ I R L L 3 1l e~ m‘
o0 0 >) o0 N >
““““““ | o~] | o g <
= [0) = (0]
““““““ S<>< I i ===l O -~ i
-— -—
7] 7]
\\\\\\\\\\\\\ o L R . o) R I
o o
- R m
\\\\\\\\\\\\\ I o R I o B R nb I
m 1 m 1l
\\\\\\\\\\\\\ o[> 1 o[> |1 i
- o - o
\\\\\\\\\\\\\ Q [} N I | [}) e]
§ T § D,
— —
““““““ - o - I e]
© o © o
““““““ >< - >< - | T . e > -->< - | D el
® o ® o
““““““ | T G | TR S N Nl W
J L J > J LS >
m
\\\\\\\\\\ HWAMﬂ\\v\WArM\ o B \\\HWM\\(\WAH\ iy B w |
) [} s
d_ d_ ><
b o) b ©
“““““““ =1 IS I IR =1 e |]
o o
\\\\\\\\\\\\\ S L R N N S e g L R R
T s T . A
1 [l
% 3 2 I & & 2 I & & 2
= o = o =
s < o s < o s <
1] 1] = 1] 1] = 1] 1]
- — © - — © - —
(o] o 3 (o] o 7 (o] o
o o o o o o o o
o o T <9 O s < <
o o~ = o ~ = -)
) © @ o © @ [©
e} ° 8] kel ° Q kel °
e] o Q <] e} 0] <] e}
= = [0 = = [0 = =

Second data frame

First data frame

Fig 65. Examples of data stalls

24.8 Software control

To use the functionality of the SPI module it is recommended to use software functions

from within fsl_spi.c.

© NXP B.V. 2020. All rights reserved.

All information provided in this document is subject to legal disclaimers.

JIN5189

June 2020

Rev. 1.4

User manual

UM11138

Chapter 25: Inter-Integrated Circuit (12C)
Rev. 1.4 — June 2020

25.1 How to read this chapter

User manual

25.2 Features

Two 12C functions (12C0 and 12C1) are available on all JN5189(T)/JN5188(T) devices.
Additionally, on the JN5189T and JN5188T device a further I12C interface (12C2) is
provided to interface to the internal NTAG device.

* Independent Master, Slave, and Monitor functions.

* Bus speeds supported:
— Standard mode, up to 100 kbits/s.
— Fast-mode, up to 400 kbits/s.

— Fast-mode Plus, up to 1 Mbits/s (on pins PIO0_10 and PIO0_11 that include
specific 12C support).

— High speed mode, 3.4 Mbits/s as a Slave only (on pins PIO0_10 and PIO0_11 that
include specific I2C support).

* Supports both Multi-master and Multi-master with Slave functions.

* Multiple I2C slave addresses supported in hardware.

* One slave address can be selectively qualified with a bit mask or an address range in
order to respond to multiple 12C bus addresses.

* 10-bit addressing supported with software assist.

* Supports System Management Bus (SMBus).

* Separate DMA requests for Master, Slave, and Monitor functions.

* No chip clocks are required in order to receive and compare an address as a Slave,
so this event can wake up the device from deep-sleep mode. Additionally, 12C0 can
optionally generate a wake-up from power down.

* Automatic modes optionally allow less software overhead for some use cases.

25.3 Pin description

JIN5189

The 12C pins are fixed-pin functions and enabled through IOCON. Refer to the IOCON
settings in Table 48 and in Section 12.4.2.

Table 46. 12C-bus pin description

Function Type vPin name used in data sheet Pin Description 'Description
SCL /0 12Cn_SCL 12C serial clock
SDA /O 12Cn_SDA 12C serial data

The following table shows the pin locations that can be configured for 12C functionality.
See IOCON configuration for FUNC settings associated with these mappings.

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

170 of 350

NXP Semiconductors

UM11138

Chapter 25: Inter-Integrated Circuit (12C)

Table 47. 12C bus pin assignments
Pin Possible Pin Assignment
12C0_SCL P10O0_10M PIO0_15
12C0_SDA PIO0_1111 PI1O0_16
12C1_SCL PIO0_6 PIO0_12
12C1_SDA PIOO_7 PIO0_13
12C2_SCL Internal connection
12C2_SDA Internal connection
[1] Dedicated I12C IO cells
Table 48: Suggested I2C pin settings
IOCON |Standard IO pin P1O10 or 11
bit(s) Name Setting Name Setting
12 — — 10_CLAMP Set to 0, normal operation
11 I0_CLAMP Set to 0, normal operation — —
10 oD Set to 1 for pseudo oD Set to 0, using 12C mode in 10 cell
open-drain output function
9 SLEW1 With SLEWO: Set to 0 so FSEL Set to 0, unless input filtering is
lowest speed which is required
adequate to 12C speeds
8 FILTEROFF Generally, setto 1, unless |FILTEROFF Generally, set to 1, unless filtered
filtered inputs are required inputs are required then set to 0 and
then set to 0 for a 10ns filter set FSEL and EGP correctly to get
3,10 or 50ns filter.
7 DIGIMODE Setto 1 DIGIMODE Set to 1
6 INVERT Setto 0 INVERT Setto 0
5 SLEWO See SLEWA1 EHS Set to 0 for 12C mode
4 MODE[1] With MODEJ0]: Setto 0 ECS Set to 0 for 12C mode
(pull-up enabled). If internal
pull is not required then set
to 0x2.
MODE[0] See MODE[0] EGP Set to 0 for 12C mode
2:0 FUNC[2:0] Must select the correct FUNCI[2:0] Must select the correct function for this
function for this peripheral, peripheral, see IOCON configuration
see IOCON configuration

25.4 Basic configuration

JIN5189

Configure the 12C and related clocks as follows:

* |f needed, use the SYSCON_PRESETCTRL1 register to reset the required 12C
function.

* Configure the I2C for the desired functions:

— Inthe SYSCON_AHBCLKCTRLA1 register, set the appropriate bit for the related 12C
Interface in order to enable the clock to the register interface.

— Enable or disable the related 12C Interface interrupt in the NVIC.

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

171 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

2541

25411

Chapter 25: Inter-Integrated Circuit (12C)

— Configure the related 12C Interface pin functions via IOCON, see Chapter 12 “I/O
Pin Configuration (IOCON)”.

— Configure the 12C clock and data rate. This includes the CLKDIV register for both
master and slave modes, and MSTTIME register for master mode. Also see
Section 25.6.2 “Bus rates and timing considerations”.

I12C transmit/receive in master mode
In this example, 12C Interface 1 is configured as an 12C master. The master sends 8 bits to
the slave and then receives 8 bits from the slave.

[2C1 interface uses standard 10 cells, only PIO0_10 and PIO0_11 use special 12C IO cells.
Configure the 10 cells for the correct settings in IOCON.

The transmission of the address and data bits is controlled by the STATIMSTPENDING]
status bit. Whenever the status is Master pending, the master can read or write to the
MSTDAT register and go to the next step of the transmission protocol by writing to the
MSTCTL register.

Configure the 12C bit rate:

* The I2C system clock must be 8 MHz. Hence, configure the clock using
SYSCON_I2CCLKSEL and the CLKDIV[DIVVAL] setting within the I2C block to get 8
MHz clock results.

* Set the SCL high and low times to complete the bus rate setup.

Master write to slave

This example uses polling to control operations and is not interrupt driven. Configure the
[2C as a master: set the CFG[MSTEN] bit to 1. Then wait for the pending status to be set
(STAT[MSTPENDING] = 1) by polling the STAT register.

Check the status register STAT[MSTSTATE] is indicating IDLE. If not, then an error has
occurred.

Write data to the slave:
1. Write the 7-bit slave address with the RW bit set to 0 to the Master data register

MSTDAT.

2. Start the transmission by setting the MSTCTL[MSTSTART] bit to 1. The following
happens:

— The pending status is cleared and the 12C-bus is busy.
— The I2C master sends the start bit and address with the RW bit to the slave.

3. Wait for the pending status to be set (STAT[MSTPENDING] = 1) by polling the STAT
register. The STAT[MSTSTATE] can be checked that it indicates TX by reading the
STAT register. If not in this state then an error has occurred.

4. Write 8 bits of data to the MSTDAT register.

5. Continue with the transmission of data by setting the MSTCTL[MSTCONTINUE] bit to
1. The following happens:

— The pending status is cleared and the I2C-bus is busy.
— The I2C master sends the data bits to the slave address.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 172 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

25.41.2

25.4.2

25.4.21

Chapter 25: Inter-Integrated Circuit (12C)

6. Wait for the pending status to be set (STAT[MSTPENDING] = 1) by polling the STAT
register.

7. Stop the transmission by setting the MSTCTL[MSTSTOP] bit to 1.

8. Wait for the pending status to be set (STAT[MSTPENDING] = 1) by polling the STAT
register.

Master read from slave

This example uses polling to control the sequence and does not use interrupts. Configure
the 12C as a master: set the CFG[MSTEN] bit to 1. Then wait for the pending status to be
set (STAT[MSTPENDING] = 1) by polling the STAT register.

Check the status register STAT[MSTSTATE] is indicating IDLE. If not then an error has
occurred.

Read data from the slave:

1. Write the slave address with the RW bit set to 1 to the Master data register MSTDAT.

2. Start the transmission by setting the MSTCTL[MSTSTART] bit to 1. The following
happens:

— The pending status is cleared and the 12C-bus is busy.
— The I12C master sends the start bit and address with the RW bit to the slave.
— The slave sends 8 bit of data.

3. Wait for the pending status to be set (STAT[MSTPENDING] = 1) by polling the STAT
register. The status register STATIMSTSTATE] can be checked that it indicates RX. If
not in this state then an error has occurred.

4. Read 8 bits of data from the MSTDAT register.
5. Stop the transmission by setting the MSTCTL[MSTSTOP] bit to 1.

I12C receive/transmit in slave mode

In this example, 12C1 is used as an I2C slave. The slave receives 8 bits from the master
and then sends 8 bits to the master. The SCL and SDA functions must be enabled on
suitable pins, see Table 48.

The pins should be configured as required for the 12C-bus mode.

The transmission of the address and data bits is controlled by the STAT[SLVPENDING]
status bit. Whenever the status is Slave pending, the slave can acknowledge (“ack”) or
send or receive an address and data. The received data or the data to be sent to the
master are available in the SLVDAT register. After sending and receiving data, continue to
the next step of the transmission protocol by writing to the SLVCTL register.

Slave read from master

This example uses polling to control the sequence and does not use interrupts. Configure
the 12C as a slave with address x:

1. Write the slave address x to the address 0 match register.
2. Set the CFG[SLVEN] bit to 1.

Read data from the master:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 173 of 350

NXP Semiconductors U M1 1 1 38

Chapter 25: Inter-Integrated Circuit (12C)

1. Wait for the pending status to be set (SLVPENDING = 1) by polling the STAT register.
Check the STAT[SLVSTATE] is indicating ADDR. If not then an error has occurred.

2. Acknowledge (“ack”) the address by setting SLVCTL[SLVCONTINUE] = 1 in the slave
control register.

3. Wait for the pending status to be set (STAT[SLVPENDING] = 1) by polling the STAT
register. Check the status register SLVSTATE is indicating RX by reading the STAT
register. If not then an error has occurred.

4. Read 8 bits of data from the SLVDAT register.

5. Acknowledge (“ack”) the data by setting SLVCTL[SLVCONTINUE] = 1 in the slave
control register.

25.4.2.2 Slave write to master

This example uses polling to control the sequence and does not use interrupts. Configure
the 12C as a slave with address x:

1. Write the slave address x to the address 0 match register.
2. Set the CFG[SLVEN] bit to 1.

Write data to the master:

1. Wait for the pending status to be set (STAT[SLVPENDING] = 1) by polling the STAT
register. Check the status register STAT[SLVSTATE] indicating ADDR. If not then an
error has occurred.

2. ACK the address by setting SLVCTL[SLVCONTINUE] = 1 in the slave control register.

3. Wait for the pending status to be set (STAT[SLVPENDING] = 1) by polling the STAT
register. Check the status register STAT[SLVSTATE] is indicating TX. If not then an
error has occurred.

4. Write 8 bits of data to SLVDAT register.

5. Continue the transaction by setting SLVCTL[SLVCONTINUE] = 1 in the slave control
register.

25.4.3 Configure the I2C for wake-up

In sleep mode, any activity on the 12C-bus that triggers an I12C interrupt can wake up the
part, provided that the interrupt is enabled in the INTENSET register and the NVIC. As
long as the I2C Interface clock remains active in sleep mode, the 12C can wake up the part
independently of whether the 12C interface is configured in master or slave mode.

In deep-sleep mode, the I2C clock is turned off as are all peripheral clocks. However, if the
I2C is configured in slave mode and an external master on the 12C-bus provides the clock
signal, the I2C interface can create an interrupt asynchronously. This interrupt, if enabled
in the NVIC and in the I12C interface INTENCLR register, can then wake up the core.

25.4.3.1 Wake-up from sleep mode

* Enable the I12C interrupt in the NVIC.

* Enable the 12C wake-up event in the INTENSET register. Wake-up on any enabled
interrupts is supported (see the INTENSET register). Examples are the following
events:

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 174 of 350

NXP Semiconductors U M1 1 1 38

Chapter 25: Inter-Integrated Circuit (12C)

— Master pending

— Change to idle state

— Start/stop error

— Slave pending

— Address match (in slave mode)

— Data available/ready

25.4.3.2 Wake-up from deep-sleep mode

Enable the 12C interrupt in the NVIC.

Enable the 12C interrupt in the SYSCON_STARTERQO register to create the interrupt
signal asynchronously while the core and the peripheral are not clocked.

Configure the 12C in slave mode.

Enable the I12C interrupt in the INTENSET register which configures the interrupt as
wake-up event. The following events are examples:

Slave deselect

Slave pending (wait for read, write, or ACK)
Address match

Data available/ready for the Monitor function

25.4.3.3 Wake-up from power down mode

Only 12CO0 is possible to wake-up from power down mode.

Enable the I12C interrupt in the SYSCON_STARTERO register to create the wake-up
signal asynchronously while the core and the peripheral are not clocked

Configure the 12C is slave mode

Enable the 12C interrupt in the INTENSET register which configures the interrupt as a
wake-up event. The following events are examples:

— slave deselect

— slave pending (wait for read, write or ACK)
— address match

— Data available/ready for the monitor function

Ensure that the CommO0 power domain will be active during the power cycle, using the
power control APls.

Perform power down request. Note, the Low Power API should be used to perform
the configuration and execution of power down cycles.

25.5 General description

The architecture of the 12C-bus interface is shown in Figure 66.

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 175 of 350

NXP Semiconductors

UM11138

DMA requests <«—
Interrupt requests <

160809

Chapter 25: Inter-Integrated Circuit (12C)

Monitor 2
function [¢
Y
Timing Jo >
generation "| I'C master >
function |« SCL &
’—> < SDA
tput
Control & OILong?t:j T
Status L
I°C slave
function : 12Cn_SDA
Y
Timeout ; — 12cn_sCL

Fig 66. 12C block diagram

25.6 Functional description

JIN5189

25.6.1

25.6.2

25.6.2.1

AHB bus access

The 12C registers support only word writes. Byte and halfword writes are not supported in
conjunction with the 12C function.

Bus rates and timing considerations

Due to the nature of the 12C bus, it is generally not possible to guarantee a specific clock
rate on the SCL pin. On the 12C-bus, the clock can be stretched by any slave device,
extended by software overhead time, etc.

In a multi-master system, the master that provides the shortest SCL high time will cause
that time to appear on SCL as long as that master is participating in 12C traffic (i.e. when it
is the only master on the bus, or during arbitration between masters).

In addition, 12C implementations generally base subsequent actions on what actually
happens on the bus lines. For instance, a bus master allows SCL to go high. It then
monitors the line to make sure it actually did go high (this would be required in a
multi-master system). This results in a small delay before the next action on the bus,
caused by the rise time of the open drain bus line.

Rate calculations give a base frequency that represents the fastest that the 12C bus could
operate if nothing slows it down.

Rate calculations
Master timing

SCL high time (in I2CCLK function clocks) =
12C clock divider * SCL high multiplier

SCL low time (in I2CCLK function clocks) =
12C clock divider * SCL low multiplier

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 176 of 350

NXP Semiconductors U M1 1 1 38

Chapter 25: Inter-Integrated Circuit (12C)

Nominal SCL rate =
[2CCLK function clock rate / (SCL high time + SCL low time)

Remark: DIVVAL must be = 1.

Remark: For 400 kHz clock rate, the clock frequency after the 12C divider (divval) must be
< 6.5 MHz. Table 49 shows the recommended settings for 400 kHz clock rate.

Table 49. Settings for 12C baud rate

12CCLK DIVVAL Interal I2C CLK MSTSCL-HIGH MSTSCL-LOW |2C Baud

32 MHz 3 8 MHz 2 2 1 Mb/s Fast-mode plus

48 MHz 5 8 MHz 2 2 1 Mb/s Fast-mode plus

32 MHz 4 6.4 MHz 6 6 400 kb/s Fast Mode

48 MHz 7 6.0 MHz 6 5 400 kb/s Fast Mode

32 MHz 19 1.6 MHz 6 6 100 kb/s Fast Mode

48 MHz 31 1.5 MHz 6 5 100 kb/s Fast Mode
Slave timing
Most aspects of slave operation are controlled by SCL received from the 12C bus master.
However, if the slave function stretches SCL to allow for software response, it must
provide sufficient data setup time to the master before releasing the stretched clock. This
is accomplished by inserting one clock time of CLKDIV at that point.
If CLKDIV is already configured for master operation, that is sufficient. If only the slave
function is used, CLKDIV should be configured such that one clock time is greater than
the Data set-up time tsy.pat value noted in the 12C bus specification for the 12C mode that
is being used.

25.6.2.2 Bus rate support

JIN5189

The 12C interface can support 4 modes from the I2C bus specification:

* Standard-mode (SM, rate up to 100 kbits/s)
* Fast-mode (FM, rate up to 400 kbits/s)
* Fast-mode Plus (FM+, rate up to 1 Mbits/s)
* High-speed mode (HS, rate up to 3.4 Mbits/s)
For operation of the 12C interface, an external pull-up resistor is required on the clock and

data lines. For high speed mode, a 2.7 kQ pull-up resistor is recommended; for slower
speeds, a 1 kQ resistor is recommended.

Refer to Ref. 2 “UM10204” for details of 12C modes and other details.

The 12C interface supports Standard-mode, Fast-mode, and Fast-mode Plus with the
same software sequence, which also supports SMBus. High-speed mode is intrinsically
incompatible with SMBus due to conflicting requirements and limitations for clock
stretching, and therefore requires a slightly different software sequence.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 177 of 350

NXP Semiconductors U M1 1 1 38

25.6.2.21

25.6.2.2.2

JIN5189

Chapter 25: Inter-Integrated Circuit (12C)

High-speed mode support

High-speed mode requires different pin filtering, somewhat different timing, and a different
drive strength on SCL for the master function. The changes needed for the handling of the
acknowledge bit mean that SMBus cannot be supported when the I12C is configured to be
HS capable. This limitation is intrinsic to the SMBus and High-speed I2C specifications.

Because of the timing of changes to pin drive strength and filtering, the 12C interface is
designed to directly control those pin characteristics when configured to be HS capable.
The 12C also recognizes HS master codes and responds to programmed addresses when
HS capable.

For software consistency, the changes required for handling of acknowledge and address
recognition, and which affect when interrupts occur, are always in effect when the 12C is
configured to be HS capable. This means that software does not need to know if a
particular transfer is actually in HS mode or not.

Clock stretching

The 12C interface automatically stretches the clock when it does not have sufficient
information on how to proceed, i.e. software has not supplied data and/or instructions to
generate a start or stop. In principle, at least, 12C can allow the clock to be stretched by
any bus participant at any time that SCL is low, in SM, FM, and MF+ modes.

In practice, the 12C interface described here may stretch SCL at the following times, in SM,
FM, and MF+ modes:

* As a Slave:

— after an address is received that complies with at least one slave address (before
the address is acknowledged)

— as aslave receiver, after each data byte received (software then acknowledges the
data)

— as a slave transmitter, after each data byte is sent and the matching acknowledge
is received from the master

® As a master:
after each
— address is sent and the acknowledge bit has been received

— as a master receiver, after each data byte is received (software then acknowledges
the data)

— as a master transmitter, after each data byte is sent and the matching acknowledge
bit has been received from the slave

In HS mode:

* As a Slave (only slave functions in HS mode are supported on this device)

— as a slave receiver, after each data byte is received and automatically
acknowledged

— as a slave transmitter, after each data byte is sent and the matching acknowledge
is received from the master

In each case, the relevant pending flag (STAT[MSTPENDING] or STAT[SLVPENDING]) is
set at the point where clock stretching occurs.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 178 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

25.6.3

25.6.4

25.6.5

Chapter 25: Inter-Integrated Circuit (12C)

Time-out

A time-out feature on an I12C interface can be used to detect a “stuck” bus and potentially
do something to alleviate the condition. Two different types of time-out are supported.
Both types apply whenever the I12C interface and the time-out function are both enabled.
Master, Slave, or Monitor functions do not need to be enabled.

In the first type of time-out, reflected by the STAT[EVENTTIMEOQOUT] flag, the time
between bus events governs the time-out check. These events include Start, Stop, and all
changes on the 12C clock (SCL). This time-out is asserted when the time between any of
these events is longer than the time configured in the TIMEOUT register. This time-out
could be useful in monitoring an 12C bus within a system as part of a method to keep the
bus running of problems occur.

The second type of I2C time-out is reflected by the STAT[SCLTIMEOUT] flag. This
time-out is asserted when the SCL signal remains low longer than the time configured in
the TIMEOUT register. This corresponds to SMBus time-out parameter Ttyyeourt. In this
situation, a slave could reset its own I12C interface in case it is the offending device. If all
listening slaves (including masters that can be addressed as slaves) do this, then the bus
will be released unless it is a current master causing the problem. Refer to the SMBus
specification for more details.

Both types of time-out are generated only when the 12C bus is considered busy, i.e. when
there has been a Start condition more recently than a Stop condition.

Slave addresses

When operating as a slave it is possible to configure four independent slave addresses
that will be used to match received addresses against.

In addition it is possible to extend the first slave address, SLVADRO, to be a range of
addresses from SLVADRO to SLVQUALQO if the slave address qualifying feature is
enabled. In this case the address matches when SLVADRO[7:1] < received address <
SLVQUALDO[7:1].

Ten-bit addressing

Ten-bit addressing is accomplished by the 12C master sending a second address byte to
extend a particular range of standard 7-bit addresses. In the case of the master writing to
the slave, the 12C frame simply continues with data after the 2 address bytes. For the
master to read from a slave, it needs to reverse the data direction after the second
address byte. This is done by sending a Repeated Start, followed by a repeat of the same
standard 7-bit address, with a Read bit. The slave must remember that it had been
addressed by the previous write operation and stay selected for the subsequent read with
the correct partial 12C address.

For the Master function, the 12C is simply instructed to perform the 2-byte addressing as a
normal write operation, followed either by more write data, or by a Repeated Start with a
repeat of the first part of the 10-bit slave address and then reading in the normal fashion.

For the Slave function, the first part of the address is automatically matched in the same
fashion as 7-bit addressing; the last 8 bits of the address must be checked by software.
For 10-bit addressing and first address byte will be 1110XX where XX are the first two bits
of the 10-bit address. The slave address matching can be performed using the standard

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 179 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

25.6.6

25.6.7

25.6.8

25.6.8.1

Chapter 25: Inter-Integrated Circuit (12C)

slave address matching or the slave address qualified feature, see Section 25.6.4 “Slave
addresses’. In the case of Slave Receiver mode, data is received in the normal fashion
after software matches the first data byte to the remaining portion of the 10-bit address.
The Slave function should record the fact that it has been addressed, in case there is a
follow-up read operation.

For Slave Transmitter mode, the slave function responds to the initial address in the same
fashion as for Slave Receiver mode, and checks that it has previously been addressed
with a full 10-bit address. If the address matched is address 0, and address qualification is
enabled, software must check that the first part of the 10-bit address is a complete match
to the previous address before acknowledging the address.

Clocking and power considerations

The Master function of the I2C always requires a peripheral clock to be running in order to
operate. The Slave function can operate without any internal clocking when the slave is
not currently addressed. This means that reduced power modes up to deep-sleep mode
can be entered, and the device will wake up when the |12C Slave function recognizes an
address. Monitor mode can similarly wake up the device from a reduced power mode
when information becomes available.

Interrupt handling

The 12C provides a single interrupt output that handles all interrupts for Master, Slave, and
Monitor functions.

DMA

DMA with the 12C is done only for data transfer, DMA cannot handle control of the I2C.
Once DMA is transferring data, 12C acknowledges are handled implicitly. No CPU
intervention is required while DMA is transferring data.

Generally, data transfers can be handled by DMA for Master mode after an address is
sent and acknowledged by a slave, and for Slave mode after software has acknowledged
an address. In either mode, software is always involved in the address portion of a
message. In master and slave modes, data receive and transmit data can be transferred
by the DMA. The DMA supports three DMA requests: data transfer in master mode, slave
mode, and Monitor mode.

DMA may be used in connection with Automatic Operation in order to minimize software
overhead time for 12C handling.

Areceived NACK (from a slave in Master mode, or from a master in Slave mode) will
cause DMA to stop and an interrupt to be generated. A Repeated Start sensed on the bus
will similarly cause DMA to stop and an interrupt to be generated.

The Monitor function may be used with DMA if a channel is available See
Section 17.5.1.1.1 “DMA with 12C monitor mode” for how DMA channels are used with the
Monitor function.

DMA as a Master transmitter

A basic sequence for a Master transmitter:

¢ Software sets up DMA to transmit a message.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 180 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

25.6.8.2

25.6.8.3

25.6.8.4

25.6.9

Chapter 25: Inter-Integrated Circuit (12C)

* Software causes a slave address with write command to be sent and checks that the
address was acknowledged.

Software turns on DMA mode in the I12C.

DMA transfers data and eventually completes the transfer.
* Software causes a stop (or repeated start) to be sent.

Software will be invoked to handle any exceptions to the standard transfer, such as the
slave sending a NACK before the end of the transfer.

DMA as a Master receiver

A basic sequence for a Master receiver:

¢ Software sets up DMA to receive a message.

* Software causes a slave address with read command to be sent and checks that the
address was acknowledged.

* Software starts DMA.
* DMA completes.

* Software causes a stop or repeated start to be sent.

Software will be invoked to handle any exceptions to the standard transfer.

DMA as a Slave transmitter

A basic sequence for a Slave transmitter:

* Software acknowledges an 12C address.

* Software sets up DMA to transmit a message.
¢ Software starts DMA.

* DMA completes.

DMA as a Slave receiver
A basic sequence for a Slave receiver:
* Software receives an interrupt for a slave address received, and acknowledges the
address.
* Software sets up DMA to receive a message, less the final data byte.
¢ Software starts DMA.
* DMA completes.
¢ Software sets SLVNACK prior to receiving the final data byte.

* Software receives the final data byte.

Automatic operation

Automatic operation modes provide a way to reduce software overhead for 12C slave
functions with some limitations. They are intended to be used primarily in conjunction with
slave DMA. Related control bits are SLVCTL[SLVDMA], SLVCTL[AUTOACK], and

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 181 of 350

NXP Semiconductors

UM11138

Chapter 25: Inter-Integrated Circuit (12C)

SLVCTL[AUTOMATCHREAD], and the SLVADRO[AUTONACK]. Table 50 shows how
these controls may be used. These cases apply when an address matching SLVADRO,
qualified by SLVQUALDO, is received.

Table 50: Automatic operation cases

Conditions: Response:

AUTONACK AUTOACK |Received R/W bit |SLVPENDING ACK/NACK Description

bit bit matches interrupt on I2C bus

AUTOMATCHREAD | generated?

0 0 X Yes None Normal, non-automatic operation.

0 1 No Yes None Automatic slave DMA: unexpected
read/write case. Same as normal
non-automatic operation.

X 1 Yes No ACK Automatic slave DMA: expected
read/write case. When the automatic Ack
is sent, the SLVDMA bit is set and the
AUTOACK bit is cleared.

1 0 X No NACK Bus is ignored until software changes the
setup.

1 1 No No NACK Bus is ignored until software changes the
setup.

25.6.10 Master and slave states

Within the Status Register, STAT, there are fields for both the master and slave state. The
following two tables show the state descriptions, actions possible and indicate if DMA is
allowed in that state. This is presented for the master and slave functions.

Table 51. Master function state codes (MSTSTATE)

MSTSTATE Descriptions Actions DMA allowed
0x0 Idle. The master function is available to Send a start or disable MSTPENDING No
be used for a new transaction. interrupt if the master function is not
needed currently.
0x1 Received data is available (master Read data and either continue, send a Yes
receiver mode). Address plus read was stop, or send a repeated start.
previously sent and acknowledged by
slave.
0x2 Data can be transmitted (master Send data and continue, or send astop Yes
transmitter mode). Address plus write or repeated start.
was previously send and acknowledged
by slave.
0x3 Slave NACKed address Send a stop or repeated start No
0x4 Slave NACKed transmitted data. Send a stop or repeated start No
JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.4 — June 2020 182 of 350

NXP Semiconductors U M1 1 1 38

Chapter 25: Inter-Integrated Circuit (12C)

Table 52. Slave function state codes (SLVSTATE)

Master state Descriptions Actions DMA
allowed
0 SLVST_ADDR Address plus R/W received. At least one Software can further check the address if No
of the 4 slave addresses has been needed, for instance, if a subset of
matched by hardware addresses qualified by SLVQUALO is to

be used. Software can ACK or NACK the
address by writing 1 to either
SLVCTL[SLVCONTINUE] or
SLVCTL[SLVNACK]. Also see regarding
10-bit addressing.

1 SLVST_RX Received data is available (slave Read data, reply with an ACK or a NACK Yes
receiver mode).

2 SLVST_TX Data can be transmitted (slave Send data. Note that when the master Yes
transmitter mode). NACKSs data transmitted by the slave, the

slave becomes de-selected.

25.6.11 Recovery from illegal bus condition

If the 12C clock signal is driven low illegally by something connected to the I12C clock pin, it
is possible for the 12C master to be prevented from starting or completing a transaction
correctly. In this case, it is necessary for the master to be disabled and then re-enabled in
the CFG register. To identify this situation, a software timeout could be used; see the 12C
driver software for a demonstration of this.

25.7 Software control

To use the functionality of the 12C module it is recommended to use software functions
from within fsl_i2c.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 183 of 350

UM11138

Chapter 26: Digital Microphone Interface (DMIC)

Rev. 1.4 — June 2020 User manual

26.1 How to read this chapter

26.2 Features

The DMIC subsystem, including the dual-channel digital PDM microphone interface
(DMIC) and hardware voice activity detector (HWVAD), is available on all
JN5189(T)/JN5188(T) parts.

DMIC (dual/stereo digital microphone interface)

— PDM (Pulse-Density Modulation) data input for left and/or right channels on 1 or 2
buses.

— Flexible decimation.

— 16 entry FIFO for each channel.

— DC blocking or unaltered DC bias can be selected.

HWVAD (Hardware-based voice activity detector):

— Optimized for PCM signals with 16 kHz sampling frequency.
— Configurable detection levels.

— Noise envelope estimator register output for further software analysis.

26.3 Basic configuration

JIN5189

The DMIC is configured as follows:

Clock:

— Enable the clock source that will be used, if it is not already running (most
oscillators may be turned off when not needed in order to save power).

— Select the clock source that will be used in the DMICCLKSEL register.

— Set up the clock divider (DMICCLKDIV) that follows the clock source selection mux
to obtain the desired clock rate.

— Enable clock to the peripheral in the SYSCON_AHBCLKCTRL1 register.

Reset: The peripheral may be specifically reset using the SYSCON_PRESETCTRLA1
register, but must be removed from the reset state before continuing.

Pins: Configure pins that will be used for this peripheral in the IOCON register block.
See Chapter 12.

Interrupts: If interrupts will be used with this peripheral, enable them in the NVIC. See
Chapter 9.

Wake-up: Enable interrupts for waking up from deep-sleep mode, enable the
interrupts in the SYSCON_STARTER1 register.

PDM internal setup:
— Enable DMIC PDM channels via the EN_CHO0/1 bits in the CHANEN register.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 184 of 350

NXP Semiconductors

UM11138

Chapter 26: Digital Microphone Interface (DMIC)

Set up the internal clock dividers for the PDM channels used via the DIVHFCLKO0/1
registers.

If interrupts will be used with this peripheral, enable them in the NVIC. See
Chapter 9.

If DMA will be used with the PDM data flow, the related channels of the DMA
controller must be set up. See Chapter 17. DMA must also be enabled via the
DMAEN bit in the FIFO_CTRL register.

Set up other functional configurations and controls for this peripheral as needed.

* HWVAD internal setup:

a.

—h

The HWVAD is active when the DMIC interface is active.

b. Reset the filters with a ‘1’ pulse of bit HWVADRSTT[RSTT].

c. Wait for a few milliseconds to let the filter converge.

d.

e. Start the HWVAD process by toggling bit HWVADST10[ST10] from ‘0’ to ‘1’ and

Enable the HWVAD interrupt with the appropriate NVIC bit. See Chapter 9.

back. This also clears the interrupt flag inside the HWVAD block.
In the HWVAD interrupt service routine take appropriate action.

Restart the HWVAD by adjusting the HWVADST10[ST10] bit. A precedent reset of
the filters using the control of HWVADRSTT[RSTT] described above is optional..

26.4 Pin description

Table 53 gives a brief summary of each of the PDM pins used by the DMIC subsystem.

Table 53. DMIC subsystem PDM pin description

Pin Type Description

PDMO_CLK 0 Clock output to digital microphone on PDM interface 0.

PDMO_DATA I Data input from digital microphone on PDM interface O.

PDM1_CLK 0 Clock output to digital microphone on PDM interface 1.

PDM1_DATA I Data input from digital microphone on PDM interface 1. Also PDM clock input in bypass

mode.

Recommended IOCON settings are shown in Table 54. See Chapter 12 for definitions of

pin types.
Table 54: Suggested DMIC pin setting for standard GPIO pin
IOCON Field name Setting Comment
bit(s)
11 SSEL (I0_CLAMP) 0 No clamping
10 oD 0 Standard driven 10
9 SLEWA1 0 See slew0
8 FILTEROFF 1 No input filtering
7 DIGIMODE 1 Digital pin
6 INVERT 0 No inversion
5 SLEWO 1 Slew of {0,1} to give sharper edges for clock output

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 185 of 350

NXP Semiconductors

UM11138

Chapter 26: Digital Microphone Interface (DMIC)

Table 54: Suggested DMIC pin setting for standard GPIO pin

IOCON Field name Setting Comment

bit(s)

4:3 MODE 2 No Pull-up or Pull-down

2:0 FUNC Must select the correct function for this peripheral, see
Table 19 “IOMUX functions” for details.

General A good choice for PDM signals

comment

Table 55. Suggested DMIC pin setting for combo GPIO/I2C pin

IOCON Field name Setting Comment

bit(s)

12 10_CLAMP 0 No clamping

10 oD 0 See slew0

9 FSEL 0 Not relevant when filtering is off

8 FILTEROFF 1 No input filtering

7 DIGIMODE 1 Digital pin

6 INVERT 0 No inversion

5 EHS 1 Enable high speed to give sharper edges for clock
output

ECS Not valid, keep low

3 EGP GPIO mode

2:0 FUNC Must select the correct function for this peripheral, see
Table 19 “IOMUX functions” for details.

General A good choice for PDM signals

comment

The PDM interface provides options to support 2 single-channel microphones or a single
stereo microphone. The general connections are shown in Figure 67. Specific use
examples are shown in Figure 68 through Figure 70.

CLK_BYPASSO

0 clock
PDM_CLKO D-MIC
1 data | channel 0
POM_DATAO [X] .
STEREO_DATAQO
1] data
1 0 D-MIC
PDM_CLK1 0 clock | channel 1
CLK_BYPASS1

PDM_DATA1T [X}——

150414

Fig 67. DMIC subsystem pin multiplexing

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 186 of 350

NXP Semiconductors U M1 1 1 38

Chapter 26: Digital Microphone Interface (DMIC)

PDM_CLKO &‘ clock

D-MIC

k ><:: PDM_DATAQ ‘& data | channel 0
PDM_DATA1 ‘x data

i’ D-MIC

D: PDM_CLK1 x‘ clock | channel 1

160614

IOCFG[CLK_BYPASSO] = 0; IOCFG[CLK_BYPASS1] = 0; IOCFG[STEREO_DATAO0] = 0

Fig 68. Typical connection to two independent microphones

+V
select

PDM_CLKO ¥ clock
D p-MiC
channel 0

PDM_DATAO
select 425

data
D-MIC
clock | channel 1
I € 150414

IOCFG[CLK_BYPASSO] = 0; IOCFG[CLK_BYPASS1] = 0; IOCFG[STEREO_DATAO] = 1

Fig 69. Typical connection to two microphones sharing a data line

+V PDM_CLKO P clock

select &‘ D-MIC

data | channel 0
PDM_DATAO ‘&
data |

D-MIC

channel 1
4..9.'995... 150414

IOCFG[CLK_BYPASSO] = 0; IOCFG[CLK_BYPASS1] = 0; IOCFG[STEREO_DATAOQ] = 1

Fig 70. Typical connection to a stereo microphone

The PDM interface also provides the possibility of an external codec or other PDM master
to take over the PDM interface on this device. An example of this using dual microphones
sharing one data line is shown in Figure 71.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 187 of 350

NXP Semiconductors U M1 1 1 38

Fig 71.

Chapter 26: Digital Microphone Interface (DMIC)

v PDM_CLKO
select &‘7
I — PDM_DATAO <

select

PDM_DATA1
_ >x

Microphone data available

to external master

Driven by external master
while in bypass mode 150414

IOCFG[CLK_BYPASSO] = 1

Bypass mode with an external device taking over microphone access

26.5 General description

from device pins

The hardware voice activity detector (HWVAD) implements a wave envelope detector and
a floor noise envelope detector. It provides an interrupt when the delta between the two
detectors is larger than a predefined value. The input signal for the HWVAD can come
from DMIC channel 0.

The basic detection of a voice activity can be the starting point for a more sophisticated
task like for example voice recognition. As with the DMA for the DMIC subsystem, the
HWVAD can be active during deep-sleep mode and therefore provide lowest power
operation, compared with a software based implementation.

The DMIC receives PDM data, typically from one or two digital microphones, and
produces a data stream that can be read by the CPU.

Detailed descriptions of both blocks can be found in Section 26.6 “Functional description”.

> HWVAD

| D-Mic

Channel 0
. Bus interface
PDM data input 110
P —>
Muxing

| D-Mic

Channel 1

Fig 72. DMIC subsystem block diagram

JIN5189

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 188 of 350

NXP Semiconductors U M1 1 1 38

Chapter 26: Digital Microphone Interface (DMIC)

26.6 Functional description

26.6.1 HWVAD

The hardware voice activity detector (HWVAD) analyses the PCM data from DMIC
channel 0 by means of a filter block. Both the noise floor and the signal wave are
examined and result in separate filter outputs. The HWVAD interrupt is issued when a
specific delta between the signal and the noise result is detected

Gain levels for the input signal as well as for the signal and noise filter outputs can be set
independently from each other, in order to adapt the HWVAD to different acoustic

situations.
HWVADST10 HWVADRSTT
HWVADGAIN l l HWVADTHGS HWVADTHGN
. . Wave envelope and
24-bit PCM data —>| 24-bit PCM signal » floor noise envelope P (28 - (THGS+1)) > (27 - (THGN+1)) [—> HWVAD

shifted by INPUTGAIN interrupt request

detector

170302

Fig 73. HWVAD block diagram

Because of the non-uniqueness of the input signal, which includes normally noise and
voice with various frequency components and different volume, there is no one-and-only
operation mode for the HWVAD. The few parameters as well as the chronology can play
an important role for a good performance.

26.6.1.1 Basic operations

There are some basic operations for the HWVAD, which can be combined differently in
order to achieve different behavior.

Reset 151217
filters

HWVAD _I—I— |'|
interrupt request (RSTT
ST10 H ST10 4|—|_

: 25ms :

i Converge filters i

1) The internal HWVAD interrupt flag is reset with a short pulse on ST10

2) A pulse on RSTT resets all detection filters

3) Keeping ST10 high for a period causes a special filter convergence. The 2.5ms period is valid for 800 kHz DMIC sample
rate. For 1 MHz sample rate the period is 2 ms.

Fig 74. Use of ST10 and RSTT controls (in the HWVADST10 and HWVADRSTT registers)

With bit HWVADST10[ST10], the HWVAD can be prepared for an interrupt. The internal
flag is reset with the rising edge of ST10 and the HWVAD waits for the next event. In case
the application involves some post-processing after a HWVAD event (outside of the
interrupt service routine), the flag should only be cleared at the end of this processing.
The interrupt status on NVIC level is not affected by this bit setting

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 189 of 350

NXP Semiconductors U M1 1 1 38

From this point on, the HWVAD can generate ordinary IRQs —>»

Chapter 26: Digital Microphone Interface (DMIC)

With bit HWVADRSTT[RSTT], all filters can be reset. After this reset, the HWVAD filters
need to converge, so for the first few milliseconds the result is not reliable. The HWVAD
interrupt should be masked on NVIV level during this time frame. The wait period depends
on the sample rate of the incoming data, at 1 MHz DMIC sample rate, the filters need
about 2 ms to converge, for 800 kHz the period is 2.5 ms.

If it makes sense to reset the filters before starting into a new detection process depends
on the use case. For a voice application, the filters can adapt continuously to the
background environment, between the voice events there is normally enough time to let
the filters converge to a changed background noise situation.

Keeping ST10 on high level during the convergence period enables a special mode. If the
filters should adapt to a current background noise floor (without voice), then this can be
done during this period. With ST10 returning to low level, the filter calculation is then
based on a different filter pre-setting. This could be an advantage in special type of
applications, where the signal is not continuously delivered to the HWVAD. In a DMIC
system with continuous sampling, this convergence period is not required, bit
HWVADST10[ST10] is just used to clear the interrupt flag.

A complete setup sequence for standard operation looks like this:

Reset Enable IRQ
filters on NVIC level
RSTT H
HWVAD NVIC VAD event VAD event
Spurious IRQ v oceurs occurs

HIVVAD 1 e F e N
interrupt request il L

ST10 ” ” H
{ {

Analyze the Analyze the
Software VAD event VAD event

From this point on, the CPU can receive interrupts ——» 151217

Fig 75. Complete HWVAD setup

JIN5189

1. Reset filters with bit HWVADRSTT[RSTT] and provide some time to let the filter
converge to the signal conditions.

2. Pulse bit HWVADST10[ST10] to clear any spurious interrupts which were generated
during bad filter conditions.

3. Enable HWVAD IRQ on NVIC level.

4. Process the VAD event in case of an interrupt, when finished clear the interrupt flag
with a high pulse of ST10.

26.6.1.2 Extended operation

There are a few parameters which can be set to influence the behavior of the HWVAD.
There is also an intermediate filter result value available, which can be used for
proprietary software-based analysis.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 190 of 350

NXP Semiconductors U M1 1 1 38

26.6.1.2.1

26.6.1.2.2

26.6.1.2.3

26.6.1.2.4

JIN5189

26.6.2

Chapter 26: Digital Microphone Interface (DMIC)

Input gain setting

The 24-bit PCM input signal can be shifted left or right with the gain setting in the register
HWVADGAIN. This increases or decreases the volume of the input signal for the HWVAD
processing. Note that the reset value 0x05 equals a gain factor of 1, the signal is not
shifted in either direction.

Filter result gain setting

The output values for the final equation can also have a gain factor within the hardware for
determining the HWVAD result.

If [z8 * (THGS+1)] > [z7 * (THGN+1)], HWVAD_RESULT =1; else HWVAD_RESULT = 0;

These gain factors determine the proportion between the results of the signal and the
noise filters. The values depend on the audio signal and noise environment, the reset
values HWVADTHGN[THGN] = 0 and HWVADTHGS[THGS] = 4 are more suitable for a
low noise environment. For noisy environment, the gain for THGN and THGS needs to be
increased. In a typical voice recognition application HWVADTHGN[THGN] = 3 and
HWVADTHGS[THGS] = 6 is a good starting point.

High pass filter setting

The setting in register HWVADHPFS can be used to adapt the filters to different
background noise situations. In order to find the best setting, software could perform a
rough spectral analysis of the audio signal.

For a background with more low-frequency content, HWVADHPFS[HPFS] should be set
to Ox1. This is the standard use case. For environments where the low-frequency content
is small, the filter can be set to 0x2.

Noise floor evaluation

The register HWVADLOWYZ contains 2 bytes of the output of filter stage z7, which
computes the noise floor. The characteristic of the filter block for voice applications is best
for a value of 500 ... 1000 in LOWZ. Software can tune the input gain to get the LOWZ
value into this region.

Note: For power saving reasons, this register is not synchronized to the AHB bus clock
domain. To ensure correct data is read, the register should be read twice. If the data is the
same, then the data is correct, if not, the register should be read one more time. The noise
floor is a slowly moving calculation, so several reads in a row can guarantee that register
value being read can be assured to not be in the middle of a transition.

DMIC

The DMIC interface receives PDM data from one or two digital microphones and
processes it to produce 24-bit PCM data. This data can be read by the CPU or DMA.
Many aspects of DMIC operation can be controlled. A block diagram of one DMIC channel
is shown in Figure 76.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 191 of 350

NXP Semiconductors U M1 1 1 38

Chapter 26: Digital Microphone Interface (DMIC)

4FS 2FS 1FS
PDM .| PDM cic |PCM [FIR | [Half band| | FIR [PCM | IR [,|Half band| PCM D
data] capture | filter filter [*]decimator[”| filter filter [*|decimator b|0cC:k e > FIFOl» Bus
filter interface
77 D x
-
x % E m m USE2FS DC_CTRL
0 &) O
5! z) %)
T < @ x to 12S of
o (O ~ N Flexcomm Interface
o Q
< <
L L
[v4 o
o o
to HWVAD
(DMIC channel 0 only)
Fig 76. DMIC channel block diagram
26.6.2.1 Clocking and DMIC data rates
The DMIC interface operation is determined by 3 clock domains:
* DMIC interface base clock: supply clock for the peripheral block
* DMIC clock: sample clock for the digital microphone
* PCM sample rate: sample rate of the PCM data resulting from the PDM to PCM
conversion
DMIC clock €— sut?xls?em — PCM sample rate
DMIC interface
base clock 151215
Fig 77. DMIC interface clock domains
The source for the base clock can be set in register SYSCON_DMICCLKSEL (see
Chapter 6 “Clock Distribution”). Note that all of these clock sources may be divided by a
factor of up to 256 by the DMIC clock divider, controlled by SYSCON_DMICCLKDIV
(Chapter 6 “Clock Distribution”). The functions CLOCK_AttachClk and CLOCK_SetClkDiv
can be used to configure the clocks.
Table 56. Base clock sources for DMIC interface peripheral
Source Range DMIC interface base clock Note
FRO1MHz 1 MHz <1 MHz
FRO12MHz 12 MHz <12 MHz
FRO48MHz 48 MHz <24 MHz
OSC32KHz 32 kHz <32 kHz
MAIN_CLK 12-48 MHz <24 MHz See Chapter 6 “Clock Distribution”
MCLK_IN <2 MHz <2 MHz External clock

JIN5189

For the DMIC clock, the base clock divider values can be set in registers DIVHFCLKJO0:1].

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 192 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

26.6.2.2

Chapter 26: Digital Microphone Interface (DMIC)

However, for power consumption reasons, it is preferable that the division to the required
DMIC clock be done outside of the DMIC interface block (for example using register
SYSCON_DMICCLKDIV).

The DMIC peripheral block is designed to run at a DMIC clock speed no faster than 6.144
MHz and with an input frequency no faster than 4 * 6.144 MHz = 24.576 MHz. With
regards to power consumption the lowest possible frequency should be selected. This
frequency very much depends on the application requirements. For a simple voice activity
detection a sample rate of 200 kHz for the DMIC might be sufficient, for a good quality
voice tag recognition the DMIC should be clocked at least with 800 kHz. Depending on the
current operating mode of the application, the clocks can be set dynamically from one
sample rate to the other.

For a glitch free reduction of the DMIC clock rate by factor 2 the DMIC interface contains
dedicated circuitry. By setting bit PHY_CTRLO[PHY_HALF] and
PHY_CTRL1[PHY_HALF], the DMIC clock is divided to half the frequency internally used
for the filters. This enables an on-the-fly switching of the DMIC clock without affecting the
operation of the filters. As long as the sample quality on half of the frequency is good
enough for the application, for example in listening mode only, this helps to decrease the
power consumption of the external digital microphone.

If the PDM interface operates during deep-sleep mode (always listening), then the
presence of the clock source in this mode must be taken into account as well. For
example, the PLL output is not present during deep-sleep mode, but the 12 MHz FRO is
there.

In general, other clocks such as the 48 MHz FRO or the watchdog oscillator are available
in deep-sleep mode. It depends on the use case whether a faster or slower clock provides
any advantage to the system. At high PDM data rates, for example at 6 MHz, a 48 MHz
clock will shorten the “awake” periods compared to 12 MHz operation. A trade-off between
the sleep and the active periods, and the internal voltage required at the chosen clock
rate, that determine which of the clocks perform better in terms of average power
consumption.

The watchdog oscillator low-power operation can help to drive the power consumption
down in simple voice detection setups. By running the DMIC interface on the slow
watchdog oscillator frequency, the HWVAD feature can provide a first audio detection
trigger signal to the system. Hereafter the sample rate as well as the processor
performance is increased in order to run more sophisticated voice detection and/or voice
recognition algorithms.

PDM to PCM conversion

The filter block for PDM to PCM conversion consists of four stages. It begins with a CIC
filter (Cascaded-Integrator Comb filter) filter which is an optimized finite impulse response
(FIR) filter combined with a decimator.The CIC filter converts the PDM stream from the
digital microphone into PCM data with a given oversampling rate, set in registers OSR[0]
and OSR[1] for each of the two channels. The second block performs a decimation by 2
and compensates for a roll-off at the upper limit of the audio band. The third block
decimates the signal again by half, resulting in a PCM signal with the desired sample rate.
A final DC filter removes any unwanted DC component in the audio signal.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 193 of 350

NXP Semiconductors U M1 1 1 38

Chapter 26: Digital Microphone Interface (DMIC)

2 2 PCM
e _ sample rate
CiCfiter| 8w [i | Halfband [o1 | 56w [[Half band | A6
PDM —> > filter decimator filter > filter decimator >
: OSR :2 12 DC
block—>» PCM

filter

2FS PCM

151217

Fig 78. Principle structure of the PDM to PCM conversion

To achieve lower power consumption, the DC filter can be supplied with the 2FS instead
of the 1FS signal, bypassing the second half band decimator filter. This reduces the
required DMIC base clock by a factor of 2. This is done by setting the USE2FS[USE2FS]
bit.

The PDM to PCM conversion block is designed for providing best results for PCM output
signals with a 16 kHz sample rate, covering the enhanced 8 kHz speech band widely used
in communication systems. However, other sample rates can be realized as well.

The final relation between the DMIC clock rate and the PCM audio sample rate is:

Table 57. DMIC input and output clock rates
2 FS mode 1 FS mode
PCM Sample rate = DMIC clock rate / (2 * OSR) PCM Sample rate = DMIC clock rate / (4 * OSR)

Example: DMIC clock = 800 kHz, OSR = 25, 2 FS used

The 800 kHz DMIC data is downsampled by 25 times to 32 kHz. With the following
half-band filter the final PCM sample rate is 16 kHz.

The FIR filter configurations are controlled by PREAC4FSCOEFx and
PREAC2FSCOEFx. The following diagram shows the filter response for these filters.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 194 of 350

NXP Semiconductors

UM11138

Chapter 26: Digital Microphone Interface (DMIC)

Magnitude Responze (dB)

-

R e e R L ar.ob R L R Rl
o
=
2 0 To------- a----
: 1 1 1
= 1 1 1
C 1 1
(=] 1 1 1
1] 1 1 1
= \ I I
7Y A S SN S - AR S S -
I — -0.16 |, I I
: — 015}, : :
: — -0.13| : :
! — 0 i I I
-1 riniaiaiiiaa it ;T §TTTTTm T
s ER— b S [R
l | | | |
0 10 20 30 40 50 &0 70 &0 50
Fregquency (kHz)
Fig 79. Pre-emphasis filter quantized response at 96 kHz
26.6.2.3 FIFO and DMA operation
SRAM
DMA |3 voi Software
24-bit 16 x »| Voice chunk buffer —» processing
1FSor2Fs__| bIIDCk PCM DMIC FIFO 24-bit PCM
PCM data filct)gr 16 samples
SRAM
170302

Fig 80. DMIC FIFO and DMA

JN5189

The 24-bit wide FIFO of the DMIC interface consists of 16 entries for each of the two
channels. The trigger level for the FIFO can be set in register FIFO_CTRLx individually for

each channel.

The trigger level interrupt for the DMIC interface needs to be enabled on NVIC level and
with bit INTEN in register FIFO_CTRLx. Bit DMAEN enables DMA operation. With each
FIFO trigger level event the DMA performs a copy of the data from the FIFO into SRAM.

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

195 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

26.6.2.4

Chapter 26: Digital Microphone Interface (DMIC)

This data batching works without contribution of the core. When reaching the defined
chunk buffer size, the DMA issues an interrupt to the Arm core for further processing of
the data.

This also works when the device is in deep-sleep mode, as the FIFO event is able to wake
up the required part of the hardware. After the DMA finished the job, the device will return
into deep-sleep mode. The two DMIC channel DMA requests are connected to the DMA
request input #15 and #16, see Table 25 “DMA requests & trigger muxes”.

Since each DMIC channel provides a separate DMA request, the most obvious
configuration of DMA is to have left and right data in separate memory buffers. However, it
is possible to configure the DMA controller to interleave left and right data if that is
preferable in the application. To do this, the DMA is set up with a data size of halfword, but
the next address written to is a word address distance away. The two descriptors would be
started on consecutive halfwords. Data is delivered by the DMIC as left channel followed
by right channel for each PCM stereo sample.

If more history data is required for a software algorithm, another DMA request can be set
up, which copies the current chunk into a larger ring buffer structure. For algorithms like
voice detection or voice recognition, this is key, in order to converge the software filters to
the current background noise situation.

For operation without DMA, the dedicated DMIC FIFO interrupt can be enabled in order to
inform the Arm core about the FIFO status.

Example:

* PCM output sample rate is 16 kHz

The 32-bytes FIFO gets full every 1ms
The DMA copies every 1ms the 32-bytes content of the DMIC FIFO to SRAM

The DMA is configured to move 512 bytes (= 256 PCM samples) from the DMIC FIFO
to SRAM before issuing a DMA interrupt

* Every 16 ms the 256 PCM samples are processed by the Arm core

Usage of the DMIC interface in power save modes

The DMIC interface can batch the serial PDM stream from a digital microphone in
deep-sleep mode. This requires an appropriate base clock which is active in the
respective power saving mode. The best fit for this base clock is the 12 MHz FRO, which
provides a good trade-off between power consumption and performance. For lower power
operation the watchdog oscillator can be used, taking into account that the clock is
relatively inaccurate and the DMIC sample rate is rather low. At any time an external
low-power clock, connected to pin MCLK, can be used.

In combination with the HWVAD, this provides lowest power consumption in listening
mode. Except for the short periods with DMA activity, the MCU can remain in deep-sleep
mode until the wave envelope detector of the HWVAD identifies an energy change event
and issues an interrupt. With the DMA set to larger transfer sizes (maximum is 1024
transfers), there is quite some history data available for any type of software-based
analysis of the data causing the HWVAD event.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 196 of 350

NXP Semiconductors U M1 1 1 38

Chapter 26: Digital Microphone Interface (DMIC)

This also enables the system to realize different strategies for dealing with a HWVAD
event. A concrete analysis of the data could for example just be started when the HWVAD
detected events over a longer time frame. This would avoid that the Arm core gets active
on spurious noise. In case the decision has been taken to take the next step in data
analysis, the history buffer still contains the complete PCM data sampled since the first
event, nothing got lost. In average, the system can stay longer in power save mode if
spurious events can be filtered out.

26.7 Software control

To use the functionality of the DMIC module, it is recommended to use software functions
from within fsl_dmic.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 197 of 350

UM11138

Chapter 27: 12-bit ADC Controller (ADC)

Rev. 1.4 — June 2020 User manual

27.1 How to read this chapter

27.2 Features

The ADC controller is available on all JN5189(T)/JN5188(T) devices.

12-bit successive approximation analog to digital converter.

Input multiplexing among up to 8 pins (6 external inputs, 1 temperature sensor and
VBar)-
A configurable conversion sequencer with configurable trigger

Optional automatic high/low threshold comparison and “zero crossing” detection.

12-bit conversion rate of 190 kHz. Options for reduced resolution at higher conversion
rates.

Burst conversion mode for single or multiple inputs.

Asynchronous operation. Asynchronous mode allows choosing ADC clock from
FRO12M or XO32M.

A temperature sensor is connected to ADC channel 7, see Chapter 28 “Temperature
Sensor” for further details.

Supply monitor is connected to ADC channel 6; this monitors Vgar.

27.3 Basic configuration

JIN5189

Configure the ADC as follows:

Set up the CTRL register.
Use the ADC API to start up the ADC.

The ADC block creates three interrupts which are connected to the NVIC: ADC_SEQ,
and ADC_THCMP_OVR. The ADC_THCMP_OVR interrupt at the NVIC combines
ADC_THCMP and ADC_OVR conditions from the ADC as described in this chapter.
See Table 17 for interrupt numbers. The sequence interrupts can also be configured
as DMA triggers through the INPUT MUX for each DMA channel and as inputs to the
SCT.

Use IOCON (Chapter 12) to connect and enable analog function on the ADC input
pins.

Pre-determined calibration data must be written into the ADC configuration registers
after every reset or power cycle of the ADC. The ADC API function may be used for
this. Note that the ADC may be power cycled in deep-sleep mode if it is not requested
to stay on when these modes are invoked by the Chip. POWER_EnterPowerMode
API.

There are two options in the CTRL register to clock ADC conversions:

— Use the system clock to clock the ADC in synchronous mode. This option allows
exact timing of triggers.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 198 of 350

NXP Semiconductors U M1 1 1 38

Chapter 27: 12-bit ADC Controller (ADC)

— Use the ADC clock, determined by the SYSCON_ADCCLKSEL register and the
SYSCON_ADCCLKDIV register. ADC clock should be at 4 MHz. Some clock
sources are independent of the system clock, and may require extra time to
synchronize ADC trigger inputs.

Configure the temperature sensor as follows:

* Select the temperature sensor as source for channel 7 of the ADC by writing the
SEQ_CTRL[CHANNELS] bits to 0x80. In order to return ADC channel 7 to measuring
its related device pin, write the SEQ_CTRL[CHANNELS] bits to 0x80.

* The digital temperature reading is available after an analog-to-digital conversion of
ADC channel 7.

Remark: To convert the ADC conversion result into a temperature reading, use the API
provided. This uses device specific calibration data stored in the device to increase the
accuracy of the temperature reading.

ADCO
Clock generation
CTRL register
system clock CLKDIV ADC
- clock | | ANALOG-to-
DIGITAL
ADC Clock from Syscon | = PA CONVERSION
ASYNMODE

Fig 81. ADC clocking

27.4 Pin description

JIN5189

The ADC can measure the voltage on any of the input signals on the analog input
channel. Digital signals must be disconnected from the ADC input pins when the ADC
function is to be used by setting PIOX[DIGIMODE] = 0 on those pins. Additionally, the
pull-up and pull-down resistors must be disabled.

Warning: If the ADC is used, signal levels on analog input pins must not be above the
level of Vgar at any time. Otherwise, ADC readings will be invalid. If the ADC is not used
in an application, then the pins associated with ADC inputs can be used as digital 1/0 pins.

The ADC can be triggered by the Pin Interrupt PINTO signal. This can be associated with
a digital pin, see Chapter 15 “Pin Interrupt and Pattern Match (PINT)”. In addition to
assigning the pin trigger to a pin, it must also be selected in the conversion sequence
registers for each ADC conversion sequence defined.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 199 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 27: 12-bit ADC Controller (ADC)

The ADC can also be triggered by two of the outputs of the PWM module, PWM_OUTS8
and PWM_OUT9. See Chapter 18 “Pulse Width Modulation (PWM)” for details of how
these PWM signals are generated. In addition to enabling the PWM function it must also
be selected in the conversion sequence registers for each ADC conversion sequence
defined.

The processor can also generate an ADC trigger by asserting the transmit event, TXEV,
signal by executing the SEV command. The conversion sequence register must also be
configured to use this TXEV trigger.

Before the ADC can be configured and used, it is necessary to enable the two LDOs
needed for the ADC and also enable the clocks to the ADC. This is performed by the ADC
initialization function provided in the SDK. A delay of 230 ps is required to allow settling of
the ADC LDOs to achieve full ADC accuracy.

Quicker startup is possible but with reduced accuracy. For a reduction of each bit of
accuracy the startup time is reduced by 20 ps; this is possible down to a 7-bit ADC value.
The driver code within the SDK will demonstrate how the initialization can be performed.

The ADC has 8 channels, the channel mappings are shown in Table 58.

Table 58. ADC channels

ADC channel Function Device Pin

0 'ADCO PIO14

1 ADCH1 PIO15

2 'ADC2 PIO16

3 ADC3 PIO17

4 'ADC4 PIO18

5 ADC5 PIO19

6 vSuppIy monitor Internal function
7 Temperature sensor |Internal function

Recommended IOCON settings are shown in Table 59. See Chapter 12 for definitions of
pin types.

Table 59: Suggested ADC input pin settings
IOCON bit(s) 'ADC5 - ADCO pins
11 SSEL: Setto 0
0 'OD: Set to 0.
Slew1: set to 0.

DIGIMODE: Set to 0.

]
9

8 'FILTEROFF: Set to 1.
7

6 'INVERT: Set to 0.

5 Slew0: set to 0.

4:3 'MODE: Set to 2.

2:0 FUNC: Select GPIO as the pin function.

General comment 'Configure for analog input without pull-up or
pull-down.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 200 of 350

NXP Semiconductors U M1 1 1 38

Chapter 27: 12-bit ADC Controller (ADC)

27.5 General description

ADCO_IN5 pins

. Sequence A
Pin interrupt 0 —»{ Start Complete IRQ
PWM_OUT8 ——>{Conversion |conversion >
. > Data overrun IRQ
PWM_OUT9 —»| Trigger » >to NVIC
ADC
ARM_TXEV —>
- Threshold |threshold IRQ
Channel | Channel Analog-o- allale
g select Digital
an > Converter
Sequence | Data
Control | registers
ADCO_INO through ADC
- Channels 0 through 5> result
Channel 6
Channel 7

Fig 82. ADC block diagram

The ADC controller provides a great deal of flexibility in launching and controlling
sequences of ADC conversions using the associated 12-bit, successive approximation
ADC converter. ADC conversion sequences can be initiated under software control or in
response to a selected hardware trigger.

Once the triggers are set up (software and hardware triggers can be mixed), the ADC runs
through the pre-defined conversion sequences converting a sample whenever a trigger
signal arrives until the sequence is disabled.

The ADC controller uses the system clock as a bus clock. The system clock or the
asynchronous ADC clock (see Figure 81) can be used to create the ADC clock which
drives the successive approximation process:

¢ In the asynchronous mode, an independent clock source is used as the ADC clock
source without any further divider in the ADC. The ADC clock rate is 4 MHz as well.

The full scale output of the ADC is obtained when the ADC pin is at 3.6 V. However,
voltage on the ADC pins must not exceed Vgar. So to obtain the largest dynamic range of
the ADC, it is necessary to operate with the maximum supply voltage possible. To convert
from the ADC value to a voltage, it is necessary to multiply the ADC value by 3.6/4095.

27.6 Functional description

JIN5189

27.6.1 Conversion Sequences

A conversion sequence is a single pass through a series of ADC conversions performed
on a selected set of ADC channels. Software can configure the conversion sequence
which can be triggered by software or by a transition on one of the hardware triggers.

An optional single-step mode allows advancing through the channels of a sequence one
at a time on each successive occurrence of a trigger.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 201 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

27.6.2

27.6.2.1

27.6.3

27.6.4

Chapter 27: 12-bit ADC Controller (ADC)

Hardware-triggered conversion

Software can select which hardware trigger will launch each conversion sequence and it
can specify the active edge for the selected trigger independently for each conversion
sequence.

For each conversion sequence, if a designated trigger event occurs, one single cycle
through that conversion sequence will be launched unless:

* The SEQ_CTRL[BURST] for this sequence is set to 1.

* The requested conversion sequence is already in progress.

If any of these conditions is true, the new trigger event will be ignored and will have no
effect.

In addition, if the single-step bit for a sequence is set, each new trigger will cause a single
conversion to be performed on the next channel in the sequence rather that launching a
pass through the entire sequence.

Avoiding spurious hardware triggers

Care should be taken to avoid generating a spurious trigger when writing to the
SEQ_CTRL register to change the trigger selected for the sequence, switch the polarity of
the selected trigger, or to enable the sequence for operation.

In general, the SEQ_CTRL[TRIGGER] and SEQ_CTRL[TRIGPOL] should only be written
when the sequence is disabled (while the SEQ_CTRL[SEQ_ENA] = 0). The
SEQ_CTRL[SEQ_ENA] itself should only be set when the selected trigger input is in its
INACTIVE state (as designated by the SEQ_CTRL[TRIGPOL] bit). If this condition is not
met, a trigger will be generated immediately upon enabling the sequence - even though
no actual transition has occurred on the trigger input.

Software-triggered conversion
There are two ways that software can trigger a conversion sequence:
1. Start Bit: Setting the corresponding SEQ_CTRL[START] . The response to this is
identical to occurrence of a hardware trigger on that sequence. Specifically, one cycle

of conversions through that conversion sequence will be immediately triggered except
as indicated above.

2. Burst Mode: Set the SEQ_CTRL[BURST] bit. As long as this bit is 1 the designated
conversion sequence will be continuously and repetitively cycled through. Any new
software or hardware trigger on this sequence will be ignored.

Interrupts
The following interrupts can be generated by the ADC:

* Conversion-Complete or Sequence-Complete interrupt for sequencer
* Threshold-Compare Out-of-Range Interrupt
¢ Data Overrun Interrupt

Any of these interrupt requests may be individually enabled or disabled in the INTEN
register. Note that the threshold and overrun interrupts share a slot in the NVIC.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 202 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

27.6.41

27.6.4.2

27.6.4.3

27.6.5

Chapter 27: 12-bit ADC Controller (ADC)

Conversion-Complete or Sequence-Complete interrupts

An interrupt/DMA trigger can either be asserted at the end of each ADC conversion
performed as part of that sequence or when the entire sequence of conversions is
completed. The SEQ_CTRL[MODE] selects between these alternative behaviors.

If the SEQ_CTRL[MODE] bit for a sequence is 0 (conversion-complete mode), then the
interrupt flag/DMA request for that sequence will reflect the state of the
SEQ_GDAT[DATAVALID] bit. In this case, reading the SEQ_GDAT register will
automatically clear the interrupt/DMA trigger.

If the SEQ_CTRL[MODE] bit for the sequence is 1 (sequence-complete mode) then the
interrupt flag/DMA request must be written-to by software to clear it (except when used as
a DMA trigger, in which case it will be cleared in hardware by the DMA engine).

Threshold-Compare Out-of-Range Interrupt

Every conversion performed on any channel is automatically compared against a
designated set of low and high threshold levels specified in the THRn_HIGH and
THRn_LOW registers. The results of this comparison on any individual channel(s) can be
enabled to cause a threshold-compare interrupt if that result was above or below the
range specified by the two thresholds or, alternatively, if the result represented a crossing
of the low threshold in either direction. The mode is configured in the INTEN register.

This flag must be cleared by a software write to clear the individual FLAGS[THCMPn]
flags.

Data Overrun Interrupt

This interrupt/DMA trigger will be asserted if any of the FLAGS[OVERRUNRN] bits are set,
visible in the OVERRUNO to OVERRUN?7 status bits in the FLAGS register. In addition,
the SEQ_GDAT[OVERRUN] bit will cause this interrupt/DMA trigger if the SEQ_CTRL
[MODE] bit is set to 0 (conversion-complete mode).

This flag will be cleared when the OVERRUN bit that caused it is cleared via reading the
register containing it, e.g. if OVERRUNS is set then it is necessary to read data from
DATI[5] register to clear the overrun flag.

Note that the SEQ_GDAT[OVERRUN] bit is cleared when data related to that channel is
read from either of the global data registers as well as when the individual data registers
themselves are read.

Optional Operating Modes

There are three optional modes of ADC operation which may be selected in the CTRL
register.

Four alternative ADC accuracy settings are available ranging from 12 bits down to 6 bits of
resolution. Lowering the ADC resolution results in faster conversion times. A single ADC
conversion (including one conversion in a burst or sequence) requires (resolution+3) ADC
clocks when the minimum sampling period is selected. When reduced accuracy is
selected, the unused LSBs of result data will automatically be forced to zero.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 203 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

27.6.6

27.6.7

27.6.8

27.6.9

Chapter 27: 12-bit ADC Controller (ADC)

Two clocking modes are available, synchronous mode and asynchronous mode. The
synchronous clocking mode uses the system clock in conjunction with an internal
programmable divider. The main advantage of this mode is determinism. The start of ADC
sampling is always a fixed number of system clocks following any ADC trigger. The
alternative asynchronous mode (on chips where this mode is supported) uses an
independent clock source. In this mode the user has greater flexibility in selecting the
ADC clock frequency to better achieve the maximum ADC conversion rate without
restricting the clock rate for other peripherals. The penalty for using this mode may be
longer latency and greater uncertainty in response to a hardware trigger.

Offset and gain calibration algorithm

Before using the ADC, some initialization software is required to apply the pre-calculated
calibration data words for ADC offset and ADC gain, stored in flash, need to be copied into
dedicated control register.

The ADC cannot be utilized until the startup routine has completed. This initialization is
performed the software initialization API function provided.

ADC vs. digital receiver

The analog ADC input must be selected via IOCON registers in order to get accurate
voltage readings on the monitored pin. In the IOCON, the pull-up and pull-down resistors
must be both disabled using the PIOn[MODE] bits. For a pin hosting an ADC input, it is
not possible to have a have the digital function enabled and yet get valid ADC readings.
Software must write a 0 to the related PIOn[DIGIMODE].

DMA control

The conversion sequence complete interrupt may also be used to generate a DMA
transfer trigger. To generate a DMA transfer, the same conditions must be met as the
conditions for generating an interrupt (see Section 27.6.4).

Remark: If DMA is used for a sequence, the corresponding sequence interrupt must be
disabled in the INTEN register.

For DMA transfers, only burst requests are supported. The burst size can be set to one in
the DMA_CFGn register. If the number of ADC channels is not equal to one of the other
DMA-supported burst sizes (applicable DMA burst sizes are 1, 4, 8), set the burst size to
one.

The DMA transfer size determines when a DMA interrupt is generated. The transfer size
can be set to the number of ADC channels being converted. Non-contiguous channels
can be transferred by the DMA using the scatter/gather linked lists.

ADC hardware trigger inputs

An analog-to-digital conversion can be initiated by a hardware trigger. The trigger can be
selected for the conversion sequencer in the ADC SEQ_CTRL register by programming
the hardware trigger input # into the TRIGGER bits.

Related registers:

e SEQ_CTRL register

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 204 of 350

NXP Semiconductors U M1 1 1 38

27.7 Examples

27.6.10

Chapter 27: 12-bit ADC Controller (ADC)

Table 60. ADCO hardware trigger inputs

Input # ‘Source Description

0 PINTO See Chapter 16 “Group GPIO Input Interrupt (GINT)”
1 YPWM_OUTS See Chapter 18 “Pulse Width Modulation (PWM)”

2 PWM_OUT9 See Chapter 18 “Pulse Width Modulation (PWM)”

3 YARM_TXEV Transmit Event output from CPU

Sample and conversion time

The analog input from the selected channel is sampled at the start of each new A/D
conversion. The default (and shortest) duration of this sample period is 2.5 ADC clock
cycles. Under some conditions, longer sample times may be required. A variety of factors
including operating conditions, the ADC clock frequency, the selected ADC resolution,
and the impedance of the analog source will influence the required sample period.

The conversion time of the ADC is given by:
Tconv= [(1+ GPADC_TSAMP [4:0]) +7+nb_resol] .Tclk
For nb_resol = 12 (12 bit) , Tconv = (20 + GPADC_TSAMP [4:0]).Tclk

For the typical vale of GPADC_TSAMP [4:0]=0x14h (equivalent to 20d in decimal) Tconv
= 40.Tclk (40 ADC clock cycle)

For the first conversion it will take 2 * Tconv. If the ADC input mux is unchanged
(gpadc_sel_in_1v1_set[2:0]) then a following conversion will only take Tconv. However,
each time the ADC input mux is changed, 2 * Tconv is needed.

JIN5189

27.71

The following examples are intended to show some of the ADC conversion operations
and features supported. The APIs provided will help develop applications using this
functionality. See Section 27.8 “Software control” for information on the SW driver.

Perform a single ADC conversion triggered by software

Remark: When ADC conversions are triggered by software only and hardware triggers
are not used in the conversion sequence, follow these steps to avoid spurious
conversions:

1. Before changing the trigger set-up, disable the conversion sequence by setting the
SEQ_CTRL[SEQ_ENA] bit to 0.

2. Set the trigger source to an unused setting using the SEQ_CTRL[TRIGGER] bits. The
value 3, for example, is not used on this device.

3. Set the SEQ_CTRL[TRIGPOL] bit to 1.

Once the sequence is enabled again, the ADC converts a sample whenever the
SEQ_CTRL[START] bit is written to.

The ADC converts an analog input signal VIN on the ADCO to ADCS5 pins.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 205 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 27: 12-bit ADC Controller (ADC)

To perform a single ADC conversion for channel 1 using the analog signal on pin ADC1,
follow these steps:

1. Enable the analog function on pin ADC1 via IOCON.

Configure the system clock to be 48 MHz and configure
SYSCON_ADCCLKSEL[SEL] to 00b (XO32M), configure
SYSCON_ADCCLKDIV[DIV] to 111b (8, to have 4 MHz).

Select the asynchronous mode by the CTRL[ASYNMODE].

4. Select ADC channel 1 to perform the conversion by setting the

SEQ_CTRL[CHANNELS] bits to 0x2.
Set the SEQ_CTRL[TRIGPOL] bit to 1 and the SEQ_CTRL[SEQ_ENA] bit to 1.

6. Set the SEQ_CTRL[START] bit to 1.
7. Read the SEQ_GDAT[RESULT] bits for the conversion result. The

SEQ_GDAT[DATAVALID] bit can be used to indicate when the ADC result is valid.

27.7.2 Perform a sequence of conversions triggered by an external pin

The ADC can perform conversions on a sequence of selected channels. Each individual
conversion of the sequence (single-step) or the entire sequence can be triggered by
hardware. Hardware triggers are either a signal from an external pin or an internal signal.
See Section 27.6.9.

To perform a single-step conversion on the first four channels of ADCO triggered by rising
edges on pin PIOO, follow these steps:

1. Enable the analog function on pin ADCO to ADC3 via IOCON.

Configure PINTO to respond to P1O0, see Chapter 15 “Pin Interrupt and Pattern Match
(PINT)” for details.

Configure the system clock and select asynchronous mode for ADC with FRO12M
(SYSCON_ADCCLKSEL[SEL] to 01b) and SYSCON_ADCCLKDIV[DIV] to have
clock at 4 MHz

Select the asynchronous mode by CTRL[ASYNMODE].

Select ADC channels 0 to 3 to perform the conversion by setting the
SEQ_CTRL[CHANNELS] bits to OxF.

6. Select trigger PINTO by writing 0x1 to the SEQ_CTRL[TRIGGER].
7. To generate one interrupt at the end of the entire sequence, set the

SEQ_CTRL[MODE] bit to 1.

8. Select single-step mode by setting the SEQ_CTRL[SINGLESTEP] bit to 1.
9. Enable the Sequence A by setting the SEQ_CTRL[SEQ_ENA] bit.

10.

A conversion on ADC channel 0 will be triggered whenever the pin PIO0 goes from
LOW to HIGH. The conversion on the next channel (initially channel 1) is triggered on
the next 0 to 1 transition of PINTO. The ADCO interrupt is generated when the
sequence has finished after four 0 to 1 transitions of PINTO.

Read the SEQ_GDAT[RESULT] bits for the conversion result. The
SEQ_GDAT[DATAVALID] bit can be used to indicate when the ADC result is valid.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 206 of 350

NXP Semiconductors U M1 1 1 38

Chapter 27: 12-bit ADC Controller (ADC)

27.7.3 Perform a conversion in full speed

The goal is to have a full speed conversion of 1 input of ADC in channel 0.

1. Enable analog function for ADCO

2. Configure the system clock for ADC, 4 MHz clock is required and enable
axync_adc_clk

3. Configure for shortest sampling time by setting
GPADC_CTRLO[GPADC_TSAMP]=0x1. This requires the ADC source to have a low
source impedance.

4. Select asynchronous mode by CTRL[ASYNMODE]
5. Select start_behavior mode by SEQ_CTRL[START_BEHAVIOUR]

6. Select ADC channel 0 to perform the conversion by setting the
SEQ_CTRL[CHANNELS] to 0x1

7. Set the SEQ_CTRL[TRIGPOL] bit to 1 and the SEQ_CTRL[SEQ_ENA] bit to 1.
8. Select burst mode by SEQ_CTRL
9. At each new interrupt, the SEQ_GDAT is updated.

27.8 Software control

To use the functionality of the ADC module, it is recommended to use software functions
from within fsl_adc.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 207 of 350

UM11138

Chapter 28: Temperature Sensor
Rev. 1.4 — June 2020 User manual

28.1 How to read this chapter

The temperature sensor is available on all JN5189(T)/JN5188(T) devices.

28.2 Features

* Linear temperature sensor.

® Sensor output internally connected to the ADC channel 7 for temperature monitoring

28.3 Basic configuration

JIN5189

This section explains how the Temperature Sensor can be used. For a functional example
see Ipc_adc_basic.

* Enable the power to the temperature sensor by setting the
ASYNC_SYSCON_TEMPSENSORCTRL[ENABLE] .

* Configure temperature sensor common mode output voltage setting
ASYNC_SYSCON_TEMPSENSORCTRL[CM] = 0x2 for proper default operation

* To monitor the temperature continually, select the temperature sensor as source for
channel 7 of ADCO. See Chapter 27. The digital temperature reading is available after
an analog-to-digital conversion.

* The ADC reading must be converted into a temperature reading. To increase
accuracy the sensor and ADC are calibrated during production, An API is provided to
produce a temperature value; this performs the best configuration of the ADC for the
purpose of the temperature sensor. The calibration data and other characteristics of
the temperature and ADC are used to produce a high accuracy results.

* For highest accuracy, set ADCCLK mux source to be 32 MHz XTAL with a divider
setting of 7, to give an ADCCLK of 4 MHz.

* The voltage range of operation of the ADC is set by ADC_GPADC_CTRLO[TEST]. In
normal mode, the ADC can take an input voltage of 0 to 3.6 V, to Va7 if this is lower.
For the temperature sensor, the ADC must be configured in Unity Gain mode when
the input voltage range is 0 to 0.9 V. Since the temperature sensor voltage output is
within this range, the best accuracy is achieved. A consequence of this is that the
temperature sensor can not be combined with the other ADC inputs as part of
sequencer configuration. Also, safe practice is to set the mode back to normal mode
after using the ADC with the temperature sensor.

28.3.1 Perform a single ADC conversion with the temperature sensor as
ADC input
As mentioned in the previous chapter, the API should be used when performing
temperature measurements. As a simple example of obtaining a temperature

measurement, the following steps can be performed. In this case, the accuracy is not as
high as that using the API.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 208 of 350

NXP Semiconductors U M1 1 1 38

Chapter 28: Temperature Sensor

To perform a single ADC conversion for ADCO channel 7 using the temperature sensor
output:

Enable the temperature sensor output as input to ADC channel 7.

Configure the system clock and the ADC for operation.

Select the asynchronous mode in the ADC_CTRL register.

oD~

Select ADC channel 7 to perform the conversion by setting the
ADC_SEQ_CTRL[CHANNELS] bits to 0x80.

5. Set the ADC_SEQ_CTRL[START] bit to 1.
6. Read the SEQ_GDAT[RESULT] bits for the conversion result.

7. The AHI software may be used to generate the temperature value. In fact, the
example driver will perform this sequencing as well as making corrections due to the
calibration data, and using averaging to give the best result.

28.4 Pin description

The temperature sensor has no configurable pins.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 209 of 350

UM11138

Chapter 29: Serial Wire Debug (SWD)

Rev. 1.4 — June 2020 User manual

29.1 How to read this chapter

Serial Wire Debug functionality is available on all JN5189(T)/JN5188(T) devices.

29.2 Features

* Supports Arm Serial Wire Debug mode for the Cortex-M4.

* Trace port provides Cortex-M4 CPU instruction trace capability. Output via a Serial
Wire Viewer.

¢ Direct debug access to all memories, registers, and peripherals.
* No target resources are required for the debugging session.

* Breakpoints: the Cortex-M4 includes 6 instruction breakpoints that can also be used
to remap instruction addresses for code patches. Two literal comparators that can
also be used to remap addresses for patches to literal values.

* Watchpoints: the Cortex-M4 includes 4 data watchpoints that can also be used as
triggers.

* |nstrumentation Trace Macrocell allows additional software controlled trace for the
Cortex-M4.

29.3 Basic configuration

The serial wire debug pins, SWCLK and SWDIO, are enabled by default.

29.4 Pin description

The tables below indicate the various pin functions related to debug. Some of these
functions share pins with other functions which therefore may not be used at the same
time. Trace using the Serial Wire Output has limited bandwidth.

Table 61. Serial Wire Debug pin description
Function Type Connectto |Description

SWCLK |In PIO0_12 Serial Wire Clock. This pin is the clock for SWD debug logic when in the Serial Wire
Debug mode (SWD). This pin is pulled up internally.

SWDIO 1/0 PI1O0_13 ‘Serial wire debug data input/output. The SWDIO pin is used by an external debug tool
to communicate with and control the part. This pin is pulled up internally.

SWO Out PIO0_14, 'Serial Wire Output. The SWO pin optionally provides data from the ITM for an external
PIO0_17 or | debug tool to evaluate.
PIO0_21

The following setup is required to enable SWO output on GPIO PIO0_14 (FUNC5),
P1O_17 (FUNC3) or PIO0_21 (FUNCEG6):

1. Write 0x0 to SYSCON_TRACECLKDIV to enable the Trace clock divider.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 210 of 350

NXP Semiconductors U M1 1 1 38

Chapter 29: Serial Wire Debug (SWD)

2. If the clock to the IOCON block is not already enabled, write 1 to
SYSCON_AHBCLKCTRLSETO[IOCON_CLK_SET]. The clock must be enabled in
order to access any IOCON registers.

3. Configure the IOCON function for the required GPIO which will be used; for instance
configure PIO0_17 to be FUNC3 by writing FUNC=3 in the PIO[17] register.

4. Enable SWD by setting register
SYSCON_CODESECURITYPROT[SEC_CODE]=0x87654320

29.5 General description

Serial wire debug functions are integrated into the CPU, with up to four breakpoints and
two watchpoints.

Trace on the Cortex-M4 is supported via the Serial Wire Output.

29.6 Functional description

29.6.1 Debug limitations

Important: Due to limitations of the CPU, the part cannot wake up in the usual manner
from deep-sleep mode during debugging.

When using debug mode, some reduced power modes do not reach their normal
low-power state. Therefore power measurements should not be made while debugging,
power consumption is higher than that during normal operation. During a debugging
session, the watchdog does not stop. Therefore, if the watchdog is active, it will interrupt
the debug session. Therefore, any debug build must not have any references to the
WWDT block.

Also, during a debugging session, the System Tick Timer is automatically stopped
whenever the CPU is stopped. Other peripherals are not affected.

29.6.2 Access to SWD
In some circumstances, it is not possible to access the debug port. Conditions that can
lead to access being blocked are:
® application is running and flash control bit, F_DIS_SWD=1
¢ flash field JTAG_DIS=1
¢ application is running and flash control bit, F_DIS_SWD=0, but application has not
enabled debug

There are some special device modes which are configured by the boot code. SWD is
controlled in some of these modes, refer to Chapter 7 “Reset, Boot and Wakeup”.

Access to the processors using SWD is shown in the following figure.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 211 of 350

NXP Semiconductors

UM11138

Chapter 29: Serial Wire Debug (SWD)

Serial-Wire Debug

A

.
connection > SWI-DP

Note: for protection it is
not possible to access
the debug functionality
in some modes

Fig 83. Serial Wire Debug connections

JIN5189

All information provided in this document is subject to legal disclaimers.

L

Cortex-M4

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

212 of 350

UM11138

Chapter 30: Flash Controller

Rev. 1.4 — June 2020 User manual

30.1 Introduction

30.2 Features

This chapter describes the Flash Controller of the JN5189(T)/JN5188(T) device.

* 32-bit AHB interface, to access the memory

® 32-bit APB registers interface (same clock domain as AHB)

¢ Auto initialization after reset

* ECC management, including single bit correction and error correction logging
* Supports automatic signature calculation of an address range

* Interrupts for end of command, ECC events, command error/failure

30.3 Basic configuration

JIN5189

The application does not need to directly control the flash controller. General configuration
is managed by the boot code. Flash programming utilities are provided for modifying the
flash contents.

The flash contents can be read as code or data from the flash region of the memory map.
The register in the flash controller are accessible in a separate region of the address map.

When the flash is performing certain functions the flash memory cannot be accessed for
other purpose, and an attempted read will cause a wait state to be asserted until the
function is complete. These functions include erase, program and signature generation.

Access to the flash is zero wait state for CPU clock speeds of 32MHz of less. At 48MHz
one wait state is required. Wait state configuration requires use of the SET_READ_ MODE
command.

To set clock to 48M FRO, set the wait state before changing clock frequency:
FLASH SetReadMode (FLASH, true);
CLOCK AttachClk (kFRO48M to MAIN CLK);

To set lower speeds set the wait state after changing the clock frequency, for example for
32M FRO:

CLOCK AttachClk(kFRO32M to MAIN CLK);

FLASH SetReadMode (FLASH, false);

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 213 of 350

UM11138

Chapter 31: SRAM Controller
Rev. 1.4 — June 2020 User manual

31.1 How to read this chapter

Up to 2 SRAM controllers are available on all JN5189(T)/JN5188(T) devices. The number
of SRAM controllers are dependent of JN5189(T)/JN5188(T) version.

31.2 Features

The two controllers are connected as the following:

Ahb Multi SRAM

Layer Matrix CONTROLLER

Fig 84. SRAM controller connection

The SRAM controllers have the following features:

* Zero wait state access (for all CPU frequencies)
* Controls SRAM memories in ACTIVE and POWERDOWN modes

* Can be configured through SYSCON_AHBCLKCTRLO[SRAMCTRLO0] and
SYSCON_AHBCLKCTRLO[SRAMCTRLA1]

31.3 Basic configuration

Set the SYSCON_AHBCLKCTRLO[SRAMCTRLO] and
SYSCON_AHBCLKCTRLO[SRAMCTRL1] to enable the clock to the SRAM controllers.

31.4 General description

31.4.1 SRAM controllers

The two RAM controllers are identical and are zero wait state memories (i.e no RY
handshake or multi-cycle access). It includes a write buffer in order to boost performance
(no stall upon write-read back to back).

The Table 62 lists the settings of each controller

JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 214 of 350

NXP Semiconductors

UM11138

Chapter 31: SRAM Controller

Table 62. SRAM controller setting

Instance Name |Type Slave Description Aperture Start Address | End Address Power
Port/Slave Size Domain
Number
SRAM-CTRLO Slave 2/0 SRAMO to 88 KB 0x0400_0000 0x0401_5FFF MCU
SRAM7
SRAM-CTRL1M Slave 30 SRAMS to 64 KB 0x0402_0000 0x0402_FFFF |MCU
SRAM11

[11 SRAM-CTRL1 is disabled for JN5188 and JN5188T. To disable this controller, the PMC maintained it to
RESET state.

SRAM Controller 0 controls 8 SRAMs composed as follow:

* SRAMO (16 KB)
* SRAM1 (16 KB)
» SRAM2 (16 KB)
* SRAM3(16 KB)
* SRAM4 (8 KB)
* SRAMS5 (8 KB)
* SRAMS (4 KB)
* SRAM7 (4KB)

SRAM controller 1 controls 4 SRAMs composed as follow:

» SRAMS (16 KB)
* SRAM9 (16 KB)
* SRAM10 (16KB)
* SRAM11 (16KB)

The Figure 1 “Main memory map” shows the JN5189(T)/JN5188(T) system memory map.

31.5 Power description

31.5.1 JN5189(T)/JN5188(T) IC power domains

31.5.2

JIN5189

The two SRAM controllers are on MCU power domain (PD_MCU) while memories are on
different power domains PD_MEMx (see Section 31.5.2 “Memories power domains” and
Figure 1 “Chip block diagram”.

Memories power domains

12 power domains are defined for memories:

* PD_MEMO for SRAMO
¢ PD_MEM1 for SRAM1
* PD_MEM2 for SRAM2
* PD_MEMS3 for SRAM3
* PD_MEM4 for SRAM4

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 215 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 31: SRAM Controller

PD_MEMS5 for SRAMS
PD_MEMG6 for SRAM6
PD_MEM?Y for SRAM7
PD_MEMS for SRAMS8
PD_MEM9 for SRAM9
PD_MEM10 for SRAM10
PD_MEM11 for SRAM11

In ACTIVE mode, SRAM memories are powered by LDO_CORE. If retention is needed
(optional mode), SRAM memories are powered by LDO_MEM in power down mode.

The Table 15 “Possible power modes and state of power domains” shows more precisely
the power domains states according to the power modes.

In active and sleep modes, controllers and memories are supplied and clocked by AHB
clock.

In deep sleep mode, SRAM controllers are supplied but memories are in retention mode
or shut-off (depending on the power mode type).

In power down mode, the internal SRAM values can be maintained if memory retention
mode is enabled.

In deep power down, memories are shut off.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 216 of 350

UM11138

Chapter 32: ROM Controller
Rev. 1.4 — June 2020 User manual

32.1 How to read this chapter

The ROM controller is available on all JN5189(T)/JN5188(T) devices.

32.2 Features

The ROM controller is connected as the following figure

ROM
Ahb Multi ROM 128K

Layer Matrix CONTROLLER (1 * 128K)

Fig 85. ROM controller connection

The ROM controller has the following features:

* Zero wait state access (for all CPU frequencies)
® Controls ROM memory in Active mode

32.3 Basic configuration

The application does not need to perform any configuration to use the ROM. Any required
set-up is managed by the boot code.

32.4 General description

32.4.1 ROM controller

The ROM controller is zero wait state memory (i.e no RY handshake or multi-cycle
access). It is the same controller as SRAM controllers except that it does not include a
write buffer. So, it is fastest on timing and has a smallest gate count.

The Table 63 lists the settings of ROM:

JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 217 of 350

NXP Semiconductors

UM11138

Chapter 32: ROM Controller

Table 63. ROM setting

Instance Type Slave Description Aperture Start Address End Address Power

Name Port/Slave Size Domain
Number

ROM Slave 1/0 Code 128 KB 0x0300_0000 0x0401_FFFF MCU

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

218 of 350

UM11138

Chapter 33: Hash-Crypt Peripheral for SHA1, SHA2 (HASH)
Rev. 1.4 — June 2020 User manual

33.1 Introduction

The Hash-Crypt peripheral is divided into 3 parts, with details of each, controlled by
configuration:

* The register interface, including two 512-bit buffers

* An AHB Master, used to read and in some cases write data.

* Hardware engines to perform specific symmetric crypto algorithms, including hashing
and en/decryption:

— SHAT1 - 160 bit hash on 512-bit blocks
— SHAZ2-256 - 256 bit hash on 512-bit blocks

The Hash block can generate triggers to the DMA block so that DMA data transfer can be
efficiently performed.

33.1.1 Hashing
Hashing is used for 4 primary purposes (explained below):
* |tis the core of a digital signature model, including certificates, such as for secure
update.
* |tis used with an HMAC to support a challenge/response or to validate a message.
* It can be used in a secure boot model, which verifies code integrity.
® |t can be used to verify external memory has not been compromised.
A hash takes an arbitrarily large message/image (e.g. 1K or 1MB or more) and forms a
relatively small fixed size "unique" number called a digest. The digest is unique in 3 ways:
* There is only one solution (digest) for a given input.
* Small and large changes will result in very different numbers.

* There is no predictable way to modify one input to result in a specific digest. That is,
an attacker cannot add/insert/modify a message and get the same hash in any direct
way; it is an extremely complex problem to add mods that result in the same digest.

The hash model works where data is fed to the Hash block and it forms a digest of size
160-bit or 256-bit. The data is fed 16 words at a time (512 bits) with the last block
formatted per the SHA model:

The last data must be 447 bits or less. If more, then an extra block must be created.
After the last bit of data, a 1 bit is appended.

* Then, as many 0 bit are appended to take it to 448 bits long (so, 0 or more).

Finally, the last 64 bits contain the length of the whole message, in bits, formatted as a
word.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 219 of 350

NXP Semiconductors U M1 1 1 38

Chapter 33: Hash-Crypt Peripheral for SHA1, SHA2 (HASH)

The data is fed by words from the processor, DMA, or hosted access; the words are
converted from little-endian (Arm standard) to big-endian (SHA standard) by the block.
So, no extra work is needed.

33.2 SHA hashing

33.2.1

JIN5189

Hashing is a way to reduce arbitrarily large amounts of data to a fixed size semi-unique
result, called a digest. The SHA1 hash produces a 160-bit digest (5 words), and the SHA2
256 hash produces a 256-bit digest (8 words). The digest output has two notable aspects:

* Even a small change to the input message will cause a major change in the digest
output.

* |tis extremely hard to find changes that will produce the same digest. It is even harder
to find changes to a message that preserve its size.

The above two properties make it useful for verifying whether a message is valid -
whether corrupted intentionally or unintentionally. When used in conjunction with a public
key infrastructure, it allows verifying correctness of the message along with correctness of
the sender (author).

Hashing processes 512-bit blocks (16 words) and performs the hash in 80 cycles (SHA1)
or 64 cycles (SHA2 256) per block. As many blocks as needed may be processed. The
last block is special as explained above. It is up to the application to manage the last
block.

The words are always big-endian. Since the Cortex-M processor uses little endian, this
block reverses the bytes in the words written to the data register. This is because a hash
is on bytes, so a string such as "abcd", when read as a word by the processor (or DMA)
would be reversed into "dcba". The block reverses these to process correctly.

SHA hashing is explained in detail in the NIST/FIPS spec, see Ref. 3.

Performance of this block

This block has 4 possible use models. The difference in performance is often very
dependent on the memory (e.g. flash with wait states vs. RAM) and then somewhat
activity on the system buses. The 6 use models are:

¢ Single buffer with data loaded by the processor (Cortex-M).

— The core writes 16 words (can use LDM and STM instructions for max speed) to
kick off each SHA hashing. The block uses alias registers to support use of STM
(writing to contiguous locations).

— The hashing then runs for 64 or 80 cycles.
— Interrupts or WFI or polling can be used to then feed the next 16 words until done.
* Double buffered load by processor.

— Identical to the single buffer case above, except the processor can load the next 16
during the 64 or 80 cycles of hashing.

— Unless high wait states, this would allow non-stop hashing.
¢ Single buffer with data loaded by DMA
— The DMA loads the 16 words based on requests.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 220 of 350

NXP Semiconductors U M1 1 1 38

Chapter 33: Hash-Crypt Peripheral for SHA1, SHA2 (HASH)

— The hashing then runs for 64 or 80 cycles.

— The DMAis then requested to load another 16. When the DMA is done, it interrupts
the processor.

* Double buffered load by DMA

— Identical to the single buffer case above, except the DMA can load the next 16
during the 64 or 80 cycles of hashing.

— For the DMA using 4 cycles per transfer (at 0 wait state), this allows non-stop
hashing.

¢ Single buffer with data loaded by an AHB bus master
— The AHB master loads 16 words from Flash or RAM.
— The hashing then runs for 64 or 80 cycles.

— If the block count is not 0, it loads the next 16 words. This is repeated until the
count reaches 0.

* Double buffered AHB bus master

— Identical to the single buffer case above, except the master can load the next 16
during the 64 or 80 cycles of hashing.

— Even at 3 wait states, this can perform non-stop hashing with SHA-2.

— Even with 4 wait states, this can perform non-stop hashing with SHA-1.

33.3 Registers

All registers are to be accessed in word mode. The control register is used to enable the
block, start a new hash, and to control use of DMA. The status and interrupts are linked.
Interrupts are held until the condition is resolved, including waiting for data and
completion. DMA is used to process data and will keep asking for more after every block -
the DMA length should be used to control the number of blocks.

33.4 Initialization and Use

To perform hashing, the 1st step is to choose among 3 possible ways to get the data into
the Hash block:
* Using Cortex-M4 using interrupts.
— The WAITING (as well as ERROR) interrupt is configured.
— On WAITING interrupt, the block is loaded by copying in the 16 words.

— If more blocks to load, then the WAITING interrupt is retained. If last block, then the
DIGEST interrupt is enabled instead.
* Using SDMA
— The DMAis configured for up to 1K words (64 512-bit blocks) to be read from Flash
or RAM. The Hash peripheral will control the DMA to feed It data as fast as it can.

— If the double-buffered instance, it will allow loading another 16 words while
processing the previous. This pipelined method allows continuous processing if not
slowed by waitstates or contention.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 221 of 350

NXP Semiconductors U M1 1 1 38

Chapter 33: Hash-Crypt Peripheral for SHA1, SHA2 (HASH)

— Aninterrupt is used to notify the processor when the DMA completes. That ISR can
enable the DIGEST interrupt (as well as ERROR) to process the results. Or, it can
configure the DMA for more data if needed.

— If the last block is to be constructed separately, then either the DMA can move
those 16 words or the processor can do so via interrupt.

* Using AHB Master

— The Peripheral's master is configured for the location in RAM (e.g. 0x0400_0000),
or Flash (e.g. 0x0000_0000) and the count of blocks.

— The DIGEST interrupt is enabled (along with ERROR). It will not fire until the last
block is complete and the digest computed.

— If the last block is to be hand constructed, then the ISR may load the constructed
last block (or use the DMA) and it will be interrupted when the DIGEST is ready.

33.4.1 General initialization

The steps to setup the Hash block are as follows.

1. Take the block out of reset and start its clocks using the SYSCON register. See
Section 10.5 “Accessing peripherals through internal buses”.

Note: The Hash peripheral only uses the main AHB clock, so no special clocking or
scaling is needed

2. Select SHA1 or SHA2 using the control register. Also write NEW, which will self clear.
3. If using:
— CPU: write to INTENSET regsiter to enable the WAITING and ERROR interrupts.
- DMA
i.Setup the DMA (channel and config block), including enabling it.
ii.Enable the DMA interrupt so the application will know when DMA is done.
iii.Then set the DMA bit in the CTRL register.
— AHB Master:
i.Enable the INTENSET[DIGEST] and INTENSET[ERROR] interrupt.
ii. Write to the MEMADDR register with the offset in Flash, CodeRAM or RAM

iii.In the MEMCTRL register, set the MASTER control bit and also write the number
of blocks to process into the COUNT field.

33.4.2 ISR for CPU use
Algorithm for ISR for CPU looks like:
¢ |f ERROR interrupt occurs, there has been an overrun. This type of error typically
occurs during development time and indicates a coding error.

* |f WAITING, write 16 words into Hash peripheral. Fastest method is structure copy as
shown below. If have no more blocks after this, disable WAITING interrupt using
INTENCLR[WAITING] and then enable DIGEST interrupt by setting
INTENSET[DIGEST].

The fastest copy is usually:
struct HASH_W {unsigned v[8];} *src, *dst;

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 222 of 350

NXP Semiconductors U M1 1 1 38

Chapter 33: Hash-Crypt Peripheral for SHA1, SHA2 (HASH)

src = (struct HASH_W *)memory_to_read_from; // use location in Flash or RAM
dst = (struct HASH_W *)HASHO_INDATA,; // indata and aliases

dst[0] = src[0]; // 1st 8, usually using LDM/STM for best performance

dst[0] = src[1]; // 2nd 8, usually using LDM/STM for best performance

¢ |f DIGEST, then process Digest register (e.g. read out the Digest result) and clear the
interrupt using INTENCLR.

33.4.3 ISR for DMA use
The ISR for the DMA done uses:
¢ |f all DMA data transfer has completed, write 1 to INTENSET[DIGEST]. The DIGEST
interrupt will occur when the DIGEST is ready.

* |t may be necessary to transfer one last block of data after the configured DMA
transfer has completed. If this is needed, then either can write the 16 words now, or
use the CPU ISR to transfer this last block.

When the DIGEST Interrupt occurs then process the DIGEST result, e.g. by reading out
the DIGEST result.

The ERROR interrupt should not occur, but if it does then an overrun has occurred and
the software must be checked.

33.4.4 ISR for AHB Master
The ISR for AHB Master is only for DIGEST or ERROR. An ERROR would be a bus error,
so the algothism is:
* |[f ERROR, the master bus faulted. The MEMCTRL count indicates which block it was
on, and the MEMADDR register indicates which location it was on when it failed.

¢ |f DIGEST, then process DIGEST register (e.g. copy) and clear the interrupt using
INTENCLR register.

33.5 Software control

To use the functionality of the Hash-Crypt peripheral, it is recommended to use software
functions from within fsl_sha.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 223 of 350

UM11138

Chapter 34: SPI Flash Interface (SPIFI)

Rev. 1.4 — June 2020 User manual

34.1 How to read this chapter

34.2 Features

The SPI flash interface is available on all JN5189(T)/JN5188(T) parts.

* Quad SPI Flash Interface (SPIFI) interface to external flash.
¢ Transfer rates of up to SPIFI_CLK/2 bytes per second.
* Supports 1-, 2-, and 4-bit bidirectional serial protocols.

¢ Half-duplex protocol compatible with various vendors and devices (see Table 66
“Supported QSPI devices”).

® Adriver library available from NXP Semiconductors to assist in using the SPIFI.

* Four line cache to improve efficiency, when directly accessing data (memory mode)
from external flash memory. Each cache line is 8 bytes.

34.3 Basic configuration

Initial configuration of the SPIFI peripheral is accomplished as follows:

* Power: Set SYSCON_AHBCLKCTRLO[SPIFI].
Remark: On reset, the SPIFI is disabled.

* SPIFI clock: set up the SPIFI clock using the SYSCON_SPIFICLKSEL and
SYSCON_SPIFICLKDIV registers

* Pins: Select SPIFI pins and pin modes through the relevant IOCON registers. 10s
need to be configured for fast slew rate if operating above 10 MHz.

34.4 General description

JIN5189

The SPI Flash Interface (SPIFI) allows low-cost serial flash memories to be connected to
the CPU with little performance penalty compared to parallel flash devices with higher pin
count.

Adriver APl is available to manage the setup, programming and erasing of the flash. After
an initialize call to the SPIFI driver, the flash content is accessible as normal memory
using byte, halfword, and word accesses by the processor and/or DMA.

Many serial flash devices use a half-duplex command-driven SPI protocol for device setup
and initialization. Quad devices then use a half-duplex, command-driven 4-bit protocol for
normal operation. Different serial flash vendors and devices accept or require different
commands and command formats. SPIFI provides sufficient flexibility to be compatible
with common flash devices, and includes extensions to help insure compatibility with
future devices.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 224 of 350

NXP Semiconductors U M1 1 1 38

Chapter 34: SPI Flash Interface (SPIFI)

Serial flash devices respond to commands sent by software or automatically sent by the
SPIFI when software reads either of the two read-only serial flash regions in the memory
map (see Table 66 “Supported QSPI devices”).

Table 64. Available pins and configuration registers

Memory Address
SPIFI data 0x1000 0000 to 0x103F FFFF

Remark: This is the address space allocated to the SPIFI for direct access. The area allocated allows a
maximum of 4 MB of SPI flash to be mapped into the CPU memory space. In practice, the usable space
is limited to the size of the connected device.

34.5 Pin description

Table 65: SPIFI Pin Description

Pin Type 'Description

SPIFI_CLK (0] Serial clock for the flash memory, switched only during active bits on the I00/MOSI,
I01/MISO, and 103:2 lines.

SPIFI_CSN o Chip select for the flash memory, driven low while a command is in progress, and high

between commands. In the typical case of one serial slave, this signal can be connected
directly to the device. If more than one serial slave is connected, software and off-chip
hardware should use general-purpose I/O signals in combination with this signal to generate
the chip selects for the various slaves.

SPIFIL_1O0 or /0 | This is an output except in quad/dual input data fields. After a quad/dual input data field, it
SPIFI_MOSI becomes an output again one serial clock period after CSN goes high.

SPIFI_IO1 or /O | This is an output in quad/dual opcode, address, intermediate, and output data fields, and an
SPIFI_MISO input in SPI mode and in quad/dual input data fields. After an input data field in quad/dual

mode, it becomes an output again one serial clock period after CSN goes high.

SPIFI_IO[3:2] IO These are outputs in quad opcode, address, intermediate, and output data fields, and inputs in
quad input data fields. If the flash memory does not have quad capability, these pins can be
assigned to GPIO or other functions.

34.6 Supported devices

Serial flash devices with the following features are supported:

* Read JEDEC ID
* Page programming

* at least one command with uniform erase size throughout the device

Table 66 shows a list of vendor QSPI devices which are supported. Other devices can be
used and will run in basic single SPI mode at lower speed.

Remark: All QSPI devices have been tested at an operating voltage of 3.3 V.

Table 66: Supported QSPI devices

Manufacturer Device name

AMIC A251.512, A25L010, A25L020, A25L040, A25L080, A25L016, A25L032, A25LQ032

Atmel AT25F512B, AT25DF021, AT25DF041A, AT25DF081A, AT25DF 161, AT25DQ161, AT25DF321A,
AT25DF641

Chingis Pm25LD256, Pm25LD512, Pm25LD010, Pm25LD020, Pm25LD040, Pm25LQ032

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 225 of 350

NXP Semiconductors U M1 1 1 38

Chapter 34: SPI Flash Interface (SPIFI)

Table 66: Supported QSPI devices

Manufacturer Device name

Elite (ESMT) F25L08P, F25L16P, F25L32P, F25L32Q

Eon EN25F10, EN25F20, EN25F40, EN25Q40, EN25F80, EN25Q80, EN25QH16, EN25Q32, EN25Q64,
EN25Q128

Gigadevice GD25Q512, GD25Q10, GD25Q20, GD25Q40, GD25Q80, GD25Q16, GD25Q32, GD25Q64

Macronix MX25L8006, MX25L8035, MX25L8036, MX25U8035L"l, MX25L1606, MX25L1633, MX25L1635,

MX25L1636, MX25U163501, MX25L3206, MX25L3235, MX25L3236, MX25U3235[1], MX25L6436,
MX25L6445, MX25L6465, MX25L12836, MX25L12845, MX25L12865, MX25L25635, MX25L25735

Numonyx M25P10, M25P20, M25P40, M25P80, M25P X80, M25P16, M25PX16, M25P32, M25PX32, M25P64,
M25PX64, N25Q032, N25Q064, N25Q128

Spansion S25FL004K, S25FL008K, S25FL016K, S25FL032K, S25FL032P, S25FL064K, S25FL064P,
S25FL129P

SST SST26VF016, SST26VF032, SST25VF064

Winbond W25Q40, W25Q80, W25Q16, W25Q32, W25Q64

[1]1 Level translation circuitry, which might affect performance, is required for these parts.
The following devices lack one or more of these features and are not supported:
* Elite: F25L004, F25L008, F25L016.

¢ Eon: 25B64.

* SST: 25VF512, 25WF512, 25VF010, 25WF010, 25LF020, 25VF020, 25WF020,
25VF040, 25WF040, 25VF080, 25WF080, 25VF016, 25VF032.

34.7 SPIFI hardware

The SPIFI has a base address for the registers and a base address for the memory area
in which the serial Flash connected to the SPIFI can be read.

The first operation with the serial Flash is Read JEDEC ID, which is implemented by most
serial Flash devices. Depending on the device identity code returned by the serial Flash in
this operation, device-specific commands are used for further operation. Programming
and other operations on the serial Flash can be performed using a software AHI functions
or using the register interface.

34.8 Register description

The SPIFI function is controlled and monitored through the registers. An overview of the
registers follows.

34.8.1 SPIFI control register

The SPIFI control register controls the overall operation of the SPIFI and should be written
before any commands are initiated

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 226 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

34.8.2

34.8.3

34.8.4

34.8.5

34.8.6

Chapter 34: SPI Flash Interface (SPIFI)

SPIFI command register

Writing to the Command Register can initiate the transmission of a new command. If the

command requires additional data such as an address or intermediate data then this must
be provided before the command is issued. If the command contains input data, software
can read it from the Data Register after writing to this register.

SPIFI address register

Before writing a command that includes an address field to the Command register,
software should write the address to this register. The most significant byte of the address
is sent first.

SPIFI intermediate data register

Before writing a command to the Command register that requires specific intermediate
byte values, software should write the value of the bytes to this register. The least
significant byte of this register is sent first. If more than four intermediate bytes are
specified in the Command register, Os are sent after the 4th byte.

The main use of this register with current serial flash devices is to select the no-opcode
mode (continuous read) using the byte value 0xA5, and canceling this mode using OxFF.

Many devices that require dummy (delay) bytes don't care about their contents, in which
case this register need not be written

SPIFI cache limit register

The SPIFI hardware includes caching of previously-accessed data to improve
performance. Software can write an address within the device to this register, to prevent
such caching at and above that address. After Reset this register contains the allocated
size of the SPIFI memory area, so that all possible accesses are below that value and are
thus cacheable

SPIFI data register

After initiating a command that includes a data output field by writing to the Command
Register, software should write output data to this register. Store Byte instructions provide
one data byte, Store Halfword instructions provide two bytes, and Store Word instructions
provide 4 bytes of output data. Store commands are waited if the FIFO is too full to accept
the number of bytes being stored. For Store Halfword and Store Word, the least significant
byte is sent first.

After initiating a command that includes a data input field by writing to the Command
Register, software should read input data from this register. Load Byte instructions deliver
one data byte to software, Load Halfword instructions deliver two bytes, and Load Word
instructions deliver 4 bytes of input data. Load commands are waited if a command is in
progress and the FIFO does not contain the number of bytes being loaded. For Load
Halfword and Load Word commands, the least significant byte is received first

CMDI[DATALEN] bytes should be read from or written to this register. If such a (read or
write) command needs to be terminated before that time, software should write a 1 to the
STAT[RESET] bit to accomplish this. If software attempts to read or write more data than
was specified in CMD[DATALEN)], a Data Abort exception will occur.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 227 of 350

NXP Semiconductors U M1 1 1 38

34.8.7

34.8.8

Chapter 34: SPI Flash Interface (SPIFI)

In polling mode (see the CMD[POLL]), one byte must be read from this register because
the poll mechanism writes the matching byte.

This register is not used for commands initiated by reading the flash address range in the
memory map. In DMA transfers in peripheral to-or-from-memory mode, the address of this
register should be used as the peripheral address.

SPIFI memory command register

Before accessing the flash area of the memory map, software should set up the device.
After optionally writing to the Intermediate Data register, software should write a word to
this register to define the command that is used to read data. Thereafter data can be read
from the flash memory area, either directly or by means of a DMA channel.

Writing to this register will be ignored when a command is in progress or while data has
yet to be written or read from the FIFO for a command issued. Use the STAT[MCINIT] bit
to verify that the hardware is in Memory mode. A successful write to this register sets the
SPIFI into Memory mode. The content of this register is identical to that of the Command
Register, except for the DATALEN (not used), POLL, DOUT, and FRAMEFORM bits.

SPIFI status register
This register indicates the state of the SPIFI.

34.9 Functional description

JIN5189

34.9.1

Data transfer

Serial SPI1 uses the signals SPIFI_CLK, SPIFI_CSN,SPIFI_MISO, and SPIFI_MOSI, while
quad mode adds the two 10 signals SPIFI_SIO[3:2].

The SPIFI implements basic, dual, and quad SPI in half-duplex mode, in which the SPIFI
always sends a command to a serial flash memory at the start of each frame. (A frame is
the sequence of bytes transmitted during one period with CS LOW.) In general,
commands start with an opcode byte although some serial flashes allow a no-opcode
mode in which commands start with the address to be read. In write commands, the SPIFI
sends all of the data in the frame, while in read commands, the SPIFI sends the
command, and then the serial flash sends data to the SPIFI.

Classic SPI includes four modes (mode 0 to mode 3), of which the SPIFI and most serial
flashes implement modes 0 and 3. In mode 0, the SCK line is LOW between frames while
in mode 3 it is HIGH. In mode 0, the SPIFI drives the first data bits from the time that it
drives CS LOW, and drives the rest of the data on falling edges of SCK. In mode 3, the
SPIFI drives SCK LOW one-half clock period after it drives CS LOW, and drives data on
the falling edge of SCK. In either mode the serial flash samples the data on the rising
edges of SCK.

The same scheme (transmitter changes data on falling edges of SCK, receiver samples
data on rising edges) is maintained for the entire frame, including read data sent by the
serial flash to the SPIFI.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 228 of 350

NXP Semiconductors U M1 1 1 38

Chapter 34: SPI Flash Interface (SPIFI)

The SPI protocol avoids all issues of set-up and hold times between the clock and data
lines by using half of the SCK period to transmit the data. For high clock speeds, it is
necessary to sample read data using a feedback clock. The CTRL[FBCLK] bit enables the
feedback clock from the SCK pad sampling method. This provides the best possible
timing margin for both read and write data under the opposite-edge scheme.

But maximizing clock frequency is of such importance that further improvement is
sometimes needed, by means of using the whole serial clock period to transmit data. This
choice is enabled for read data by setting the CTRL[RFCLK] bit. When this bit is 1, the
SPIFI samples data on the falling edge of the serial clock that follows the rising edge
which is normally used. CTRL[RFCLK] and CTRL[FBCLK] and CTRL[MODE3] should not
all be 1 because in this case there would be no falling edge of the feedback clock to
capture the last bit of a frame.

Consult the data sheet of the serial flash device to be used for the formats of the
commands that it supports. Figure 86 shows commands consisting of an opcode field
only, sent in SPI and quad modes. All fields are multiples of 8 bits long. Bytes are sent
with the most significant bit first in SPI mode, and the most significant 4 bits first in quad
mode.

SPIFI_CSN ™\ /

SPIFI_MOSI_\ / \

Opcode-only command in SPI mode

SPIFI_CSN — —
SPIFI_CLK [\/ \
oosPrFooy _\ [\L_
101 (SPIFI_IO1) 1_/_E
102 (SPIFI_SIO2) 1_/_E
103 (SPIFI_SI03) T\ [

Opcode-only command in quad mode

Fig 86. Opcode only commands

JIN5189

Figure 87 shows a command that reads 1 byte from the slave in SPI mode and a
command that reads 3 bytes from the slave with the opcode and input data fields both in
quad mode.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 229 of 350

NXP Semiconductors U M1 1 1 38

Chapter 34: SPI Flash Interface (SPIFI)

SPIFI_CSN_\ I_
SPIFI_CLK HHHHHHHHHHHHHHHH

SPIF_MOSI | [__[L
SPIFI_MISO \ [\ [

Opcode 05, input data 02, SPI mode

SPIFI_CSN —\ I_

030 JAJFIBlF]l2)6)fo]>

3l »|

» € »|

<
103:0 driven 103:0 driven
by Master by Slave

Opcode AF, input data BF 26 02, both fields quad mode

Fig 87. Read commands

In quad mode, the 103:0 lines are driven by the SPIFI in opcode, address, intermediate
and output data fields, and driven by the flash memory in input data fields. In address
fields the more significant bytes are sent first.

34.9.2 Software requirements and capabilities

During device set-up, software should initialize the external serial flash device using those
commands that place it in its highest-performance mode. When this sequence is
complete, software should write the command that will be issued in response to a read
from the serial flash region of the memory map, to the Memory Command Register. If
software attempts to read the flash region after Reset, power-up, or writing the Command
Register without writing the Memory Command Register thereafter, the SPIFI responds
with an Abort error.

After writing the Memory Command Register, the contents of the flash would appear to the
system as memory mapped. This enables data access from the serial flash over AHB.

SPIFI has two operational modes:
* Memory Mode - whereby the contents of the FLASH are memory mapped in the chip.

* Command Mode - whereby the user can manually construct command sequences for
the flash.

SPIFI cannot switch over from Memory Mode to Command mode and vice versa without
writing 1 to the STAT[RESET] bit and polling until it is cleared by hardware to ensure that
the current mode has been aborted.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 230 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

34.9.3

Chapter 34: SPI Flash Interface (SPIFI)

The SPIFI has a small cache for accesses to the serial flash region of the memory map.
The cache is only used in Memory mode and can be disabled.

Because the SPIFI is an AHB device, software or a DMA channel can read bytes,
halfwords, or words from the flash region.

Reads from the flash region are delayed by deasserting the register interface HREADY
signal when necessary, until the requested bytes are available to be read.

In Memory mode, SPIFI prefetches sequential addresses in order to improve
performance.

If no AHB accesses have taken place for a period specified by the CTRL[TIMEOUT], the
SPIFI will deassert CS. Once a new access occurs that requires a new fetch of data, the
SPIFI will reassert CS and send a new command to fetch the required data. This is done
in order to save power in the SPI flash device.

If software reads or writes more data from the Data Register than was configured in the
CMDI[DATALEN] field or reads or writes when no command was issued, the SPIFI
hardware issues an abort exception.

When the serial flash needs to be programmed or erased, software should not write to the
flash region of the address map. Instead, it should write the appropriate sequence of
commands to the Command, Address, and Data registers. When an actual erase or
program operation is under way in the serial flash device, software should write a Read
Status command (with the CMD[POLL] bit set) to the Command register. Thereafter:

¢ |f CTRL[INTEN]is 1, the SPIFI will interrupt the processor when the erase or write
operation (and thus the Read Status command) completes.

* |f not, software can continually or periodically read the Status register until it indicates
that the Read Status command is complete.

When erasing or programming completes, software can do further programming or
erasing, or return to normal (memory mode) operation.

Peripheral mode DMA operation

The SPIFI inserts wait states when necessary during read and write operations by the
core to maintain synchronization between core accesses and serial data transfer with the
serial flash. This mechanism is all that is needed for load and store accesses and for
memory-to-memory transfers by a DMA channel.

The peripheral mode is a mode that supports DMA transfers in which the SPIFI acts as a
peripheral and drives a request signal to the DMA channel to control data transfer. This
mode does not necessarily move data faster than memory-to-memory operation, but it
may be advantageous in systems in which software controls dynamic transfer of code
and/or data between the serial flash and RAM on an as-needed basis. The advantage is
that clock cycles are not lost to wait states, and thus the overall operation of the AHB is
more efficient.

The DMA controller should be programmed to present word operations at the fixed
address of the Data Register to have a burst size of one transfer. The SPIFI drives the
DMA request to the DMA controller.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 231 of 350

NXP Semiconductors U M1 1 1 38

Chapter 34: SPI Flash Interface (SPIFI)

To use this mode, software should write the Command register to start the command and
program a DMA channel as described above to transfer data between the Data register
and RAM. The SPIFI asserts the DMA request when:

* CTRL[DMAEN]is 1.

* STAT[MCINIT]is O.

* There are at least 4 bytes in the FIFO for a read operation, or at least 4 empty byte
locations in the FIFO for a write/program operation.

34.10 Software control

To use the functionality of the SPIFI module, it is recommended to use software functions
from within fsl_spifi.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 232 of 350

UM11138

Chapter 35: True Random Number Generator (TRNG)

Rev. 1.4 — June 2020 User manual

35.1 Introduction

This device embeds a hardware IP that - combined with appropriate software - can be
used to generate true random numbers with the highest levels of quality (FIPS140-2,
AIS31,P2/PTG.3, etc).

The RNG feature is thus a combination of a hardware IP with a dedicated application
software.

Such complementary software is required, in particular for these aspects:

* cryptographic post-processing

* entropy generation and monitoring

Using less sophisticated software, target for the RNG feature should be lowered to
AIS31,P2/PTG.2 or even AIS31,P1/PTG.1.

A basic software should not target more than AlS20,K3/DRG.2. The difference being the
way entropy sources are activated and monitored.

Note that in all cases, generated numbers will pass testsuites such as DieHard.

35.2 Functionality and usage

JIN5189

The TRNG embedded module is a true random number generator based on at least 2
sources of entropy:

* phase noise of imprecise clocks coming from embedded oscillators
¢ start-up state of a large number of internal flip-flops after power-up

This TRNG uses as inputs 1 imprecise clock, FRO32M, plus 1 precise clock, XTAL32M,
and a system clock.

No TRNG certification has been initiated nevertheless NXP internal test pass for several
advanced checks such as classical test suites and statistics computation on entropy
sources.

TRNG deliver random number by reading register RANDOM_NUMBER. Successive
random numbers delivered by TRNG should pass most test suites including DieHard or
NIST SP800-22 or FIPS_140-1. With regards to initial value after power-up, a
concatenation of first random numbers being read will pass the test suite requirement as
well.

The hardware monitors the generation of entropy within the block. This is reflected in the
COUNTER_VAL[REFRESH_CNT] field. It is possible to wait until this register indicates
that enough entropy has been created and then read the random number from the
RANDOM_NUMBER register. However, the COUNTER_VAL[REFRESH_CNT] does not
rise linearly with time; instead it rises logarithmically. Generally, it is not practical to use
this method to create the random number. It will give True Random number performance,

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 233 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 35: True Random Number Generator (TRNG)

but it will take too long. A software procedure using this hardware entropy accumulation
register is presented below and gives a usable method for generating random numbers
which have True Random number performance.

Alternatively, it is also possible to just read random numbers from the
RANDOM_NUMBER register without any delays. This will generate pseudo random
numbers which should still be able to pass classical random number test suites. This
method is quicker but at the expense of some randomness.

Refer to your NXP local FAE support for advanced use of the TRNG.
The software procedure using the entropy creation is presented below. It has two steps:
1. Initialization Step. This must be performed on a device power-up and also wake-up
from power-down or deep power-down.
2. Generate Number Step. This is performed each time a new random number is
required.

Initialization Step:

Set the SW parameter REF_CHI_SQUARED equal 2.
activate all clocks. Keep registers set to default values.
activate CHI computing with ONLINE_TEST_CFG[ACTIVATE] = 1.

loop on polling ONLINE_TEST_VAL while
MIN_CHI_SQUARED>MAX_CHI_SQUARED.

5. if MAX_CHI_SQUARED > REF_CHI_SQUARED, program
ONLINE_TEST_CFGJACTIVATE] = 0 (to reset), then increment
COUNTER_CFG[SHIFT4X] then back to step 3

o Dd -

Generate Number Step:
This routine creates a 32-bit random number, referred to as NewRand.

1. activate all clocks and keep CHI computing active
2. Read RANDOM_NUMBER register and assign to NewRand
3. Loop 32 times

a. Wait until COUNTER_VAL[REFRESH_CNT] field is non-zero; this indicates that at
least one bit of entropy has been created.

b. Update NewRand value with the result of [NewRand XORed with the current value
read from the RANDOM_NUMBER register].

c. Reading the RANDOM_NUMBER register causes the
COUNTER_VAL[REFRESH_CNT] to reset back to 0.

After this sequence, the NewRand value will be a new true random number; the routine
waits for a total of 32-bit fresh entropy and so 32 true random bits are created.

Initial entropy

Typically, initial entropy is estimated to 32 bits for this IC, knowing that internal states are
defined on at least 196 bits.

Self-checking for entropy creation

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 234 of 350

NXP Semiconductors U M1 1 1 38

Chapter 35: True Random Number Generator (TRNG)

Checking initial entropy, for total failure or low quality:
There is no hardware self-checking mechanism.
Some software procedure can be implemented:

* Software can use the same procedure described above to read initial number in order
to ensure a minimum entropy accumulation after power-up

¢ Software may store initial values in non volatile memory and compute some statistics

Checking run-time entropy:

¢ total failure: if no clock, no random number will be generated and this will halt the
system bus leading to an exception.

* |ow quality run-time entropy: use the embedded CHI computing to detect very poor
quality of entropy source.

35.3 Software control

To use the functionality of the RNG module, it is recommended to use software functions
from within fsl_rng.c.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 235 of 350

UM11138

Chapter 36: ISO 7816 Smart Card Interface

Rev. 1.4 — June 2020 User manual

36.1 General description

The Control Interface is a card interface for smart card reader. The Contact Interface
supports both synchronous and asynchronous 5V (class A), 3V (class B) and 1.8 V
(class C) smart cards.

This User Manual describes the digital part module of the Contact Interface. The digital
part controls an external analogue part to manage the card activation and deactivation
sequences, see Section 36.4 “System integration” for a system diagram. The digital part
ensures smart card communication via an embedded USART (Universal Asynchronous
Receiver Transmitter) taking care of ISO7816 and EMV (Europay, MasterCard and Visa)
requirements. The Contact Interface is controlled by software via APB slave interface.

36.2 Features

Functional features:

Support of Class A (5 V), Class B (3 V) and Class C (1.8 V) contact smart cards, with
suitable external analog device

Compliant with ISO7816 standard

Specific ISO USART with APB access for automatic convention processing, variable
baud rate through frequency or division ratio programming error management at
character level for T=0 and extra guard time register

FIFO for 1 to 32 characters in both reception and transmission mode

Parity error counter in reception mode and in transmission mode with automatic
re-transmission

Card clock generation (up to frequency of its input clock clk_ip)
Card clock stop (at HIGH or LOW level)

Supports the asynchronous protocols T=0 and T=1 in accordance with ISO7816 and
EMV

Versatile 24-bit time-out counter for Answer To Reset (ATR) and waiting times
processing

Specific Elementary Time Unit (ETU) counter for Block Guard Time (BGT): 22 in T=1
and 16 in T=0

Supports synchronous cards

36.3 Functional description

The digital part of the Contact Interface is composed of the following blocks:

JIN5189

APB slave interface
Registers

Sequencer

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 236 of 350

NXP Semiconductors

UM11138

Chapter 36: ISO 7816 Smart Card Interface

® Timers
* ATR counter
* |ISO USART
Contact Interface - Digital Part
APB APB slave
bus > interface
PCR == Registers
Analogue
4 * * > slot
A
Sequencer
and clock | €| ATH COUNET |
generation
Timers ISO UART
<> —

Fig 88. Block diagram of Contact Interface (Digital Part)

JIN5189

36.3.1

The Contact Interface is a card interface for smart card reader. The Contact Interface
supports both synchronous and asynchronous 5V, 3V and 1,8V smart cards. The digital
part embeds a sequencer and clock generator to control the use of the interface. The ATR
counter manages RST and checks the ATR (Answer To Reset) of the asynchronous
cards. The digital part ensures smart card communication via an embedded ISO USART
(Universal Asynchronous Receiver Transmitter) taking care of ISO7816 and EMV
requirements. The Timers count ETU with different available modes enabling to process
some waiting times like BWT, WWT. The Contact USART is controlled via its registers,
accessible by software through the APB slave interface.

Register interface

Reserved and lllegal access to this block will trigger a hardfault exception. The following
table shows the response to illegal accesses and accesses to RFU (reserved for future)
registers. All these conditions cause the hardfault.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 237 of 350

NXP Semiconductors

UM11138

Chapter 36: ISO 7816 Smart Card Interface

Table 67. Register accesses causing a hardfault

Access Type

APB interface response

Write to a read-only register

Read from a write-only register

No effect. Register not updated
Read 00000000h

Write to an RFU address

Read from an RFU address

No effect
Read 00000000h

Remark: an access attempt (both read and write transfer) in user mode to a register only
accessible when not in user mode (see registers descriptions) is seen as an access to an

RFU address.

36.3.2 Registers

Registers block enables to control the Contact Interface, it is accessed via the APB slave

interface.

Table 68. APB response to reserved and illegal accesses

JIN5189

Name Width Access Reset value Description

(bits)
ct_ssr_reg 2 R/W 00000001h Slot Select Register
ct_pdr1_Isb_reg 8 R/W 00000074h Programmable Divider Register (LSB) slot 1
ct_pdr1_msb_reg 8 R/W 00000001h Programmable Divider Register (MSB) slot 1
ct_fer_reg 8 R/W 00000001h FIFO Control Register
ct_gtr1_reg 8 R/W 00000000h Guard Time Register slot 1
ct_ucr11_reg 6 R/W 00000000h USART configuration Register 1 slot 1
ct_ucr21_reg 8 R/W 00000000h USART configuration Register 2 slot 1
ct_ccr1_reg 6 R/W 00000000h Clock Configuration Register slot 1
ct_pcr_reg 8 R/W 000000COh Power Control Register
ct_ecr_reg 8 R/W 000000AAhA Early Answer Counter Register
ct_mclr_Isb_reg 8 R/W 00000074h Mute card Counter RST Low register (LSB)
ct_mclr_msb_reg 8 R/W 000000A4h Mute card Counter RST Low register (MSB)
ct_mchr_Isb_reg 8 R/W 00000074h Mute card Counter RST High register (LSB)
ct_mchr_msb_reg 8 R/W 000000A4h Mute card Counter RST High register (MSB)
ct_urr_reg 32 R 00000000h USART Receive Register
ct_utr_reg 32 w 00000000h USART Transmit Register
ct_tor1_reg 8 w 00000000h Time-Out Register 1
ct_tor2_reg 8 w 00000000h Time-Out Register 2
ct_tor3_reg 8 w 00000000h Time-Out Register 3
ct_toc_reg 8 R/W 00000000h Time-Out Configuration Register
ct_fsr_reg 6 R 00000000h FIFO Status Register
ct_msr_reg 3 R 00000002h Mixed Status Register
ct_usr1_reg 6 R 00000000h USART Status Register 1
ct_usr2_reg 8 R 00000000h USART Status Register 2
RFU 0 R 0 RESERVED

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

238 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

36.3.3 Sequencer
The digital sequencer manages activation and deactivation sequences.

To perform the sequences, the SSR[SEQ_EN] bit must be set.

The sequencer is mainly composed of a FSM (finite state machine) four states:
inactive_state, activation_state, active_state, deactivation_state.

Reset

Inactive
state

I Valid activation command

|

Activation
state

— Activation finished —r—Deactivation command

Active
state

— Deactivation command
or fault detected

Deactivation
state

—— Deactivation finished

Fig 89. Sequencer FSM block diagram

The normal path is the blue one. There is an additional possible path that we call special
case. Here is the description of the blue path.

* Inactive state
This state is entered after power-on reset.

¢ Activation state
Before the host starts a card session, it should set CRR1[SAN] bit to choose between
asynchronous or synchronous card. Then, the host can set PCR[START] bit to logic
level one. If there is no software reset, the activation sequence can occur.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 239 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

The sequencer controls when the I/O is enabled (enable_io), when the CLK starts
(enable_clk) and RST is enabled (enable_rst). The time T below is about 24 pus.

In synchronous mode, after 24T/2, since enable_rst is at logic level one, RST is the
copy of PCR[RSTIN] bit. In asynchronous mode, PCR[RSTIN] is controlled by the
ATR counter (see Section 36.3.4 “ATR Counter”).

start

1
enable_io :
1

enable_clk

enable_rst ' |

Fig 90. Activation Sequence

* Active state
This state is entered after the activation sequence is completed.
* Deactivation state

When a card session is completed, the host set PCR[START] bit to logic level zero.
Then, a deactivation sequence is performed. ISO7816_RST is set to logic level zero
(enable_rst), ISO7816_CLK is stopped (enable_clk), ISO7816_IO is disabled
(enable_io). At t=0, the state machine goes back to the state inactive_state.

Special cases:

The activation sequence can be stopped by a deactivation command (PCR[START]
bit set at logic level zero). The activation sequence is stopped whether or not it has
completed and the deactivation sequence is started (it is the red path Figure 89).
Three time windows have to be considered:

— The activation sequence is stopped between 0 and the rising of enable_io on
Figure 90. The deactivation sequence will start from 4T/2 on Figure 91 and go to 0.

— The activation sequence is stopped between the rising of enable_io and the rising
of enable_rst on Figure 90 The deactivation sequence will start from 6T/2 on
Figure 91 and go to 0.

— The activation sequence is stopped after the rising of enable_rst on Figure 90. It is
the normal case: the deactivation sequence will start from 7T/2 on Figure 91 and
go to 0.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 240 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

Chapter 36: ISO 7816 Smart Card Interface

start |

enable_io

enable_clk

enable_rst

B T/2

o+ -|- -
N P
w
N
-
o+ -|- -

Fig 91. Deactivation Sequence

36.3.3.1 Card 1 clock circuitry

The digital card 1 clock circuitry generates the card 1 clock from the clk_ip clock. It
manages card 1 clock dynamic frequency switches. The card 1 clock generation is
composed of several stages. The first one generates the clk_ip frequency division. The
second stage manages the clock stop. It consists in clock gating on both clock edges to
stop the clock either at logic level one or zero. The last stage multiplexes the result of the
second stage with the clock in synchronous mode (CCR1[SHL] bit value), which finally
gives the card 1 clock. Because the card 1 clock is only needed during a card session, it is
gated to logic level zero when the session is not active in order to improve consumption.

The card 1 clock frequency may be chosen at fclk_ip , fclk_ip /2, fclk_ip /3, fclk_ip /4,
felk_ip /5, fclk_ip/6, fclk_ip /8 or fclk_ip /16. In addition, the card 1 clock can be put at logic
level zero and one (clock stop feature). The choice is done via ACC2, ACC1, ACCO, CST,
SHL bits in ct_ccr1_reg register. See Table 69.

Table 69. Asynchronous card clock settings

ACC2 -ACCO CST SHL SAN Card clock
000 0 — 0 Clk_ip
001 0 — 0 Clk_ip/2
010 0 — 0 Clk_ip/3
011 0 — 0 Clk_ip/4
100 0 — 0 Clk_ip/5
101 0 — 0 Clk_ip/6
110 0 — 0 Clk_ip/8
111 0 — 0 Clk_ip/16
— 1 0 0 Logic 0
— 1 K 0 Logic 1

In case of synchronous card (bit CCR1[SAN]=1), the card clock is the copy of CCR1[SLH]
bit (see the registers description). See Table 70.

Table 70. Synchronous card clock settings

ACC2 - ACCO csT SHL SAN Card clock
— — 0 1 Logic 0
— — 1 1 Logic 1 |

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 241 of 350

NXP Semiconductors U M1 1 1 38

JIN5189

36.3.4

Chapter 36: ISO 7816 Smart Card Interface

The frequency change is synchronous, which means that during transition, no pulse is
shorter than 45% of the smallest period and that the first and last clock pulse around the
change has the correct width.

When changing dynamically the card 1 clock frequency from a clk_ip frequency division to
another one, the change occurs at the next card clock rising edge.

The card 1 clock circuitry generates card 1 clock and its buffer enable signal enable_clk.
enable_clk is derived from the internal signal generated by the sequencer, it is
synchronous to the frequency change.

The dynamic change (while activated) of CCR1[SAN] bit is not supported. The choice
between asynchronous and synchronous card must be done before activating.

ATR Counter

The sequencer manages the activation and deactivation sequences. In addition to the
sequencer, the ATR counter is used to manage RST and check the asynchronous cards
ATR on the full slot. In case of synchronous cards, RST is controlled by the host via
PCR[RSTIN] bit and the card ATR is not checked. The operating mode (asynchronous or
synchronous) has to be selected by the host (see the registers description).

The ATR counter block is composed of two counters. One checks the early answer and
the other checks if the card is mute.

The early answer counter is composed of a fixed part that counts up to 200d CLK cycles.
An additional part counts up to ECR[7:0] value CLK cycles (see the registers description).
The default value of ECR[ECR] field is 170d, which gives a total default count of 370d
CLK cycles. The additional configurable count enables to follow a potential standard
change.

The mute counter counts up to MCRL[15:0] (made up of the 16 bits in the MCRL_MSB
and MCRL_LSB registers) value CLK cycles when RST is LOW and up to MCRH[15:0]
(made up of the 16 bits in the MCRH_MSB and MCRH_LSB) value CLK cycles when RST
is HIGH (see the registers description). The default value of MCRL[15:0] and MCRH[15:0]
bits is 42100, which gives a default count of 42100 CLK cycles. The value chosen for
MCRL[15:0] bits can be different from the one of MCRH[15:0] bits. This configurable count
enables to support ISO7816 and EMV compliant cards and to follow a potential standard
change.

To an asynchronous card activation and ATR, first, the host starts the activation
(PCR[START]) after having configured the slot 1 (activation voltage). The sequencer
performs the activation sequence. The DCDC converter is started, then VCC goes to logic
level one, 1/0 is enabled and CLK starts. RST is at logic level zero.

Then the ATR counter checks the following steps:

1. If a start bit is detected on I/O during the first 200 CLK cycles, it is ignored and the
count goes on.

2. If a start bit is detected while RST is at logic level zero between 200d and 42100 (or
the value written in MCRL[15:0] bits) CLK cycles, the bits USR1[EARLY] and
USR1[MUTE] are set to logic level one. RST will remain at logic level zero, it is up to
the host to decide whether accepting the card or not.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 242 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

3. If no start bit has been detected until 42100 (or the value written in MCRL[15:0] bits)
CLK cycles, RST is set to logic level one.

4. If a start bit is detected within the first 370 (or 200 + the value written in ECR[ECR]
bits) CLK cycles with RST at logic level one, the bit USR1[EARLY] is set to logic level
one.

5. If the card does not answer before 42100 (or the value written in MCRH[15:0] bits)
CLK cycles with RST at logic level one, the bit USR1[MUTE] is set to logic level one.

6. If the card answers within the correct time window, the CLK cycles count is stopped
and the host may send commands to the card

The picture below shows the timings checked by the ATR counter:

o I Co Co Co i
CLK [— e T L4
RST L | : N | : FL
- -~ |- ! "
1200 CLK 370 CLK 11200 CLK 370 CLK c
.cycles (/0 ‘cycles (early . ‘cydles (I/0 ‘cycles (early .
'ignored) \answer check) + rignored) «answer check) -
- > > - > >
"+ 42100 CLK cycles 42100 CLK cycles ++ + 42100 CLK cycles 42100 CLK cycles
: . (mute check) e : (mute check) L
answer check (bits "' ' answer check (bits o
EARLY and MUTE) I EARLY and MUTE) I
WARM i LI
- - - i

Cold reset Warm reset

Fig 92. ATR counter timings checked (with default values)

The bits USR1[EARLY] and USR1[MUTE] signal an interrupt when set to logic level one
(see the registers description).

The sequence mentioned above relates to a cold reset (left part of the Figure 92). If the
card is mute (has not answered), the host may start a warm reset by setting PCR[WARM]
bit to logic level one (see the registers description). Then, the ATR counter set RST to
logic level zero and performs the same timing checks (right part of the Figure 92).

36.3.5 Timers

This block counts with different available modes a number of ETU.
It consists of two parts:

¢ tor_latch

* mode

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 243 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

clk_ip
toc
>
mode —» set_pulse_to1
_; tor1_in +—— » set_pulse_to2
i +—— » set_pulse_to3
tor1 tor2_in
tor_latch
tor2 tor3_in
tor3
N
UART_START_N
wr_toc

36.3.5.1

36.3.5.2

Fig 93. Timer block diagram

Remark: USART_START N indicates a start bit has occurred.

Remark: wr_toc indicates a write in TOC register has occurred. The three registers
TOR1, TOR2 and TOR3 form a programmable 24-bit ETU counter, or two independent
counters (16-bit and 8-bit), or three independent 8-bit counters. The value to load in
TOR1, TOR2 and TORS3 registers is the number of ETUs to count.

It exists three different modes to count the number of ETUs loaded in TOR registers
(Autoreload, Software-triggered and Triggered on start bit on I/O). This is configured in
TOC register.

tor_latch

If the timers are configured in START_TRIG mode, then this block latches the value
written in TOR1[TOR1], TOR2[TOR2], TOR3[TOR3] on the next start bit detected. In other
modes (Autoreload, Soft_trig), TOR1, TOR2 and TOR3 registers have the same value as
TOR registers. Indeed, in START_TRIG mode, the next count can be configured whereas
the running count is not finished.

mode

Most of the inputs and outputs of this block are used to test this block. The bits of the
register TOC are shown by the following table.

Table 71. TOC register
TOC7 TOC6 TOC5 TOC4 TOC3 TOC2 TOC1 TOCO
EATR MODE3 MODEZ2[1] MODEZ2[0] MODE1[1] MODE1[0] 8/16 16/24

JIN5189

The three registers of TOR1, TOR2 and TOR3 form a programmable 24-bit ETU counter,
or two independent counters (16 and 8-bit), or three independent 8-bit counters
(depending on TOCO and TOC1).

The value to load in TOR1, TOR2 and TORS3 is the number of ETUs to count.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 244 of 350

NXP Semiconductors

UM11138

JIN5189

Chapter 36: ISO 7816 Smart Card Interface

The TOC register is used for setting different configurations of the time-out counter:

® If 16/24 and 8/16 bits are logic 0, then the counter is wired as a single 24-bit counter
loaded with registers TOR3 (MSB byte), TOR2 and TOR1 (LSB byte). The end of
count is signaled by USR2[TO3], USR2[TO1] and USR2[TOZ2] bits are logic zero.

* |f 16/24 bit is logic 1 and 8/16 bit is logic 0, then the counter is wired as 2 independent
counters. One is 16-bit loaded with registers TOR3 (MSB byte) and TOR2 (LSB byte),
the end of count is signaled by USR2[TO3] and USR2[TOZ2] is logic zero. The other
one is 8-bit loaded with register TOR1.

* |f 8/16 bit is logic 1 whatever the value of 16/24 bit is, then there are 3 independent
8-bit counters, loaded respectively with registers TOR3, TOR2 and TOR1.

Table 72. Register CT_TOC_REG

Toc(1:0) Counter3 Counter2 Counter1
00 tor3— tor2— | tor1

01 tor3— tor2 tor1

1X tor3 tor2 | tor1

Both counters 1 and 2 have four operation modes defined by bits TOC[MODE1] for
counter 1, by bits TOC[MODEZ2] for counter 2; for starting the action in the different
modes, the software must write the specific bits for all 3 counters in the configuration
register. See the following table.

Table 73. Timers operating modes
(MODE1[1:0]

Operation mode

00 Stop:
The counter stops counting, whatever the previous mode was.
01 Autoreload:

The counter starts counting the value stored in the associated register on
the first start bit after the mode has been programmed, and automatically
restarts counting this value when it has reached the terminal count. An
interrupt is generated at every terminal count. Changing the value of the
associated TOR register during a count is not allowed.

10 Software triggered:

The counter starts counting the value stored in the associated registers
when this configuration has been written, and stops and generates an
interrupt when it has reached its terminal count. The counter shall be
stopped before reloading new value in the associated TOR register.

11 Triggered on start bit on 1/O:

In this mode, the counter will automatically start counting the value stored
in the associated registers when a start bit occurs on 1/0, and then on each
subsequent start bit. It is possible to change the content of the associated
TOR register during a count; the current count will not be affected and the
new count value will be taken into account at the next start bit. An interrupt
is only generated if the counter reached the terminal count.

Counter 3 has only two operation modes defined by bit MODE3[0]:

* When set to logic 0, counter 3 is stopped.

* When set to logic 1, counter 3 starts counting the value stored in TORS register
(software triggered).

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 245 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

When counters 3 and 2 form a 16-bit counter, if counter 2 mode is triggered on start bit on
I/0 and counter 3 mode is software triggered, then the mode of this 16-bit counter is
triggered on start bit on I/O. In the same way, when counters 3, 2 and 1 form a 24-bit
counter, if counters 1 and 2 mode is triggered on start bit on 1/0 and counter 3 mode is
software triggered, then the mode of this 24-bit counter is triggered on start bit on I/O.

When the bit TOC[EATR] is set to logic 1, the counters will be stopped automatically on
the 12th ETU of the next character received after TOC[EATR] has been set to logic 1; if
the counters had not reached their terminal counts at this moment, then no interrupt will
be generated. This feature may be useful for some ATR configurations. This bit must be
reset (set to logic 0) by software.

The design is composed of different blocks:
* Management of mode Autoreload: This part detects if some of the timers are

configured in Autoreload mode.

* Management of mode Soft_Triggered: This part detects if some of the timers are
configured in Soft_Triggered mode.

* Management of tor_counter: This defines 3 counters counting the value stored in tor1,
tor2, tor3, depending on the configuration of timers.

* Management of interrupt: This part generates a pulse when the counter reaches the
terminal count.

36.3.6 ISO USART

The block ISO USART manages reception and transmission of characters. This
transceiver is done with a state machine. It also manages the control signals for registers.
These signals induce some interrupts monitored by the micro-controller.

It consists of five parts:

* Clock circuitry
FIFO
* Reception

* Transmission
CSFR

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 246 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

clk_ip
N OUT_N_TRANSMIT
ETU_counter >
pdr Clock > Parity_error, Retransmission...
—l Transmission
ETU_cnt_en
cer circuitry > < TRANSMIT
ucr2 < I
ﬁ L
q
I_> ¢ usr
| FIFO CSFR (e
control transmission
>
control reception R T A
urr
>

wr_utr .
Reception Parity_error...

= OUT_N_RECEIVE

10.in | > FIFO_WR

I0_in

FIFO_RD

Fig 94. ISO USART block diagram

36.3.6.1

JIN5189

The block Clock circuitry provides a signal which enables to count (ETU_cnt_en). It also
embeds a counter (ETU_counter) used for reception and transmission according to the
frequency of the card clock.

The blocks Reception and Transmission respectively manage the reception and
transmission mode with the card.

The FIFO receives the characters that the card emits via the Reception block and
provides characters given by the micro-controller to the Transmission block.

The block CSFR (Control Signals For Registers) provides signals that will interrupt the
micro-controller via registers.

FIFO

The FIFO is used for both Reception and Transmission modes. This block receives
characters from the card via the Reception block and provides characters written by the
micro-controller to the Transmission block. Its depth is 32 bytes.

* Reception:

— In reception mode, when a received character is correct (no parity error) at 10.5
ETUs (T=0), it is loaded into the FIFO which size pointer is incremented.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 247 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

— If the FIFO size pointer equals 32, no more character can be loaded into the FIFO.
An Overrun interrupt will be generated by the ct_usr1_reg register to mean that at
least one character will be lost.

— When the micro-controller reads a character, the FIFO size pointer is
decremented.

— Aread operation when the FIFO is empty will not cause any action for the FIFO
(size pointer unchanged). In this case, 0 is read.

* Transmission:

— The micro-controller can write a character into the FIFO while the USART is in
transmission mode and if the FIFO is not full. If the FIFO contains already 32
characters, the write operation is not taken into account.

— The FIFO commands the transmission. If its size pointer is one or more, the FIFO
starts the transmission by loading the first character to transmit in the Transmission
block. Then, the Transmission block will manage the transmission to the card. The
FIFO size pointer is decremented at 9.5 ETUs.

— If a parity error interrupt occurs after one or more retransmission(s) (T=0), there
are two cases:

PEC=0: no action, the transmission doesn't stop.

PEC>0 (automatic mode): the transmission stops. The software will deactivate the
card: the parity error counter will be reset by hardware when activating. If
necessary, the firmware has the possibility to pursue the transmission. By reading
the number of bytes present into the FIFO (FSR[FSR] bits), it can determine which
character has been naked PEC +1 times by the card. It will then flush the FIFO
(UCR21[FIFIOFLUSH]). The next step consists in unlocking the transmission using
UCR21[DISPE] bit. By writing this bit at logic level one (and then at logic level zero
if the firmware still wants to check parity errors), the transmission is unlocked. The
firmware can now write bytes into the FIFO.

® Turnaround Reception -> Transmission:

— There is a hardware protection when switching from reception to transmission
mode. If the micro-controller sets to logic 1 the bit T/R for example between 10.5 (ft
occurs) and 11.8 ETUs (reception finished), only the FIFO switches in transmission
mode and not the rest of the USART which remains in reception mode. This allows
the micro-controller to write characters into the FIFO. At 11.8 ETUs, the whole
USART switches in transmission mode.

— The FIFO is in transmission mode when the bit UCR11[T_R] is set to logic 1, else
in reception mode. The transmission starts when the whole USART is in
transmission mode, that is to say when the internal bit UCR11[T_R] is set to logic
1.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 248 of 350

NXP Semiconductors

UM11138

Chapter 36: ISO 7816 Smart Card Interface

Reception of the last character

Transmission

T/R

-«
ETU_counter 10 11 0
10.5 i 118

IT ft i i

| : !

| ! !
IT PE : | |

|

| ' !
TR : I I

| l .

I ! '
ucr1_buffer |) Only the FIFO is in :

: :4 transmission mode .;'

|

|

internal UART

|
|
The whole UART is in reception mode

The whole UART is
I _in transmission mode

Write operation
into the FIFO

U U

The pc clears the The pc is ready to transmit,
interrupt and reads it sets the bit T/R

the character

Fig 95. FIFO turnaround reception -> transmission

The internal UART bit
T/R is set because the
reception is finished

Remark: When switching from/to reception to/from transmission mode, the FIFO is
flushed (and the size pointer is reset). Any remaining bytes are lost.

36.4 System integration

The Contact Interface supports the smart card communication. Software controls the
Contact Interface via its APB slave interface. The Contact USART is connected to an
external analog device capable to communicating with the Smart Card. This external
analogue interface could be a TDA8020, TDA8023, TDA8026 or TDA8034 controlled via
I2C Master interface.

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

249 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

IN5189_dig

Smart card

1507816 : TDABOXX E=2

Fig 96. 1SO7816 interface

36.4.1 Clock and Reset

The functional clock of the ISO7816 block (clk_ip) is connected to system_ahb_clk[21]
thus it is generated from the MAINCLK as all the AHB clocks.

® The system_ahb_clock must be enabled by writing a '1' to
SYSCON_AHBCLKCTRLO[ISO7816]. Use the CLOCK_AttachCLK() function to
configure this.

* The ISO7816 block generates an output clock out of the peripheral clock, with a
division factor that can be configured through the CCR1 register

* The iso7816 clock out can be directed to
— PIOO0_3 when IOCON_PIOx[FUNC] is 110b
— PIO0_17 when IOCON_PIOX[FUNC] is 010b. See Table 19 for further details.

No other functional clock is connected to this IP, and therefore used to generate the output
clock.

JIN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 250 of 350

NXP Semiconductors U M1 1 1 38

Chapter 36: ISO 7816 Smart Card Interface

Programmable

Divi
A T
(16 to 65535d)
/ ACC2 - ACCO
Lp| (ct_ccr_reg(2:0)) ——» CLK

(1,2,3,4,5,6,8,16)

Fig 97. Clock generation

The reset of the ISO7816 block is connected to reset_peripheral_n_comb[21]. (see
SYSCON_PRESETCTRLO register).

The ISO7816 reset out can be directed to

* PIOO0_2 in the fmux when mode is "110"
* PIO0_16 in the fmux when mode is "010"

36.4.2 GPIO configuration
2 GPIOs configurations are available on JN5189(T)/JN5188(T) to use ISO7816 interface:

* For IOCON_PIO[FUNC] = 010:
— PIO0_16 = ISO7816_RST
— PIO0_17 = ISO7816_CLK
— PIO0_18 = ISO7816_10

* For IOCON_PIO[FUNC] = 110:
— PIO0_2 =1S07816_RST
— PIO0_3 =1S07816_CLK
— PIO0_4 =1S07816_10

To configure the 10s use the software API function IOCON_PinMuxSet with the required
Func value for relevant PIO.

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 251 of 350

UM11138

Chapter 37: Async System Configuration (ASYNC_SYSCON)

Rev. 1.4 — June 2020 User manual

37.1 Introduction

The async system configuration module is located beyond a bridge, along with Timers 0/1
modules. It controls thus these timers, and some other analog-oriented modules:
temperature control, external NFC tag, XTAL32, frequency measurement. It handles
software reset as well. It is necessary to enable the bridge before accessing to
ASYNC_SYSCON (SYSCON_ASYNCAPBCTRL[ENABLE]).

The ASYNC_SYSCON registers are reset by pin reset, watchdog reset, brownout reset,
power-on reset, Arm System reset, SW reset and during power-down and deep
power-down.

37.2 Counter/timers 0/1

Control of reset of timers, CTIMERO0/1

* ASYNCPRESETCTRL to set or clear the resets.
* ASYNCPRESETCTRLSET just set the resets
* ASYNCPRESETCTRLCLR just clear resets

37.3 Clock control

Selection of the clock used for the async modules: ASYNC_SYSCON itself, timers
CTIMERO/1: see definition of registers ASYNCAPBCLKSELA.

37.4 Temperature sensor control

The temperature sensor is connected to one of the ADC inputs; full information on using it
is described in the Chapter 28 “Temperature Sensor”.

The enable for the temperature sensor cell is controlled by ASYNC_SYSCON. Also there
are configuration which should be set to the predefined values. See register
TEMPSENSORCTRL.

37.5 External NFC tag

JIN5189

For the JN5189T and JN5188T devices there is an NFC tag within the package. The 12C2
block is used to communicate with the tag. The power for the tag is controlled from an 10
cell. Before the tag can be used, the 10 cells and tag power need to be configured
correctly.

See registers NFCTAGPADSCTRL, NFCTAG_VDD.

It is recommended to use software APIs.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 252 of 350

NXP Semiconductors U M1 1 1 38

Chapter 37: Async System Configuration (ASYNC_SYSCON)

37.6 Frequency measurement

The frequency measurement block can be used to measure the frequency of one clock
using another clock of known frequency.

The block has two clock inputs: reference clock and target clock. A scaler, SCALE, is
programmed. When the block then starts it counts (2SCALE-1) reference clock edges.
During this time the target counter runs, incrementing every target clock edge.

Hence from the ratio of the count values, then the ratio of the frequencies is known.

See register FREQMECTRL for details. The higher the SCALE, the more accurate, but
the slower.

The clock selection muxes are shown in Figure 98. Configure the clock selection by
programming INPUTMUX_FREQMEAS_REF and INPUTMUX_FREQMEAS_TARGET,
then start the measurement like this:

* Write the SCALE value, to the FREQMECTRL[CAPVAL] field

¢ set the FREQMECTRL[PROG] bit

¢ Poll the FREQMECTRL[PROG] bit until it is clear

® Read back FREQMECTRL[CAPVAL], the number of target clock edges counted,

from the FREQMECTRL[CAPVAL]

The result can be calculated from the equation:
Freq of Target clock = (Freq of Ref clock)* (CAPVAL + 1) / (2SCALE-1)

Of course, both clocks (reference and target) must be enabled prior to this. If there is a
large difference in frequency between the two clocks, configure the clocks so that the
slowest clock is input as reference clock. This gives the highest accuracy. Software
support for this operation can be found in fs|_meas.c

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 253 of 350

NXP Semiconductors

UM11138

Chapter 37: Async System Configuration (ASYNC_SYSCON)

CLK_IN[PIO_19]
—»
XTAL 32MHz

FRO 1MHz
—»

32 kHz[CLK_32KHz]
—>

Divided Main Clock[SYSTEM AHBCLK]
—_—
PIO[4]

PIO[20]
_—

PIO[16]
_—

PIO[15]

Device Pins

0001

0010

0011

0100

0101

0110

0111
1000

i

Inmux.freqmeas_target
Inmux.freqmeas_ref

0000

Target_clock

ref_clock _T0 frequency measure

Fig 98. Clock sources to frequency measure block diagram

37.7 SW reset

It is possible for software to generate a reset from the SWRESETCTRL register and also
a control bit in the PMC_CTRL register. See Section 7.2 “Reset”.

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

254 of 350

UM11138

Chapter 38: In-System Programming (ISP)

Rev. 1.4 — June 2020 User manual

38.1 How to read this chapter

ISP functionality is supported by the boot code on all JN5189(T)/JN5188(T) devices.

38.2 Features

All JN5189(T)/JN5188(T) devices include ROM-based services for programming and
reading the flash memory in addition to other functions. In-System Programming works on
an unprogrammed or previously programmed device using a USART interface.

38.3 General description

At boot time, the device can be placed in a mode where a USART is enabled and software
commands can be sent into the device. These are serviced by the boot code and allow
many operations to be performed, such as reading or writing memory, erasing the flash.

There is also functionality to protect the contents of devices from being accessed in
certain configurations.

38.4 Physical interface

The ISP protocol is implemented on USART 0, using DIO9 for RX and DIOS8 for TX. The
baud rate is 115200 with formatting of 8 bits per character, no parity bit and 1 stop bit.

In the default configuration, ISP mode is entered during a cold start if DIO5 is pulled low
and DIO4 is pulled high. The normal approach to enter ISP mode is therefore:

1. Pull the reset pin low

2. Pull DIOS5 low

3. Pull DIO4 [ISP_SEL] high. Note that If there is no external driver into this pin then the
internal pull-up will keep this pin high.

4. After a short delay (1 ms), release the reset pin

5. Do not release DIO5 for at least another 10 ms

In practice, DIO5 can continue to be held low in ISP mode, and only be released before
the device is reset again. Note that, in a system design with high capacitance on the

circuit around DIOS5, there must leave enough time after DIOS5 is released for it to return to
a high state before reset is asserted.

38.5 General message format

Standard packets have the following format:

JN5189 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual Rev. 1.4 — June 2020 255 of 350

NXP Semiconductors

UM11138

Chapter 38: In-System Programming (ISP)

0

1

2 3 4 | \ n-4 n-3

| n-2 | n-1

| n

Flags

Length (n+1) Type Payload Checksum

JIN5189

38.5.1

38.5.2

38.5.3

Fig 99. Standard packets format

Each field is described individually in the following sections.

Any value that spans more than one byte is usually sent big-endian: the most significant
byte is transmitted first. Exceptions to this rule are noted in the descriptions.

Flags field

This is an 8-bit field. Bits are defined as follows:

Table 74: Flags field

‘ Bit Meaning

0 Undefined: leave as 0

If 1, packet has a SHA-256 signature (see section 3.4)

2 If 1, packet has a “next hash” (see section 3.4)

3-7 Undefined: leave as 0

Length field

The length is the total number of bytes. Using the terminology from the diagram above,
the value will be n+1 (the Flags field was byte 0 and the final byte of the Checksum is n,

so the total length is n+1).

Type field

The following commands are supported by the ISP:

Table 75: Type field

Command Value
Request Response
Reset 0x14 0x15
‘Execute (Run) 0x21 0x22
Set Baud Rate 0x27 0x28
‘Get Device Info 0x32 0x33
Open Memory For Access 0x40 0x41
‘Erase Memory 0x42 0x43
Blank Check Memory 0x44 0x45
'Read Memory 0x46 0x47
Write Memory 0x48 0x49
Close Memory (prevent access) (Ox4A 0x4B
Get Memory Info 0x4C 0x4D

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

256 of 350

NXP Semiconductors

UM11138

Table 75: Type field

Chapter 38: In-System Programming (ISP)

Value
Command
Request Response
Unlock ISP Ox4E Ox4F
Use Certificate 0x50 0x51
Start Encrypted Transfer 0x52 0x53

In each case, the Response value is the same as the Request value but with bit 0
inverted. If a Request is not recognized, a response is send with bit 7 inverted instead.

38.5.4 Payload field

38.5.4.1

Request packets

The Payload of a Request packet has the following format:

0

X x+1

X+32

x+33

x+288

Request Payload

Next Hash

Signature

Fig 100. Payload request packet format

38.5.4.2

The Request Payload is dependent upon the value of the Type field; see Section 38.5.3
“Type field”.

The Next Hash and Signature fields are optional, with their presence controlled by bits in
the Flags field.

The Next Hash is a SHA-256 hash calculated across all fields of the next packet, except
the checksum, as part of an authenticated sequence.

The Signature is a SHA-256 hash calculated across all proceeding fields in the packet and
encrypted with a 2048-bit RSA private key.

Response packets

The Payload of a Response packet has the following format:

0 1 ... X
Status

Response Payload

Fig 101. Payload of response packet format

JIN5189

The Response Payload is dependent upon the value of the Type field; see Section 38.5.3
“Type field”.

The following status codes are defined:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 257 of 350

NXP Semiconductors

UM11138

Table 76: Status code

Chapter 38: In-System Programming (ISP)

Status Descriptions
0x00 Success
OxEF Memory invalid mode
0xFO Memory bad state
OxF1 Memory too long
0xF2 Memory out of range
0xF3 Memory access invalid
OxF4 Memory not supported
0xF5 Memory invalid
0xF6 No response
OxF7 Not authorized
OxF8 Test error
0xF9 Read fail
OxFA User interrupt
O0xFB Assert fail
OxFC CRC error
0xFD Invalid response
OxFE Write fail
OxFF Not supported

38.5.5 Checksum field

The checksum is a 32-bit CRC calculated across all proceeding fields. Functions to
generate this are provided in the Production Flash Programmer source code in files:

® Library/Source/crc.c

® Library/Source/crc.h

Pseudo-code to generate the CRC for a packet using these functions is as follows:

crc t crc

cre

crc_init();

crc_update(crc, packet data, packet length);

crc = crc_finalize(crc);

38.6 Commands and specific message formats

38.6.1 Standard commands

In each case, the Response message will always contain a status code, as listed in
Section 38.5.4.2. Not all status codes are applicable to all message types.

38.6.1.1 Reset

This command resets the device. The response is sent before the device resets.

JIN5189

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020

258 of 350

NXP Semiconductors

UM11138

38.6.1.2

38.6.1.3

38.6.1.4

38.6.1.5

JIN5189

Chapter 38: In-System Programming (ISP)

Execute

This command executes (runs) code in flash or RAM. The response is sent before
execution jumps to the provided address.

The Request Payload contains the following fields:

Table 77: Execute field descriptions
Field Offset Size Description
Address 0 4 Memory address to start execution from

NOTE: Value is sent in little-endian

The Response Payload is empty.

Set baud rate

This command sets the ISP data rate. Each interface may support a different range of
rates.

The Request Payload contains the following fields:

Table 78: Set baud rate fields descriptions
Field Offset Size Description
Reserved 0 Reserved: value unimportant
Baud Rate |1 4 Baud rate, in bits per second
NOTE: Value is sent in little-endian

The Response Payload is empty.

Get device information

This command returns device specific information and can be used to identify the
connected device.

The Request Payload is empty.

The Response Payload contains the following fields:

Table 79: Get device info fields descriptions

Field Offset Size Description
Chip ID 0 4 Chip identification number
Version 4 Chip version number

Open memory for access

This command selects and initializes a memory for programming.

The Request Payload contains the following fields:

Table 80: Open memory for access fields descriptions
Field Offset Size Description
Memory ID 0 1 The ID of the memory block to be accessed. See table in
section 4.1.11
Access 1 1 Required access mode. See table in Section 38.6.1.11
Mode “Get Memory Info”

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 259 of 350

NXP Semiconductors

UM11138

JIN5189

38.6.1.6

38.6.1.7

38.6.1.8

Chapter 38: In-System Programming (ISP)

The Response Payload contains the following fields:

Table 81: Get device info fields descriptions
Field Offset Size Description
Handle 0 1 Handle to be used with subsequent access commands

NOTE: Current implementation always returns 0, and
only one memory type can be accessed at a time

Read memory

This command reads data from the selected memory.

The Request Payload contains the following fields:

Table 82: Read memory request fields descriptions
Field Offset Size Description
Handle 0 1 Handle returned by open memory command (see
Section 38.6.1.5)
Mode 1 1 Read mode: always use 0
Address 2 4 Address within memory to start reading from
Length 6 4 Number of bytes to read

The Response Payload contains the following fields:

Table 83:

Read memory response fields descriptions

Field
Data

Offset Size Description

Data that was read from the memory

Write memory

This command writes data to the selected memory.

The Request Payload contains the following fields:

Table 84: Write memory request fields descriptions

Field Offset Size Description

Handle 0 1 Handle returned by open memory command (see
Section 38.6.1.5)

Mode 1 Write mode: always use 0

Address 2 4 Address within memory to start writing to
NOTE: Value is sent in little-endian

Length 6 4 Number of bytes to write
NOTE: Value is sent in little-endian

Data 8 n Data to write

The response has no payload.

Erase memory

This command erases a region of the selected memory.

The Request Payload contains the following fields:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

User manual

Rev. 1.4 — June 2020 260 of 350

NXP Semiconductors

UM11138

38.6.1.9

38.6.1.10

JIN5189

Chapter 38: In-System Programming (ISP)

Table 85: Erase memory request fields descriptions

Field Offset Size Description
Handle 0 1 Handle returned by open memory command (see
Section 38.6.1.5)
Mode 1 1 Erase mode: always use 0
Address 2 4 Address within memory to start erasing from

NOTE: Value is sent in little-endian

Length 6 4 Number of bytes to erase
NOTE: Value is sent in little-endian

The response has no payload.

Blank Check Memory

This command checks if a region of the selected memory has been erased.
The Request Payload contains the following fields:

Table 86: Blank Check Memory request fields descriptions

Field Offset Size Description
Handle 0 1 Handle returned by open memory command (see
Section 38.6.1.5)
Mode K 1 Blank check mode: always use 0
Address 2 4 Address within memory to start blank check from

NOTE: Value is sent in little-endian

Length 6 4 Number of bytes to blank check
NOTE: Value is sent in little-endian

The response has no payload. The Response status is Read Fail (0xF9) if the memory
region is not blank.

Close Memory

This command de-selects and finalizes the programming of a memory. Any writes of
buffered data should be completed before a response is sent. Once this command has
been successfully completed, the device may be reset without loss of data written to
non-volatile memory.

The Request Payl