
SunFounder raphael-kit

www.sunfounder.com

Nov 08, 2022

CONTENTS

1 About Video Course 3

2 Components List and Introduction 5
2.1 Components List . 5
2.2 Components Introductions . 5

3 Install and Setup Raspberry Pi OS 75
3.1 What Do We Need? . 75
3.2 Installing the OS . 76
3.3 Set up Your Raspberry Pi . 84

4 GPIO Extension Board 91

5 Download the Code 93

6 Play with Python 95
6.1 Check the RPi.GPIO . 95
6.2 Output . 96
6.3 Input . 158
6.4 Audiovisual . 261
6.5 IoT . 274
6.6 Extension . 307

7 Play with C 433
7.1 Install and Check the WiringPi . 433
7.2 Output . 434
7.3 Input . 500
7.4 Extension . 609

8 Play with Processing 693
8.1 What is Processing . 693
8.2 Install the Processing . 693
8.3 Install Hardware I/O . 694
8.4 Projects . 696

9 Play with Nodejs 723
9.1 What is Nodejs . 723
9.2 Install or update nodejs and npm . 723
9.3 Check the pigpio . 723
9.4 Output . 726
9.5 Input . 780

i

9.6 Extension . 861

10 Play with Scratch 865
10.1 Quick Guide on Scratch . 865
10.2 Projects . 874

11 Appendix 985
11.1 Install the Libraries . 985
11.2 I2C Configuration . 987
11.3 SPI Configuration . 989
11.4 Audio Configuration . 991
11.5 Remote Desktop . 997
11.6 Filezilla Software . 1006
11.7 How to use Blynk on mobile device? . 1008

12 FAQ 1011
12.1 C code is not working? . 1011

13 Thank You 1013

ii

SunFounder raphael-kit

Are you new to Raspberry Pi? Are you looking for a clear path to learn Raspberry Pi? Would you like to do more than
just copy and paste code, but actually write your own? If you answered yes to any of the above questions, then the
Raspberry Pi Education Starter Kit - Raphael Kit is right for you.

The kit is unlike other kits that only have a variety of projects. It is a true educational kit designed for beginners,
whether you are programming beginners, electronics hobbyists, experienced electrical engineers, students or educa-
tors, this kit will meet all your needs.

In addition to including all the hardware and software needed for beginners, the kit also offers an online tutorial with
161 interesting projects in 5 programming languages and 45 free video courses (30 hours) on getting started to mastery.

This video course shows beginners how to set up the Raspberry Pi, use the GPIO pins and sensors, and learn the basics
of circuits and programming. Each course has simple and interesting projects for beginners to practice and learn, all
you need to do is to follow step by step and eventually you will be able to master the Raspberry Pi and make your own
projects.

After learning the video tutorials, you can practice the use of each component from our online tutorials and play with
some more advanced and interesting projects.

Alternatively, you can use the components to build projects in other languages, such as C, Scratch, Java (processing)
and JavaScript (Nodejs).

If you have any questions, please send an email to cs@sunfounder.com and we will respond as soon as possible.

About the display language

In addition to English, we are working on other languages for this course. Please contact service@sunfounder.com if
you are interested in helping, and we will give you a free product in return. In the meantime, we recommend using
Google Translate to convert English to the language you want to see.

The steps are as follows.

• In this course page, right-click and select Translate to xx. If the current language is not what you want, you can
change it later.

• There will be a language popup in the upper right corner. Click on the menu button to choose another language.

CONTENTS 1

https://www.youtube.com/playlist?list=PLGs0VKk2DiYxdMjCJmcP6jt4Yw6OHK85O
mailto:cs@sunfounder.com
mailto:service@sunfounder.com

SunFounder raphael-kit

• Select the language from the inverted triangle box, and then click Done.

Contents

2 CONTENTS

CHAPTER

ONE

ABOUT VIDEO COURSE

The kit also contains 45 free video lessons (30 hours) produced by SunFounder and Paul McWhorter. Paul is an
experienced programming educator with 300,000 followers on YouTube and currently has 45 Raspberry Pi video
lessons that continue to be updated weekly.

The video course is made for beginners who have no basic programming skills and use the Sunfounder Ultimate
Raspberry Pi Kit - Raphael Kit.

Here is the video linkhttps://www.youtube.com/playlist?list=PLGs0VKk2DiYxdMjCJmcP6jt4Yw6OHK85O

From the video, you can

• Master the installation, configuration and use of the Raspberry Pi system.

• Understanding and using Raspberry Pi GPIO pins.

• Learn Python’s programming logic so you can control what happens in your scripts.

• Acquire the skill to create Python libraries to better prototype your ideas.

• Utilize multithreading to run multiple scripts at once.

• Know how to get and use analog signals from ADC module.

• Learn the circuit principles so that you can design the circuit to your own specifications.

3

https://www.youtube.com/playlist?list=PLGs0VKk2DiYxdMjCJmcP6jt4Yw6OHK85O

SunFounder raphael-kit

• Get to know Joystick, Servo, Ultrasonic module, PIR, DHT11, I2C LCD, Keyboard, etc.

You don’t have to worry about learning programming too hard, because we don’t consider you an expert and will take
you step by step, with simple and interesting projects to learn each point and make sure every beginner can learn.

Through the video tutorials, you can make temperature alarm systems, light sensing systems and security monitoring
systems, all of which are very common and interesting projects in life.

4 Chapter 1. About Video Course

CHAPTER

TWO

COMPONENTS LIST AND INTRODUCTION

2.1 Components List

After opening the package, please check whether the quantity of components is compliance with product description
and whether all components are in good condition.

• Components List

2.2 Components Introductions

Below is the introduction to each component, which contains the operating principle of the component and the corre-
sponding projects.

Basic

2.2.1 Breadboard

A breadboard is a construction base for prototyping of electronics. Originally the word referred to a literal bread
board, a polished piece of wood used for slicing bread.[1] In the 1970s the solderless breadboard (a.k.a. plugboard, a
terminal array board) became available and nowadays the term “breadboard” is commonly used to refer to these.

It is used to build and test circuits quickly before finishing any circuit design. And it has many holes into which
components mentioned above can be inserted like ICs and resistors as well as jumper wires. The breadboard allows
you to plug in and remove components easily.

The picture shows the internal structure of a breadboard. Although these holes on the breadboard appear to be inde-
pendent of each other, they are actually connected to each other through metal strips internally.

5

SunFounder raphael-kit

If you want to know more about breadboard, refer to: How to Use a Breadboard - Science Buddies

2.2.2 Resistor

Resistor is an electronic element that can limit the branch current. A fixed resistor is a kind of resistor whose resistance
cannot be changed, while that of a potentiometer or a variable resistor can be adjusted.

Two generally used circuit symbols for resistor. Normally, the resistance is marked on it. So if you see these symbols
in a circuit, it stands for a resistor.

is the unit of resistance and the larger units include K, M, etc. Their relationship can be shown as follows: 1 M=1000
K, 1 K = 1000 . Normally, the value of resistance is marked on it.

When using a resistor, we need to know its resistance first. Here are two methods: you can observe the bands on the
resistor, or use a multimeter to measure the resistance. You are recommended to use the first method as it is more
convenient and faster.

6 Chapter 2. Components List and Introduction

https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard#pth-smd

SunFounder raphael-kit

As shown in the card, each color stands for a number.

Black Brown Red Orange Yellow Green Blue Violet Grey White Gold Silver
0 1 2 3 4 5 6 7 8 9 0.1 0.01

The 4- and 5-band resistors are frequently used, on which there are 4 and 5 chromatic bands.

Normally, when you get a resistor, you may find it hard to decide which end to start for reading the color. The tip is
that the gap between the 4th and 5th band will be comparatively larger.

2.2. Components Introductions 7

SunFounder raphael-kit

Therefore, you can observe the gap between the two chromatic bands at one end of the resistor; if it’s larger than any
other band gaps, then you can read from the opposite side.

Let’s see how to read the resistance value of a 5-band resistor as shown below.

So for this resistor, the resistance should be read from left to right. The value should be in this format: 1st Band 2nd
Band 3rd Band x 10^Multiplier () and the permissible error is ±Tolerance%. So the resistance value of this resistor is
2(red) 2(red) 0(black) x 10^0(black) = 220 , and the permissible error is ± 1% (brown).

You can learn more about resistor from Wiki: Resistor - Wikipedia.

2.2.3 Transistor

Transistor is a semiconductor device that controls current by current. It functions by amplifying weak signal to larger
amplitude signal and is also used for non-contact switch.

A transistor is a three-layer structure composed of P-type and N-type semiconductors. They form the three regions
internally. The thinner in the middle is the base region; the other two are both N-type or P-type ones – the smaller
region with intense majority carriers is the emitter region, when the other one is the collector region. This composition
enables the transistor to be an amplifier. From these three regions, three poles are generated respectively, which are
base (b), emitter (e), and collector (c). They form two P-N junctions, namely, the emitter junction and collection
junction. The direction of the arrow in the transistor circuit symbol indicates that of the emitter junction.

• P–N junction - Wikipedia

Based on the semiconductor type, transistors can be divided into two groups, the NPN and PNP ones. From the
abbreviation, we can tell that the former is made of two N-type semiconductors and one P-type and that the latter is

8 Chapter 2. Components List and Introduction

https://en.wikipedia.org/wiki/Resistor
https://en.wikipedia.org/wiki/P-n_junction

SunFounder raphael-kit

the opposite. See the figure below.

Note: s8550 is PNP transistor and the s8050 is the NPN one, They look very similar, and we need to check carefully
to see their labels.

When a High level signal goes through an NPN transistor, it is energized. But a PNP one needs a Low level signal to
manage it. Both types of transistor are frequently used for contactless switches, just like in this experiment.

Put the label side facing us and the pins facing down. The pins from left to right are emitter(e), base(b), and collector(c).

2.2. Components Introductions 9

SunFounder raphael-kit

• S8050 Transistor Datasheet

• S8550 Transistor Datasheet

Example

• 1.2.1 Active Buzzer (C Project S8550)

• 1.3.3 Relay (C Project S8050)

• 1.2.2 Passive Buzzer (Python Project S8550)

• 1.3.3 Relay (Python Project S8050)

• 1.14 123 Wooden Man (Scratch Project S8550)

10 Chapter 2. Components List and Introduction

https://datasheet4u.com/datasheet-pdf/WeitronTechnology/S8050/pdf.php?id=576670
https://www.mouser.com/datasheet/2/149/SS8550-118608.pdf

SunFounder raphael-kit

2.2.4 Capacitor

2.2. Components Introductions 11

SunFounder raphael-kit

Capacitor, refers to the amount of charge storage under a given potential difference, denoted as C, and the interna-
tional unit is farad (F). Generally speaking, electric charges move under force in an electric field. When there is a
medium between conductors, the movement of electric charges is hindered and the electric charges accumulate on the
conductors, resulting in accumulation of electric charges.

The amount of stored electric charges is called capacitance. Because capacitors are one of the most widely used
electronic components in electronic equipment, they are widely used in direct current isolation, coupling, bypass,
filtering, tuning loops, energy conversion, and control circuits. Capacitors are divided into electrolytic capacitors,
solid capacitors, etc.

According to material characteristics, capacitors can be divided into: aluminum electrolytic capacitors, film capacitors,
tantalum capacitors, ceramic capacitors, super capacitors, etc.

In this kit, ceramic capacitors and electrolytic capacitors are used.

• Ceramic Capacitor - Wikipedia

• Electrolytic Capacitor - Wikipedia

There are 103 or 104 label on the ceramic capacitors, which represent the capacitance value, 103=10x10^3pF,
104=10x10^4pF

Unit Conversion

1F=10^3mF=10^6uF=10^9nF=10^12pF

Example

• 2.1.2 Micro Switch (C Project)

• 2.1.4 Slide Switch (C Project)

• 3.1.9 Alarm Bell (C Project)

• 2.1.2 Micro Switch (Python Project)

• 4.1.15 Alarm Bell (Python Project)

12 Chapter 2. Components List and Introduction

https://en.wikipedia.org/wiki/Ceramic_capacitor
https://en.wikipedia.org/wiki/Electrolytic_capacitor

SunFounder raphael-kit

• 1.8 Service Bell (scratch Project)

2.2.5 Diode

A diode is an electronic component with two electrodes. It allows current to flow in only one direction, which is often
called the “Rectifying” function. Thus, a diode can be thought of as an electronic version of a check valve.

Because of its unidirectional conductivity, the diode is used in almost all electronic circuits of some complexity. It is
one of the first semiconductor devices and has a wide range of applications.

According to its use classification, it can be divided into detector diodes, rectifier diodes, limiter diodes, voltage
regulator diodes, etc.

Rectifier diodes and voltage regulator diodes are included in this kit.

Rectifier Diode

A rectifier diode is a semiconductor diode, used to rectify AC (alternating current) to DC (direct current) using the
rectifier bridge application. The alternative of rectifier diode through the Schottky barrier is mainly valued within
digital electronics. This diode is capable to conduct the values of current which changes from mA to a few kA &
voltages up to a few kV.

The designing of rectifier diodes can be done with Silicon material and they are capable of conducting high electric
current values. These diodes are not famous but still used Ge or gallium arsenide-based semiconductor diodes. Ge
diodes have less allowable reversed voltage as well as a lesser allowable junction temperature. The Ge diode has a
benefit as compared to Si diode that is low threshold voltage value while operating in a forward-bias.

• 1N400x general-purpose diode - Wikipedia

Zener Diode

A Zener diode is a special type of diode designed to reliably allow current to flow “backwards” when a certain set
reverse voltage, known as the Zener voltage, is reached.

This diode is a semiconductor device that has a very high resistance up to the critical reverse breakdown voltage. At
this critical breakdown point, the reverse resistance is reduced to a very small value, and the current increases while
the voltage remains constant in this low resistance region.

2.2. Components Introductions 13

https://en.wikipedia.org/wiki/1N400x_general-purpose_diode

SunFounder raphael-kit

• Zener diode - Wikipedia

Example

• 1.3.3 Relay (C Project)

• 1.3.3 Relay (Python Project)

Chip

2.2.6 74HC595

The 74HC595 consists of an 8bit shift register and a storage register with threestate parallel outputs. It converts serial
input into parallel output so you can save IO ports of an MCU. When MR (pin10) is high level and OE (pin13) is low
level, data is input in the rising edge of SHcp and goes to the memory register through the rising edge of SHcp. If the
two clocks are connected together, the shift register is always one pulse earlier than the memory register. There is a
serial shift input pin (Ds), a serial output pin (Q) and an asynchronous reset button (low level) in the memory register.
The memory register outputs a Bus with a parallel 8-bit and in three states. When OE is enabled (low level), the data
in memory register is output to the bus.

• 74HC595 Datasheet

14 Chapter 2. Components List and Introduction

https://en.wikipedia.org/wiki/Zener_diode
https://www.ti.com/lit/ds/symlink/cd74hc595.pdf?ts=1617341564801

SunFounder raphael-kit

Pins of 74HC595 and their functions:

• Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment display directly.

• Q7’: Series output pin, connected to DS of another 74HC595 to connect multiple 74HC595s in series

• MR: Reset pin, active at low level;

• SHcp: Time sequence input of shift register. On the rising edge, the data in shift register moves successively
one bit, i.e. data in Q1 moves to Q2, and so forth. While on the falling edge, the data in shift register remain
unchanged.

• STcp: Time sequence input of storage register. On the rising edge, data in the shift register moves into memory
register.

• CE: Output enable pin, active at low level.

• DS: Serial data input pin

• VCC: Positive supply voltage.

• GND: Ground.

Example

• 1.1.4 7-segment Display (C Project)

• 1.1.5 4-Digit 7-Segment Display (C Project)

• 3.1.1 Counting Device (C Project)

• 3.1.6 Traffic Light (C Project)

• 3.1.12 GAME - 10 Second (C Project)

• 1.1.4 7-segment Display (Python Project)

• 1.1.5 4-Digit 7-Segment Display (Python Project)

• 4.1.7 Counting Device (Pyhton Project)

2.2. Components Introductions 15

SunFounder raphael-kit

• 4.1.12 Traffic Light (Python Project)

• 4.1.18 GAME - 10 Second (Pyhton Project)

2.2.7 L293D

L293D is a 4-channel motor driver integrated by chip with high voltage and high current. It’s designed to connect
to standard DTL, TTL logic level, and drive inductive loads (such as relay coils, DC, Stepper Motors) and power
switching transistors etc. DC Motors are devices that turn DC electrical energy into mechanical energy. They are
widely used in electrical drive for their superior speed regulation performance.

See the figure of pins below. L293D has two pins (Vcc1 and Vcc2) for power supply. Vcc2 is used to supply power
for the motor, while Vcc1 to supply for the chip. Since a small-sized DC motor is used here, connect both pins to +5V.

The following is the internal structure of L293D. Pin EN is an enable pin and only works with high level; A stands for
input and Y for output. You can see the relationship among them at the right bottom. When pin EN is High level, if A
is High, Y outputs high level; if A is Low, Y outputs Low level. When pin EN is Low level, the L293D does not work.

16 Chapter 2. Components List and Introduction

SunFounder raphael-kit

• L293D Datasheet

Example

• 1.3.1 Motor (C Project)

• 3.1.4 Smart Fan (C Project)

• 1.3.1 Motor (Python Project)

• 4.1.10 Smart Fan (Python Project)

• 1.17 Rotating fan (Scratch Project)

2.2.8 ADC0834

ADC0834 is an 8-bit successive approximation analog-to-digital converter that is equipped with an input-configurable
multichannel multi-plexer and serial input/output. The serial input/output is configured to interface with standard shift
registers or microprocessors.

2.2. Components Introductions 17

https://www.ti.com/lit/ds/symlink/l293d.pdf?ts=1627004062301&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FL293D

SunFounder raphael-kit

Sequence of Operation

A conversion is initiated by setting CS low, which enables all logic circuits. CS must be held low for the complete
conversion process. A clock input is then received from the processor. On each low-to-high transition of the clock
input, the data on DI is clocked into the multiplexer address shift register. The first logic high on the input is the
start bit. A 3- to 4-bit assignment word follows the start bit. On each successive low-to-high transition of the clock
input, the start bit and assignment word are shifted through the shift register. When the start bit is shifted into the start
location of the multiplexer register, the input channel is selected and conversion starts. The SAR Statu output (SARS)
goes high to indicate that a conversion is in progress, and DI to the multiplexer shift register is disabled the duration
of the conversion.

An interval of one clock period is automatically inserted to allow the selected multiplexed channel to settle. The data
output DO comes out of the high-impedance state and provides a leading low for this one clock period of multiplexer
settling time. The SAR comparator compares successive outputs from the resistive ladder with the incoming analog
signal. The comparator output indicates whether the analog input is greater than or less than the resistive ladder
output. As the conversion proceeds, conversion data is simultaneously output from the DO output pin, with the most
significant bit (MSB) first.

After eight clock periods, the conversion is complete and the SARS output goes low. Finally outputs the least-
significant-bit-first data after the MSB-first data stream.

18 Chapter 2. Components List and Introduction

SunFounder raphael-kit

ADC0834 MUX ADDRESS CONTROL LOGIC TABLE

• ADC0831 series Datasheet

Example

• 2.1.7 Potentiometer (C Project)

• 2.2.1 Photoresistor (C Project)

• 2.2.2 Thermistor (C Project)

2.2. Components Introductions 19

https://www.ti.com/lit/ds/symlink/adc0831-n.pdf

SunFounder raphael-kit

• 3.1.4 Smart Fan (C Project)

• 3.1.5 Battery Indicator (C Project)

• 3.1.7 Overheat Monitor (C Project)

• 2.1.7 Potentiometer (Python Project)

• 2.2.1 Photoresistor (Pyhton Project)

• 2.2.2 Thermistor (Pyhton Project)

• 4.1.10 Smart Fan (Pyhton Project)

• 4.1.11 Battery Indicator (Pyhton Project)

• 4.1.13 Overheat Monitor (Pyhton Project)

Display

2.2.9 LED

Semiconductor light-emitting diode is a type of component which can turn electric energy into light energy via PN
junctions. By wavelength, it can be categorized into laser diode, infrared light-emitting diode and visible light-emitting
diode which is usually known as light-emitting diode (LED).

Diode has unidirectional conductivity, so the current flow will be as the arrow indicates in figure circuit symbol. You
can only provide the anode with a positive power and the cathode with a negative. Thus the LED will light up.

20 Chapter 2. Components List and Introduction

SunFounder raphael-kit

An LED has two pins. The longer one is the anode, and shorter one, the cathode. Pay attention not to connect them
inversely. There is fixed forward voltage drop in the LED, so it cannot be connected with the circuit directly because
the supply voltage can outweigh this drop and cause the LED to be burnt. The forward voltage of the red, yellow, and
green LED is 1.8 V and that of the white one is 2.6 V. Most LEDs can withstand a maximum current of 20 mA, so we
need to connect a current limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply – VD)/I

R stands for the resistance value of the current limiting resistor, Vsupply for voltage supply, VD for voltage drop and
I for the working current of the LED.

Here is the detailed introduction for the LED: LED - Wikipedia.

Example

• 1.1.1 Blinking LED (C Project)

• 3.1.6 Traffic Light (C Project)

• 1.1.1 Blinking LED (Python Project)

• 4.1.12 Traffic Light (Python Project)

• 1.1 Wand (Scratch Project)

2.2.10 RGB LED

RGB LEDs emit light in various colors. An RGB LED packages three LEDs of red, green, and blue into a transparent
or semitransparent plastic shell. It can display various colors by changing the input voltage of the three pins and
superimpose them, which, according to statistics, can create 16,777,216 different colors.

2.2. Components Introductions 21

https://en.wikipedia.org/wiki/Light-emitting_diode

SunFounder raphael-kit

RGB LEDs can be categorized into common anode and common cathode ones. In this kit, the latter is used. The
common cathode, or CC, means to connect the cathodes of the three LEDs. After you connect it with GND and plug
in the three pins, the LED will flash the corresponding color.

Its circuit symbol is shown as figure.

An RGB LED has 4 pins: the longest one is GND; the others are Red, Green and Blue. Touch its plastic shell and you
will find a cut. The pin closest to the cut is the first pin, marked as Red, then GND, Green and Blue in turn.

22 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Example

• 1.1.2 RGB LED (C Project)

• 1.1.2 RGB LED (Python Project)

• 1.2 Colorful Balls (Scratch Project)

2.2.11 LED Bar Graph

LED Bar Graph is an LED array, which is used to connect with electronic circuit or microcontroller. It’s easy to
connect LED bar graph with the circuit like as connecting 10 individual LEDs with 10 output pins. Generally we can
use the LED bar graph as a Battery level Indicator, Audio equipments, and Industrial Control panels. There are many
other applications of LED bar graphs.

The following is the internal schematic diagram of LED Bar Graph. Generally speaking, the side with the label is the
anode and the other side is the cathode.

2.2. Components Introductions 23

SunFounder raphael-kit

Example

• 1.1.3 LED Bar Graph (C Project)

• 3.1.5 Battery Indicator (C Project)

• 1.1.3 LED Bar Graph (Python Project)

• 4.1.11 Battery Indicator (Python Project)

• 1.12 Water Lamp (Scratch Project)

2.2.12 7-segment Display

A 7-segment display is an 8-shaped component which packages 7 LEDs. Each LED is called a segment - when
energized, one segment forms part of a numeral to be displayed.

There are two types of pin connection: Common Cathode (CC) and Common Anode (CA). As the name suggests,
a CC display has all the cathodes of the 7 LEDs connected when a CA display has all the anodes of the 7 segments
connected.

In this kit, we use the Common Cathode 7-segment display, here is the electronic symbol.

24 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Each of the LEDs in the display is given a positional segment with one of its connection pins led out from the rect-
angular plastic package. These LED pins are labeled from “a” through to “g” representing each individual LED. The
other LED pins are connected together forming a common pin. So by forward biasing the appropriate pins of the
LED segments in a particular order, some segments will brighten and others stay dim, thus showing the corresponding
character on the display.

Display Codes

To help you get to know how 7-segment displays(Common Cathode) display Numbers, we have drawn the following
table. Numbers are the number 0-F displayed on the 7-segment display; (DP) GFEDCBA refers to the corresponding
LED set to 0 or 1, For example, 00111111 means that DP and G are set to 0, while others are set to 1. Therefore, the
number 0 is displayed on the 7-segment display, while HEX Code corresponds to hexadecimal number.

2.2. Components Introductions 25

SunFounder raphael-kit

Example

• 1.1.4 7-segment Display (C Project)

• 1.1.4 7-segment Display (Python Project)

26 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.13 4-Digit 7-Segment Display

4-Digit 7-segment display consists of four 7- segment displays working together.

The 4-digtal 7-segment display works independently. It uses the principle of human visual persistence to quickly
display the characters of each 7-segment in a loop to form continuous strings.

For example, when “1234” is displayed on the display, “1” is displayed on the first 7-segment, and “234” is not
displayed. After a period of time, the second 7-segment shows “2”, the 1st 3th 4th of 7-segment does not show, and
so on, the four digital display show in turn. This process is very short (typically 5ms), and because of the optical
afterglow effect and the principle of visual residue, we can see four characters at the same time.

Display Codes

To help you get to know how 7-segment displays(Common Anode) display Numbers, we have drawn the following
table. Numbers are the number 0-F displayed on the 7-segment display; (DP) GFEDCBA refers to the corresponding
LED set to 0 or 1, For example, 11000000 means that DP and G are set to 1, while others are set to 0. Therefore, the
number 0 is displayed on the 7-segment display, while HEX Code corresponds to hexadecimal number.

2.2. Components Introductions 27

SunFounder raphael-kit

Example

• 1.1.5 4-Digit 7-Segment Display (C Project)

• 3.1.1 Counting Device (C Project)

• 3.1.6 Traffic Light (C Project)

• 3.1.12 GAME - 10 Second (C Project)

• 1.1.5 4-Digit 7-Segment Display (Python Project)

• 4.1.3 Speech Clock (Pyhton Project)

• 4.1.7 Counting Device (Pyhton Project)

• 4.1.12 Traffic Light (Pyhton Project)

• 4.1.18 GAME - 10 Second (Pyhton Project)

28 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.14 LED Matrix Module

This is a common cathode 8x8 dot matrix module driven by MAX7219, the module operating voltage is 5V, the size
is 50mmx32mmx15mm, the left side is input port, the right side is output port, support multiple modules cascade.

• VCC: Positive Supply Voltage. Connect to +5V.

• GND: Ground (both GND pins must be connected)

• DIN: Serial-Data Input. Data is loaded into the internal 16-bit shift register on CLK’s rising edge.

• CS: Chip-Select Input. Serial data is loaded into the shift register while CS is low. The last 16 bits of serial data
are latched on CS’s rising edge.

• CLK: Serial-Clock Input. 10MHz maximum rate. On CLK’s rising edge, data is shifted into the internal shift
register. On CLK’s falling edge, data is clocked out of DOUT. On the MAX7221, the CLK input is active only
while CS is low.

MAX7219

The MAX7219 is a compact, serial input/output common-cathode display drivers that interface microprocessors (µPs)
to 7-segment numeric LED displays of up to 8 digits, bar-graph displays, or 64 individual LEDs. Included on-chip are
a BCD code-B decoder, multiplex scan circuitry, segment and digit drivers, and an 8x8 static RAM that stores each
digit.

Only one external resistor is required to set the segment current for all LEDs. The MAX7221 is compatible with
SPI™, QSPI™, and MICROWIRE™, and has slewrate-limited segment drivers to reduce EMI.

A convenient 4-wire serial interface connects to all common µPs. Individual digits may be addressed and updated
without rewriting the entire display. The MAX7219/MAX7221 also allow the user to select codeB decoding or no-
decode for each digit.

2.2. Components Introductions 29

SunFounder raphael-kit

• MAX7219 Datasheet

Example

• 1.1.6 LED Dot Matrix Module (C Project)

• 3.1.12 GAME - 10 Second (C Project)

• 1.1.6 LED Dot Matrix (Python Project)

• 4.1.19 AttendanceSystem (Python Project)

2.2.15 I2C LCD1602

• GND: Ground

• VCC: Voltage supply, 5V.

• SDA: Serial data line. Connect to VCC through a pullup resistor.

• SCL: Serial clock line. Connect to VCC through a pullup resistor.

30 Chapter 2. Components List and Introduction

https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf

SunFounder raphael-kit

As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a com-
mon weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has no
so many outer ports. Also it restricts other functions of the controller.

Therefore, LCD1602 with an I2C module is developed to solve the problem. The I2C module has a built-in PCF8574
I2C chip that converts I2C serial data to parallel data for the LCD display.

• PCF8574 Datasheet

Backlight can be enabled by jumper cap, unplugg the jumper cap to disable the backlight. The blue potentiometer on
the back is used to adjust the contrast (the clarity of the displayed text), which is increased in the clockwise direction
and decreased in the counterclockwise direction.

The default address is basically 0x27, in a few cases it may be 0x3F, which can be known by test (I2C Configuration).

Taking the default address of 0x27 as an example, the device address can be modified by shorting the A0/A1/A2 pads;
in the default state, A0/A1/A2 is 1, and if the pad is shorted, A0/A1/A2 is 0.

Example

• 1.1.7 I2C LCD1602 (C Project)

• 3.1.3 Reversing Alarm (C Project)

• 3.1.7 Overheat Monitor (C Project)

• 3.1.8 Password Lock (C Project)

• 3.1.11 GAME– Guess Number (C Project)

• 1.1.7 I2C LCD1602 (Python Project)

2.2. Components Introductions 31

https://www.ti.com/lit/ds/symlink/pcf8574.pdf?ts=1627006546204&ref_url=https%253A%252F%252Fwww.google.com%252F

SunFounder raphael-kit

• 4.1.9 Reversing Alarm (Python Project)

• 4.1.13 Overheat Monitor (Python Project)

• 4.1.14 Password Lock (Python Project)

• 4.1.17 GAME– Guess Number (Python Project)

Sound

2.2.16 Buzzer

As a type of electronic buzzer with an integrated structure, buzzers, which are supplied by DC power, are widely used
in computers, printers, photocopiers, alarms, electronic toys, automotive electronic devices, telephones, timers and
other electronic products or voice devices.

Buzzers can be categorized as active and passive ones (see the following picture). Turn the buzzer so that its pins are
facing up, and the buzzer with a green circuit board is a passive buzzer, while the one enclosed with a black tape is an
active one.

The difference between an active buzzer and a passive buzzer:

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does
not have such source, so it will not beep if DC signals are used; instead, you need to use square waves whose frequency
is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple
built-in oscillating circuits.

The following is the electrical symbol of a buzzer. It has two pins with positive and negative poles. With a + in the
surface represents the anode and the other is the cathode.

32 Chapter 2. Components List and Introduction

SunFounder raphael-kit

You can check the pins of the buzzer, the longer one is the anode and the shorter one is the cathode. Please don’t mix
them up when connecting, otherwise the buzzer will not make sound.

Buzzer - Wikipedia

Example

• 1.2.1 Active Buzzer (C Project)

• 1.2.2 Passive Buzzer (C Project)

• 1.2.1 Active Buzzer (Python Project)

• 1.2.2 Passive Buzzer (Python Project)

• 1.13 Doorbell (Scratch Project)

• 1.14 123 Wooden Man (Scratch Project)

2.2.17 Audio Module and Speaker

Audio Amplifier Module

Audio Amplifier Module contains a HXJ8002 audio power amplifier chip. This chip is a power amplifier with low
power supply, that can provide 3W average audio power for a 3Ω BTL load with low harmonic distortion (under 10%
threshold distortion at 1KHz) from a 5V DC power supply. This chip can amplify audio signals without any coupling
capacitors or bootstrap capacitors.

The module can be supplied by a 2.0V up to 5.5V DC with 10mA operating current (0.6uA for typical standby
current) power source and produce a powerful amplified sound into a 3, 4, or 8 impedance speaker. This module has
an improved pop and clicks circuitry for reducing significantly the transition nose at the powering on and off moment.
Tiny size besides high efficiency and low power supplying make it applicable in widely portable and battery-powered
projects and microcontrollers.

• IC: HXJ8002

• Input Voltage: 2V ~ 5.5V

• Standby Mode Current: 0.6uA (typical value)

• Output Power: 3W (3Ω load) , 2.5W (4Ω load) , 1.5W (8Ω load)

• Output Speaker Impedance: 3Ω, 4Ω, 8Ω

• Size: 19.8mm x 14.2mm

2.2. Components Introductions 33

https://en.wikipedia.org/wiki/Buzzer

SunFounder raphael-kit

Speaker

• Size: 20x30x7mm

• Impedance8ohm

• Rate Input Power: 1.5W

• Max Input Power: 2.0W

• Wire Length: 10cm

34 Chapter 2. Components List and Introduction

SunFounder raphael-kit

The size chart is as follows

• 2030 Speaker Datasheet

Audio Cable

2.2. Components Introductions 35

SunFounder raphael-kit

This is a 3.5mm male audio cable with a total length of 43cm. it has 3 connectors, red for the left channel, white for
the right channel, and GND in the middle.

Circuit

After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm
audio jack.

36 Chapter 2. Components List and Introduction

SunFounder raphael-kit

If your speaker have no sound, it may be because the Raspberry Pi has selected the wrong audio output (The default is
HDMI), you need to Change Audio Output to Headphones.

If you feel that the volume of the speakers is too low, you can Adjust Volume.

Example

• 3.1.3 Audio Module (Python Project)

• 3.1.4 Text-to-speech (Python Project)

• 4.1.2 Music Player (Python Project)

• 4.1.3 Speech Clock (Python Project)

• 4.1.5 Intelligent Visual Doorbell (Python Project)

• 1.8 Service Bell (Scratch Project)

• 1.9 Drumming (Scratch Project)

• 1.10 Drumming in the Air (Scratch Project)

Driver

2.2. Components Introductions 37

SunFounder raphael-kit

2.2.18 DC Motor

This is a 3V DC motor. When you give a high level and a low level to each of the 2 terminals, it will rotate.

• Size: 25*20*15MM

• Operation Voltage: 1-6V

• Free-run Current (3V): 70m

• A Free-run Speed (3V): 13000RPM

• Stall Current (3V): 800mA

• Shaft Diameter: 2mm

Direct current (DC) motor is a continuous actuator that converts electrical energy into mechanical energy. DC motors
make rotary pumps, fans, compressors, impellers, and other devices work by producing continuous angular rotation.

A DC motor consists of two parts, the fixed part of the motor called the stator and the internal part of the motor called
the rotor (or armature of a DC motor) that rotates to produce motion. The key to generating motion is to position
the armature within the magnetic field of the permanent magnet (whose field extends from the north pole to the south
pole). The interaction of the magnetic field and the moving charged particles (the current-carrying wire generates the
magnetic field) produces the torque that rotates the armature.

38 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Current flows from the positive terminal of the battery through the circuit, through the copper brushes to the commu-
tator, and then to the armature. But because of the two gaps in the commutator, this flow reverses halfway through
each complete rotation. This continuous reversal essentially converts the DC power from the battery to AC, allowing
the armature to experience torque in the right direction at the right time to maintain rotation.

• DC Motor - MagLab

Example

• 1.3.1 Motor (C Project)

• 3.1.4 Smart Fan (C Project)

• 1.3.1 Motor (Python Project)

• 4.1.10 Smart Fan (Python Project)

• 1.17 Rotating fan (Scratch Project)

2.2. Components Introductions 39

https://nationalmaglab.org/education/magnet-academy/watch-play/interactive/dc-motor

SunFounder raphael-kit

2.2.19 Servo

A servo is generally composed of the following parts: case, shaft, gear system, potentiometer, DC motor, and embed-
ded board.

It works like this: The microcontroller sends out PWM signals to the servo, and then the embedded board in the servo
receives the signals through the signal pin and controls the motor inside to turn. As a result, the motor drives the
gear system and then motivates the shaft after deceleration. The shaft and potentiometer of the servo are connected
together. When the shaft rotates, it drives the potentiometer, so the potentiometer outputs a voltage signal to the
embedded board. Then the board determines the direction and speed of rotation based on the current position, so it
can stop exactly at the right position as defined and hold there.

The angle is determined by the duration of a pulse that is applied to the control wire. This is called Pulse width
Modulation. The servo expects to see a pulse every 20 ms. The length of the pulse will determine how far the motor
turns. For example, a 1.5ms pulse will make the motor turn to the 90 degree position (neutral position). When a
pulse is sent to a servo that is less than 1.5 ms, the servo rotates to a position and holds its output shaft some number
of degrees counterclockwise from the neutral point. When the pulse is wider than 1.5 ms the opposite occurs. The
minimal width and the maximum width of pulse that will command the servo to turn to a valid position are functions
of each servo. Generally the minimum pulse will be about 0.5 ms wide and the maximum pulse will be 2.5 ms wide.

40 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Example

• 1.3.2 Servo (C Project)

• 3.1.2 Welcome (C Project)

• 1.3.2 Servo (Python Project)

• 4.1.8 Welcome (Python Project)

2.2.20 Power Supply Module

When we need a large current to drive a component, which will severely interfere with the normal work of Raspberry
Pi. Therefore, we separately supply power for the component by this module to make it run safely and steadily.

You can just plug it in the breadboard to supply power. It provides a voltage of 3.3V and 5V, and you can connect
either via a jumper cap included.

2.2. Components Introductions 41

SunFounder raphael-kit

Features and specifications

• Input voltage: 6.5 - 12V

• Two Independent Channel

• Output voltage: 5V, 3.3V (adjustable via jumpers. 0V, 3.3V, and 5V configuration)

• Output current: Maximum output current 700mA

• Onboard berg male header for GND, 5V, 3.3V output

• ON-OFF Switch available.

• USB (Type-A) input available.

• DC Barrel Jack input available.

• Onboard power LED

• Dimension: 53mm x 33mm (L x W)

Example

• 1.3.1 Motor (C Project)

• 3.1.4 Smart Fan (C Project)

• 1.3.1 Motor (Python Project)

• 4.1.10 Smart Fan (Python Project)

• 1.17 Rotating fan (Scratch Project)

42 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.21 Relay

As we may know, relay is a device which is used to provide connection between two or more points or devices in
response to the input signal applied. In other words, relays provide isolation between the controller and the device
as devices may work on AC as well as on DC. However, they receive signals from a microcontroller which works on
DC hence requiring a relay to bridge the gap. Relay is extremely useful when you need to control a large amount of
current or voltage with small electrical signal.

There are 5 parts in every relay:

Electromagnet - It consists of an iron core wounded by coil of wires. When electricity is passed through, it becomes
magnetic. Therefore, it is called electromagnet.

Armature - The movable magnetic strip is known as armature. When current flows through them, the coil is it
energized thus producing a magnetic field which is used to make or break the normally open (N/O) or normally close
(N/C) points. And the armature can be moved with direct current (DC) as well as alternating current (AC).

Spring - When no currents flow through the coil on the electromagnet, the spring pulls the armature away so the circuit

2.2. Components Introductions 43

SunFounder raphael-kit

cannot be completed.

Set of electrical contacts - There are two contact points:

• Normally open - connected when the relay is activated, and disconnected when it is inactive.

• Normally close - not connected when the relay is activated, and connected when it is inactive.

Molded frame - Relays are covered with plastic for protection.

The working principle of relay is simple. When power is supplied to the relay, currents start flowing through the
control coil; as a result, the electromagnet starts energizing. Then the armature is attracted to the coil, pulling down
the moving contact together thus connecting with the normally open contacts. So the circuit with the load is energized.
Then breaking the circuit would a similar case, as the moving contact will be pulled up to the normally closed contacts
under the force of the spring. In this way, the switching on and off of the relay can control the state of a load circuit.

Example

• 1.3.3 Relay (C Project)

• 1.3.3 Relay (Python Project)

Controller

2.2.22 Button

Buttons are a common component used to control electronic devices. They are usually used as switches to connect
or break circuits. Although buttons come in a variety of sizes and shapes, the one used here is a 6mm mini-button as
shown in the following pictures. Pin 1 is connected to pin 2 and pin 3 to pin 4. So you just need to connect either of
pin 1 and pin 2 to pin 3 or pin 4.

The following is the internal structure of a button. The symbol on the right below is usually used to represent a button
in circuits.

Since the pin 1 is connected to pin 2, and pin 3 to pin 4, when the button is pressed, the 4 pins are connected, thus
closing the circuit.

44 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Example

• 2.1.1 Button (C Project)

• 3.1.4 Smart Fan (C Project)

• 3.1.13 GAME– NotNot (C Project)

• 2.1.1 Button (Python Project)

• 4.1.2 Music Player (Python Project)

• 4.1.10 Smart Fan (Python Project)

• 1.4 Hare (Scratch Project)

2.2.23 Micro Switch

The construction of a micro switch is really simple. The main parts of the switch are:

2.2. Components Introductions 45

SunFounder raphael-kit

• 1.Plunger (Actuator)

• 2.Cover

• 3.Moving piece

• 4.Support

• 5.Case

• 6.NO terminal: normally open

• 7.NC terminal: normally closed

• 8.Contact

• 9.Moving arm

After a micro switch makes physical contact with an object, its contacts change position. The basic working principle
is as follows.

When the plunger is in the released or rest position.

• The normally closed circuit can carry current.

• The normally open circuit is electrically insulated.

When the plunger is depressed or switched.

• The normally closed circuit is open.

• The normally open circuit is closed.

46 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Example

• 2.1.2 Micro Switch (C Project)

• 2.1.2 Micro Switch (Python Project)

• 1.8 Service Bell (Scratch Project)

2.2.24 Slide Switch

A slide switch, just as its name implies, is to slide the switch bar to connect or break the circuit, and further switch
circuits. The common-used types are SPDT, SPTT, DPDT, DPTT etc. The slide switch is commonly used in low-
voltage circuit. It has the features of flexibility and stability, and applies in electric instruments and electric toys
widely. How it works: Set the middle pin as the fixed one. When you pull the slide to the left, the two pins on the
left are connected; when you pull it to the right, the two pins on the right are connected. Thus, it works as a switch
connecting or disconnecting circuits. See the figure below:

The circuit symbol of the slide switch is shown as below. The pin2 in the figure refers to the middle pin.

Example

• 2.1.4 Slide Switch (C Project)

• 3.1.9 Alarm Bell (C Project)

2.2. Components Introductions 47

SunFounder raphael-kit

• 2.1.4 Slide Switch (Python Project)

• 4.1.15 Alarm Bell (Python Project)

• 1.15 Inflating the Balloon (Scratch Project)

2.2.25 Potentiometer

Potentiometer is also a resistance component with 3 terminals and its resistance value can be adjusted according to
some regular variation.

Potentiometers come in various shapes, sizes, and values, but they all have the following things in common:

• They have three terminals (or connection points).

• They have a knob, screw, or slider that can be moved to vary the resistance between the middle terminal and
either one of the outer terminals.

• The resistance between the middle terminal and either one of the outer terminals varies from 0 to the maximum
resistance of the pot as the knob, screw, or slider is moved.

Here is the circuit symbol of potentiometer.

The functions of the potentiometer in the circuit are as follows:

1. Serving as a voltage divider

48 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Potentiometer is a continuously adjustable resistor. When you adjust the shaft or sliding handle of
the potentiometer, the movable contact will slide on the resistor. At this point, a voltage can be output
depending on the voltage applied onto the potentiometer and the angle the movable arm has rotated
to or the travel it has made.

2. Serving as a rheostat

When the potentiometer is used as a rheostat, connect the middle pin and one of the other 2 pins in
the circuit. Thus you can get a smoothly and continuously changed resistance value within the travel
of the moving contact.

3. Serving as a current controller

When the potentiometer acts as a current controller, the sliding contact terminal must be connected
as one of the output terminals.

If you want to know more about potentiometer, refer to: Potentiometer - Wikipedia

Example

• 2.1.7 Potentiometer (C Project)

• 2.1.7 Potentiometer (Python Project)

2.2.26 Joystick Module

The basic idea of a joystick is to translate the movement of a stick into electronic information that a computer can
process.

In order to communicate a full range of motion to the computer, a joystick needs to measure the stick’s position on two
axes – the X-axis (left to right) and the Y-axis (up and down). Just as in basic geometry, the X-Y coordinates pinpoint
the stick’s position exactly.

To determine the location of the stick, the joystick control system simply monitors the position of each shaft. The
conventional analog joystick design does this with two potentiometers, or variable resistors.

The joystick also has a digital input that is actuated when the joystick is pressed down.

2.2. Components Introductions 49

https://en.wikipedia.org/wiki/Potentiometer.

SunFounder raphael-kit

Example

• 2.1.9 Joystick (C Project)

• 3.1.7 Overheat Monitor (C Project)

• 2.1.9 Joystick (Python Project)

• 4.1.13 Overheat Monitor (Python Project)

50 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.27 Rotary Encoder Module

The rotary encoder module counts the number of pulses output in the forward and reverse directions during rotation.
unlike a potentiometer, this rotation count is unlimited and the number of pulses per cycle is 20. Press the key (SW)
on the rotary encoder to start counting from zero.

There are mainly two types of rotary encoders: absolute and incremental (relative) encoders. An incremental one is
used in this kit.

Incremental encoders give two-phase square waves, their phase difference is 90, usually called A channel and B
channel.

As shown on the right, when channel A changes from high level to low level, if channel B is high level, it indicates
the rotary encoder spins clockwise (CW); if at that moment channel B is low level, it means spins counterclockwise
(CCW). So if we read the value of channel B when channel A is low level, we can know in which direction the rotary
encoder rotates.

2.2. Components Introductions 51

SunFounder raphael-kit

Example

• 2.1.6 Rotary Encoder Module (C Project)

• 2.1.6 Rotary Encoder Module (Python Project)

52 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.28 Keypad

A keypad is a rectangular array of 12 or 16 OFF-(ON) buttons. Their contacts are accessed via a header suitable for
connection with a ribbon cable or insertion into a printed circuit board. In some keypads, each button connects with a
separate contact in the header, while all the buttons share a common ground.

More often, the buttons are matrix encoded, meaning that each of them bridges a unique pair of conductors in a matrix.
This configuration is suitable for polling by a microcontroller, which can be programmed to send an output pulse to
each of the four horizontal wires in turn. During each pulse, it checks the remaining four vertical wires in sequence,
to determine which one, if any, is carrying a signal. Pullup or pulldown resistors should be added to the input wires to
prevent the inputs of the microcontroller from behaving unpredictably when no signal is present.

Example

• 2.1.8 Keypad (C Project)

• 3.1.8 Password Lock (C Project)

• 3.1.11 GAME– Guess Number (C Project)

• 2.1.8 Keypad (Python Project)

• 4.1.14 Password Lock (Python Project)

• 4.1.17 GAME– Guess Number (Python Project)

Sensor

2.2. Components Introductions 53

SunFounder raphael-kit

2.2.29 Photoresistor

A photoresistor or photocell is a light-controlled variable resistor. The resistance of a photoresistor decreases with
increasing incident light intensity; in other words, it exhibits photo conductivity.

A photoresistor can be applied in light-sensitive detector circuits and light-activated and dark-activated switching
circuits acting as a resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several
megaohms (M), while in the light, a photoresistor can have a resistance as low as a few hundred ohms.

Here is the electronic symbol of photoresistor.

• Photoresistor - Wikipedia

Example

• 2.2.1 Photoresistor (C Project)

• 2.2.1 Photoresistor (Python Project)

54 Chapter 2. Components List and Introduction

https://en.wikipedia.org/wiki/Photoresistor#:~:text=A%20photoresistor%20(also%20known%20as,on%20the%20component's%20sensitive%20surface

SunFounder raphael-kit

2.2.30 Thermistor

A thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard
resistors. The word is a combination of thermal and resistor. Thermistors are widely used as inrush current limiters,
temperature sensors (negative temperature coefficient or NTC type typically), self-resetting overcurrent protectors,
and self-regulating heating elements (positive temperature coefficient or PTC type typically).

• Thermistor - Wikipedia

Here is the electronic symbol of thermistor.

Thermistors are of two opposite fundamental types:

• With NTC thermistors, resistance decreases as temperature rises usually due to an increase in conduction elec-
trons bumped up by thermal agitation from valency band. An NTC is commonly used as a temperature sensor,
or in series with a circuit as an inrush current limiter.

• With PTC thermistors, resistance increases as temperature rises usually due to increased thermal lattice agita-
tions particularly those of impurities and imperfections. PTC thermistors are commonly installed in series with
a circuit, and used to protect against overcurrent conditions, as resettable fuses.

In this kit we use an NTC one. Each thermistor has a normal resistance. Here it is 10k ohm, which is measured under
25 degree Celsius.

Here is the relation between the resistance and temperature:

RT = RN * expB(1/TK – 1/TN)

• RT is the resistance of the NTC thermistor when the temperature is TK.

2.2. Components Introductions 55

https://en.wikipedia.org/wiki/Thermistor

SunFounder raphael-kit

• RN is the resistance of the NTC thermistor under the rated temperature TN. Here, the numerical value of RN is
10k.

• TK is a Kelvin temperature and the unit is K. Here, the numerical value of TK is 273.15 + degree Celsius.

• TN is a rated Kelvin temperature; the unit is K too. Here, the numerical value of TN is 273.15+25.

• And B(beta), the material constant of NTC thermistor, is also called heat sensitivity index with a numerical
value 3950.

• exp is the abbreviation of exponential, and the base number e is a natural number and equals 2.7 approximately.

Convert this formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature that minus 273.15 equals degree Celsius.

This relation is an empirical formula. It is accurate only when the temperature and resistance are within the effective
range.

Example

• 2.2.2 Thermistor (C Project)

• 3.1.4 Smart Fan (C Project)

• 3.1.7 Overheat Monitor (C Project)

• 2.2.2 Thermistor (Python Project)

• 4.1.10 Smart Fan (Python Project)

• 4.1.13 Overheat Monitor (Python Project)

2.2.31 Tilt Switch

The tilt switch used here is a ball one with a metal ball inside. It is used to detect inclinations of a small angle.

The principle is very simple. When the switch is tilted in a certain angle, the ball inside rolls down and touches the two
contacts connected to the pins outside, thus triggering circuits. Otherwise the ball will stay away from the contacts,
thus breaking the circuits.

56 Chapter 2. Components List and Introduction

SunFounder raphael-kit

• SW520D Tilt Switch Datasheet

Example

• 2.1.5 Tilt Switch (C Project)

• 3.1.12 GAME - 10 Second (C Project)

• 2.1.5 Tilt Switch (Python Project)

• 4.1.18 GAME - 10 Second (Python Project)

• 1.3 Tumbler (Scratch Project)

2.2. Components Introductions 57

https://www.tme.com/Document/f1e6cedd8cb7feeb250b353b6213ec6c/SW-520D.pdf

SunFounder raphael-kit

2.2.32 Touch Switch Module

Touch switch module works by detecting a change in capacitance due to influence of an external object. The touch
plate is covered with insulating material, and the user does not come in contact with the electrical circuit.

A capacitive touch switch has different layers—top insulating face plate followed by touch plate, another insulating
layer and then ground plate.

In practice, a capacitive sensor can be made on a double-sided PCB by regarding one side as the touch sensor and the
opposite side as ground plate of the capacitor. When power is applied across these plates, the two plates get charged.
In equilibrium state, the plates have the same voltage as the power source.

The touch detector circuit has an oscillator whose frequency is dependent on capacitance of the touchpad. When a
finger is moved close to the touchpad, additional capacitance causes frequency of this internal oscillator to change.
The detector circuit tracks oscillator frequency at timed intervals, and when the shift crosses the threshold change, the
circuit triggers a key-press event.

Example

• 2.1.3 Touch Switch Module (C Project)

• 2.1.3 Touch Switch Module (Python Project)

• 1.9 Drumming (Scratch Project)

58 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.33 Reed Switch Module

• Using normally open type reed switch.

• Comparator output, clean signal, good waveform, strong driving ability, more than 15mA.

• Working voltage: 3.3V-5V

• Output form: digital switch output (0 and 1).

• With fixed bolt holes for easy installation.

• Small board PCB size: 3.2cm x 1.4cm.

• Use wide voltage LM393 comparator.

The reed switch module consists of a reed switch, potentiometer, LM393 comparator, LED, etc. The internal circuit
is shown below, when the magnet is close to the module, it will be on, and the module will output low level; when
there is no magnetism, it will be off, and output high level. Reed switch and magnet induction distance should be
within 1.5cm, beyond will not be sensitive or no trigger phenomenon, you can also adjust the sensitivity through the
potentiometer on the module.

2.2. Components Introductions 59

SunFounder raphael-kit

Reed switch, also known as a magnetic switch or reed switch.

It has two internal metal reeds, sealed in a glass tube, which is filled with inert gas. Normally the two reeds overlap
each other, but are separated by a gap, and the circuit is broken. When there is a magnetic object close to the two
reeds will produce a mutual attraction of the magnetic force, which will be sucked together, the circuit is connected.
Therefore, the reed switch can be used to make a magnetic sensor.

60 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Example

• 2.2.4 Reed Switch Module (C Project)

• 2.2.4 Reed Switch Module (Python Project)

• 4.1.6 Magnetic Induction Alarm System (Python Project)

• 1.6 Vanishing Vase (Scratch Project)

2.2.34 Obstacle Avoidance Module

The IR obstacle avoidance module has strong adaptability to environmental light, it has a pair of infrared transmitting
and receiving tubes.

The transmitting tube emits infrared frequency, when the detection direction encounters an obstacle, the infrared
radiation is received by the receiving tube, after the comparator circuit processing, the green indicator will light up
and output low level signal.

The detection distance can be adjusted by potentiometer, the effective distance range 2-30cm.

2.2. Components Introductions 61

SunFounder raphael-kit

Example

• 2.2.5 IR Obstacle Avoidance Module (C Project)

• 2.2.5 IR Obstacle Avoidance Sensor (Python Project)

• 1.11 Repelling locusts (Scratch Project)

2.2.35 Speed Sensor Module

The speed sensor consists of two parts: a transmitter and a receiver. The transmitter emits light, which then enters the
receiver.

If the light beam between the emitter and receiver is interrupted by an obstacle, the receiver will not detect the incident
light, then the D0 pin will output low level.

Note: The A0 pin on this module is empty and there is no circuit.

62 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Example

• 2.2.6 Speed Sensor Module (C Project)

• 2.2.6 Speed Sensor Module (Python Project)

• 1.7 Piggy Bank (Scratch Project)

2.2.36 PIR Motion Sensor Module

The PIR sensor detects infrared heat radiation that can be used to detect the presence of organisms that emit infrared
heat radiation.

The PIR sensor is split into two slots that are connected to a differential amplifier. Whenever a stationary object is
in front of the sensor, the two slots receive the same amount of radiation and the output is zero. Whenever a moving
object is in front of the sensor, one of the slots receives more radiation than the other , which makes the output fluctuate
high or low. This change in output voltage is a result of detection of motion.

2.2. Components Introductions 63

SunFounder raphael-kit

After the sensing module is wired, there is a one-minute initialization. During the initialization, module will output for
0~3 times at intervals. Then the module will be in the standby mode. Please keep the interference of light source and
other sources away from the surface of the module so as to avoid the misoperation caused by the interfering signal.
Even you’d better use the module without too much wind, because the wind can also interfere with the sensor.

64 Chapter 2. Components List and Introduction

SunFounder raphael-kit

Distance Adjustment

Turning the knob of the distance adjustment potentiometer clockwise, the range of sensing distance increases, and the
maximum sensing distance range is about 0-7 meters. If turn it anticlockwise, the range of sensing distance is reduced,
and the minimum sensing distance range is about 0-3 meters.

Delay adjustment

Rotate the knob of the delay adjustment potentiometer clockwise, you can also see the sensing delay increasing. The
maximum of the sensing delay can reach up to 300s. On the contrary, if rotate it anticlockwise, you can shorten the
delay with a minimum of 5s.

Two Trigger Modes

Choosing different modes by using the jumper cap.

• H: Repeatable trigger mode, after sensing the human body, the module outputs high level. During the subsequent
delay period, if somebody enters the sensing range, the output will keep being the high level.

• L: Non-repeatable trigger mode, outputs high level when it senses the human body. After the delay, the output
will change from high level into low level automatically.

Example

• 2.2.7 PIR (C Project)

• 2.2.7 PIR (Python Project)

• 4.1.4 Automatic Capture Camera (Python Project)

• 1.5 Wake up the Owl (Scratch Project)

2.2.37 Ultrasonic Module

Ultrasonic ranging module provides 2cm - 400cm non-contact measurement function, and the ranging accuracy can
reach to 3mm. It can ensure that the signal is stable within 5m, and the signal is gradually weakened after 5m, till the
7m position disappears.

The module includes ultrasonic transmitters, receiver and control circuit. The basic principles are as follows:

1. Use an IO flip-flop to process a high level signal of at least 10us.

2. The module automatically sends eight 40khz and detects if there is a pulse signal return.

2.2. Components Introductions 65

SunFounder raphael-kit

3. If the signal returns, passing the high level, the high output IO duration is the time from the transmission of the
ultrasonic wave to the return of it. Here, test distance = (high time x sound speed (340 m / s) / 2.

The timing diagram is shown below.

You only need to supply a short 10us pulse for the trigger input to start the ranging, and then the module will send
out an 8 cycle burst of ultrasound at 40 kHz and raise its echo. You can calculate the range through the time interval
between sending trigger signal and receiving echo signal.

Formula: us / 58 = centimeters or us / 148 =inch; or: the range = high level time * velocity (340M/S) / 2; you are
suggested to use measurement cycle over 60ms in order to prevent signal collisions of trigger signal and the echo
signal.

Example

• 2.2.8 Ultrasonic Sensor Module (C Project)

• 3.1.3 Reversing Alarm (C Project)

• 2.2.8 Ultrasonic Sensor Module (Python Project)

• 4.1.9 Reversing Alarm (Python Project)

2.2.38 Humiture Sensor Module

The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal
output of temperature and humidity. The technology of a dedicated digital modules collection and the temperature

66 Chapter 2. Components List and Introduction

SunFounder raphael-kit

and humidity sensing technology are applied to ensure that the product has high reliability and excellent long-term
stability.

Only three pins are available for use: VCC, GND, and DATA. The communication process begins with the DATA line
sending start signals to DHT11, and DHT11 receives the signals and returns an answer signal. Then the host receives
the answer signal and begins to receive 40-bit humiture data (8-bit humidity integer + 8-bit humidity decimal + 8-bit
temperature integer + 8-bit temperature decimal + 8-bit checksum).

• DHT11 Datasheet

Example

• 2.2.3 DHT-11 (C Project)

• 2.2.3 DHT-11 (Python Project)

2.2. Components Introductions 67

https://components101.com/sites/default/files/component_datasheet/DHT11-Temperature-Sensor.pdf

SunFounder raphael-kit

2.2.39 MPU6050 Module

The MPU-6050 is a 6-axis(combines 3-axis Gyroscope, 3-axis Accelerometer) motion tracking devices.

Its three coordinate systems are defined as follows:

Put MPU6050 flat on the table, assure that the face with label is upward and a dot on this surface is on the top left
corner. Then the upright direction upward is the z-axis of the chip. The direction from left to right is regarded as the
X-axis. Accordingly the direction from back to front is defined as the Y-axis.

3-axis Accelerometer

The accelerometer works on the principle of piezo electric effect, the ability of certain materials to generate an electric
charge in response to applied mechanical stress.

Here, imagine a cuboidal box, having a small ball inside it, like in the picture above. The walls of this box are made
with piezo electric crystals. Whenever you tilt the box, the ball is forced to move in the direction of the inclination,
due to gravity. The wall with which the ball collides, creates tiny piezo electric currents. There are totally, three pairs
of opposite walls in a cuboid. Each pair corresponds to an axis in 3D space: X, Y and Z axes. Depending on the
current produced from the piezo electric walls, we can determine the direction of inclination and its magnitude.

68 Chapter 2. Components List and Introduction

SunFounder raphael-kit

We can use the MPU6050 to detect its acceleration on each coordinate axis (in the stationary desktop state, the Z-axis
acceleration is 1 gravity unit, and the X and Y axes are 0). If it is tilted or in a weightless/overweight condition, the
corresponding reading will change.

There are four kinds of measuring ranges that can be selected programmatically: +/-2g, +/-4g, +/-8g, and +/-16g (2g
by default) corresponding to each precision. Values range from -32768 to 32767.

The reading of accelerometer is converted to an acceleration value by mapping the reading from the reading range to
the measuring range.

Acceleration = (Accelerometer axis raw data / 65536 * full scale Acceleration range) g

Take the X-axis as an example, when Accelerometer X axis raw data is 16384 and the range is selected as +/-2g:

Acceleration along the X axis = (16384 / 65536 * 4) g =1g

3-axis Gyroscope

Gyroscopes work on the principle of Coriolis acceleration. Imagine that there is a fork like structure, that is in constant
back and forth motion. It is held in place using piezo electric crystals. Whenever, you try to tilt this arrangement, the
crystals experience a force in the direction of inclination. This is caused as a result of the inertia of the moving fork.
The crystals thus produce a current in consensus with the piezo electric effect, and this current is amplified.

The Gyroscope also has four kinds of measuring ranges: +/- 250, +/- 500, +/- 1000, +/- 2000. The calculation method
and Acceleration are basically consistent.

The formula for converting the reading into angular velocity is as follows:

Angular velocity = (Gyroscope axis raw data / 65536 * full scale Gyroscope range) °/s

The X axis, for example, the Accelerometer X axis raw data is 16384 and ranges + / - 250°/ s:

Angular velocity along the X axis = (16384 / 65536 * 500)°/s =125°/s

Example

2.2. Components Introductions 69

SunFounder raphael-kit

• 2.2.9 MPU6050 Module (C Project)

• 2.2.9 MPU6050 Module (Python Project)

2.2.40 MFRC522 Module

RFID

Radio Frequency Identification (RFID) refers to technologies that involve using wireless communication between
an object (or tag) and an interrogating device (or reader) to automatically track and identify such objects. The tag
transmission range is limited to several meters from the reader. A clear line of sight between the reader and tag is not
necessarily required.

Most tags contain at least one integrated circuit (IC) and an antenna. The microchip stores information and is respon-
sible for managing the radio frequency (RF) communication with the reader. Passive tags do not have an independent
energy source and depend on an external electromagnetic signal, provided by the reader, to power their operations.
Active tags contain an independent energy source, such as a battery. Thus, they may have increased processing,
transmission capabilities and range.

MFRC522

MFRC522 is a kind of integrated read and write card chip. It is commonly used in the radio at 13.56MHz. Launched
by the NXP Company, it is a low-voltage, low-cost, and small-sized non-contact card chip, a best choice of intelligent
instrument and portable handheld device.

The MF RC522 uses advanced modulation and demodulation concept which fully presented in all types of 13.56MHz
passive contactless communication methods and protocols. In addition, it supports rapid CRYPTO1 encryption algo-
rithm to verify MIFARE products. MFRC522 also supports MIFARE series of high-speed non-contact communica-
tion, with a two-way data transmission rate up to 424kbit/s. As a new member of the 13.56MHz highly integrated
reader card series, MF RC522 is much similar to the existing MF RC500 and MF RC530 but there also exists great
differences. It communicates with the host machine via the serial manner which needs less wiring. You can choose
between SPI, I2C and serial UART mode (similar to RS232), which helps reduce the connection, save PCB board
space (smaller size), and reduce cost.

Example

• 2.2.10 MFRC522 RFID Module (C Project)

• 2.2.10 MFRC522 RFID Module (Python Project)

• 4.1.19 AttendanceSystem (Python Project)

70 Chapter 2. Components List and Introduction

SunFounder raphael-kit

2.2.41 Camera Module

Description

This is a 5MP Raspberry Pi camera module with OV5647 sensor. It’s plug and play, connect the included ribbon cable
to the CSI (Camera Serial Interface) port on your Raspberry Pi and you’re ready to go.

The board is small, about 25mm x 23mm x 9mm, and weighs 3g, making it ideal for mobile or other size and weight-
critical applications. The camera module has a native resolution of 5 megapixels and has an on-board fixed focus lens
that captures still images at 2592 x 1944 pixels, and also supports 1080p30, 720p60 and 640x480p90 video.

Note: The module is only capable of capturing pictures and videos, not sound.

Specification

• Static Images Resolution: 2592×1944

• Supported Video Resolution: 1080p/30 fps, 720p/ 60fps and 640 x480p 60/90 video recording

• Aperture (F): 1.8

• Visual Angle: 65 degree

• Dimension: 24mmx23.5mmx8mm

• Weight: 3g

• Interface: CSI connector

• Supported OS: Raspberry Pi OS(latest version recommended)

Assemble the Camera Module

On the camera module or Raspberry Pi, you will find a flat plastic connector. Carefully pull out the black fixing switch
until the fixing switch is partially pulled out. Insert the FFC cable into the plastic connector in the direction shown and
push the fixing switch back into place.

If the FFC wire is installed correctly, it will be straight and will not pull out when you gently pull on it. If not, reinstall
it again.

2.2. Components Introductions 71

SunFounder raphael-kit

Warning: Do not install the camera with the power on, it may damage your camera.

Enable the Camera Interface

Run the following command to enable the camera interface of your Raspberry Pi. If you have enabled it, skip this; if
you do not know whether you have done that or not, please continue.

sudo raspi-config

3 Interfacing options

72 Chapter 2. Components List and Introduction

SunFounder raphael-kit

P1 Camera

<Yes>, then <Ok> -> <Finish>

2.2. Components Introductions 73

SunFounder raphael-kit

After the configuration is complete, it is recommended to reboot the Raspberry Pi.

sudo reboot

Example

• 3.1.1 Photograph Module (Python Project)

• 3.1.2 Video Module (Python Project)

• 4.1.1 Camera (Python Project)

• 4.1.4 Automatic Capture Camera (Python Project)

• 4.1.5 Intelligent Visual Doorbell (Python Project)

• 1.10 Drumming in the Air (Scratch Project)

• 1.18 Eating Banana Game (Scratch Project)

74 Chapter 2. Components List and Introduction

CHAPTER

THREE

INSTALL AND SETUP RASPBERRY PI OS

In this chapter, we firstly learn to start up Raspberry Pi. The content includes installing the OS, Raspberry Pi network
and how to open terminal.

Note: You can check the complete tutorial on the official website of the Raspberry Pi: raspberry-pi-setting-up.

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

3.1 What Do We Need?

3.1.1 Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to
learn how to program in languages like Scratch and Python.

75

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up

SunFounder raphael-kit

Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the same found on many mobile phones). You
will need a power supply which provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the Raspberry Pi OS. You will need a micro SD
card with a capacity of at least 8 GB

3.1.2 Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the screen that can be a TV screen or a computer
monitor. If the screen has built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI ports of most modern TV and computer
monitors. If your screen has only DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be used when your screen has no built-in
speakers or when there is no screen operation.

3.2 Installing the OS

Required Components

Any Raspberry Pi 1 * Personal Computer
1 * Micro SD card

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works on Mac OS, Ubuntu 18.04 and Windows,
and is the easiest option for most users as it will download the image and install it automatically to the SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on the link for the Raspberry Pi Imager that
matches your operating system, when the download finishes, click it to launch the installer.

76 Chapter 3. Install and Setup Raspberry Pi OS

https://www.raspberrypi.org/software/

SunFounder raphael-kit

Step 2

When you launch the installer, your operating system may try to block you from running it. For example, on Windows
I receive the following message:

If this pops up, click on More info and then Run anyway, then follow the instructions to install the Raspberry Pi
Imager.

Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

Download the raspios_armhf-2020-05-28 image and select it in Raspberry Pi Imager.

3.2. Installing the OS 77

https://downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-2021-05-28/2021-05-07-raspios-buster-armhf.zip

SunFounder raphael-kit

Warning: Raspberry Pi OS has major changes after the 2021-05-28 version, which may cause some functions to
be unavailable. Please do not use the latest version for now.

Step 5

Select the SD card you are using.

78 Chapter 3. Install and Setup Raspberry Pi OS

SunFounder raphael-kit

Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable SSH and configure wifi, these 2 items must be set,
the others depend on your choice . You can choose to always use this image customization options.

3.2. Installing the OS 79

SunFounder raphael-kit

Then scroll down to complete the wifi configuration and click SAVE.

Note: wifi country should be set the two-letter ISO/IEC alpha2 code for the country in which you are using
your Raspberry Pi, please refer to the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_
assigned_code_elements

80 Chapter 3. Install and Setup Raspberry Pi OS

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

SunFounder raphael-kit

Step 7

Click the WRITE button.

3.2. Installing the OS 81

SunFounder raphael-kit

Step 8

If your SD card currently has any files on it, you may wish to back up these files first to prevent you from permanently
losing them. If there is no file to be backed up, click Yes.

82 Chapter 3. Install and Setup Raspberry Pi OS

SunFounder raphael-kit

Step 9

After waiting for a period of time, the following window will appear to represent the completion of writing.

3.2. Installing the OS 83

SunFounder raphael-kit

3.3 Set up Your Raspberry Pi

3.3.1 If You Have a Screen

If you have a screen, it will be easy for you to operate on the Raspberry Pi.

Required Components

Any Raspberry Pi 1 * Power Adapter
1 * Micro SD card 1 * Screen Power Adapter
1 * HDMI cable 1 * Screen
1 * Mouse 1 * Keyboard

1. Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your
Raspberry Pi.

2. Plug in the Mouse and Keyboard.

3. Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and
switched on.

Note: If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power
in port).

84 Chapter 3. Install and Setup Raspberry Pi OS

SunFounder raphael-kit

4. Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be
displayed.

3.3.2 If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi remotely, but before that, you need to get the IP of the
Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP address of it. There are many ways to know the IP
address, and two of them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you can check the addresses assigned to Raspberry
Pi on the admin interface of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you need to find it. (If you are using ArchLinuxARM
system, please find alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry Pi. You can apply the software, Advanced
IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be displayed. Similarly, the default hostname of the
Raspberry Pi OS is raspberrypi, if you haven’t modified it.

3.3. Set up Your Raspberry Pi 85

SunFounder raphael-kit

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the standard default shell of Linux. The Shell
itself is a program written in C that is the bridge linking the customers and Unix/Linux. Moreover, it can help to
complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open it.

Step 2

Type in ssh pi@ip_address . “pi”is your username and “ip_address” is your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input”yes”.

86 Chapter 3. Install and Setup Raspberry Pi OS

SunFounder raphael-kit

Step 4

Input the passcode and the default password is raspberry.

Step 5

We now get the Raspberry Pi connected and are ready to go to the next step.

3.3. Set up Your Raspberry Pi 87

SunFounder raphael-kit

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter the IP address of the RPi in the text box under
Host Name (or IP address) and 22 under Port (by default it is 22).

88 Chapter 3. Install and Setup Raspberry Pi OS

SunFounder raphael-kit

Step 3

Click Open. Note that when you first log in to the Raspberry Pi with the IP address, there prompts a security reminder.
Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in “pi”(the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

3.3. Set up Your Raspberry Pi 89

SunFounder raphael-kit

Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note: If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the
remote desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

90 Chapter 3. Install and Setup Raspberry Pi OS

CHAPTER

FOUR

GPIO EXTENSION BOARD

Before starting to learn the commands, you first need to know more about the pins of the Raspberry Pi, which is key
to the subsequent study.

We can easily lead out pins of the Raspberry Pi to breadboard by GPIO Extension Board to avoid GPIO damage caused
by frequent plugging in or out. This is our 40-pin GPIO Extension Board and GPIO cable for Raspberry Pi model B+,
2 model B and 3, 4 model B.

Pin Number

The pins of Raspberry Pi have three kinds of ways to name and they are wiringPi, BCM and Board.

Among these naming methods, 40-pin GPIO Extension board uses the naming method, BCM. But for some special
pins, such as I2C port and SPI port, they use the Name that comes with themselves.

The following table shows us the naming methods of WiringPi, Board and the intrinsic Name of each pin on GPIO
Extension board. For example, for the GPIO17, the Board naming method of it is 11, the wiringPi naming method is
0, and the intrinsic naming method of it is GPIO0.

Note: 1In C Language, what is used is the naming method WiringPi.

2In Python Language, the applied naming methods are Board and BCM, and the function GPIO.setmode() is
used to set them.

3In Scratch 3 and Processing, the applied naming method is BCM.

91

SunFounder raphael-kit

92 Chapter 4. GPIO Extension Board

CHAPTER

FIVE

DOWNLOAD THE CODE

Before you download the code, please note that the example code is ONLY test on Raspberry Pi OS. We provide two
methods for download:

Method 1: Use git clone (Recommended)

Log into Raspberry Pi and then change directory to /home/pi.

cd /home/pi/

Note: cd to change to the intended directory from the current path. Informally, here is to go to the path /home/pi/.

Clone the repository from GitHub.

git clone https://github.com/sunfounder/raphael-kit.git

Method 2: Download the code

Download the source code from github: https://github.com/sunfounder/raphael-kit

93

https://github.com/sunfounder/raphael-kit

SunFounder raphael-kit

94 Chapter 5. Download the Code

CHAPTER

SIX

PLAY WITH PYTHON

6.1 Check the RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by RPi.GPIO.

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package provides a class to control the GPIO
on a Raspberry Pi. For examples and documents, visit: http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/.

Test whether RPi.GPIO is installed or not, type in python:

python

In Python CLI, input import RPi.GPIO, If no error prompts, it means RPi.GPIO is installed.

import RPi.GPIO

If you want to quit python CLI, type in:

exit()

95

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

SunFounder raphael-kit

6.2 Output

6.2.1 1.1 Displays

1.1.1 Blinking LED

Introduction

In this project, we will learn how to make a blinking LED by programming. Through your settings, your LED can
produce a series of interesting phenomena. Now, go for it.

Components

• GPIO Extension Board

• Breadboard

• Resistor

96 Chapter 6. Play with Python

SunFounder raphael-kit

• LED

Schematic Diagram

In this experiment, connect a 220 resistor to the anode (the long pin of the LED), then the resistor to 3.3 V, and connect
the cathode (the short pin) of the LED to GPIO17 of Raspberry Pi. Therefore, to turn on an LED, we need to make
GPIO17 low (0V) level. We can get this phenomenon by programming.

Note: Pin11 refers to the 11th pin of the Raspberry Pi from left to right, and its corresponding wiringPi and BCM
pin numbers are shown in the following table.

In the C language related content, we make GPIO0 equivalent to 0 in the wiringPi. Among the Python language related
content, BCM 17 is 17 in the BCM column of the following table. At the same time, they are the same as the 11th pin
on the Raspberry Pi, Pin 11.

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17

Experimental Procedures

Step 1: Build the circuit.

6.2. Output 97

SunFounder raphael-kit

Step 2: Go to the folder of the code and run it.

1. If you use a screen, you’re recommended to take the following steps.

Find 1.1.1_BlinkingLed.py and double click it to open. Now you’re in the file.

Click Run ->Run Module in the window and the following contents will appear.

To stop it from running, just click the X button on the top right to close it and then you’ll back to the code. If you
modify the code, before clicking Run Module (F5) you need to save it first. Then you can see the results.

2. If you log into the Raspberry Pi remotely, type in the command:

cd /home/pi/raphael-kit/python

Note: Change directory to the path of the code in this experiment via cd.

Step 3: Run the code

sudo python3 1.1.1_BlinkingLed.py

Note: Here sudo - superuser do, and python means to run the file by Python.

After the code runs, you will see the LED flashing.

Step 4: If you want to edit the code file 1.1.1_BlinkingLed.py, press Ctrl + C to stop running the code. Then type
the following command to open 1.1.1_BlinkingLed.py:

98 Chapter 6. Play with Python

SunFounder raphael-kit

nano 1.1.1_BlinkingLed.py

Note: nano is a text editor tool. The command is used to open the code file 1.1.1_BlinkingLed.py by this tool.

Press Ctrl+X to exit. If you have modified the code, there will be a prompt asking whether to save the changes or
not. Type in Y (save) or N (don’t save).

Then press Enter to exit. Type in nano 1.1.1_BlinkingLed.py again to see the effect after the change.

Code

The following is the program code:

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time
LedPin = 17
def setup():

Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set LedPin's mode to output,and initial level to High(3.3v)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():

while True:
print ('...LED ON')
Turn on LED
GPIO.output(LedPin, GPIO.LOW)
time.sleep(0.5)
print ('LED OFF...')
Turn off LED
GPIO.output(LedPin, GPIO.HIGH)
time.sleep(0.5)

Define a destroy function for clean up everything after the script finished
def destroy():

Turn off LED
GPIO.output(LedPin, GPIO.HIGH)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

#!/usr/bin/env python3

6.2. Output 99

SunFounder raphael-kit

When the system detects this, it will search the installation path of python in the env setting, then call the corresponding
interpreter to complete the operation. It’s to prevent the user not installing the python onto the /usr/bin default
path.

import RPi.GPIO as GPIO

In this way, import the RPi.GPIO library, then define a variable, GPIO to replace RPI.GPIO in the following code.

import time

Import time package, for time delay function in the following program.

LedPin = 17

LED connects to the GPIO17 of the T-shape extension board, namely, BCM 17.

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)

Set LedPin’s mode to output, and initial level to High (3.3v).

There are two ways of numbering the IO pins on a Raspberry Pi within RPi.GPIO: BOARD numbers and BCM
numbers. In our projects, what we use is BCM numbers. You need to set up every channel you are using as an input
or an output.

GPIO.output(LedPin, GPIO.LOW)

Set GPIO17(BCM17) as 0V (low level). Since the cathode of LED is connected to GPIO17, thus the LED will light
up.

time.sleep(0.5)

Delay for 0.5 second. Here, the statement is delay function in C language, the unit is second.

def destroy():
GPIO.cleanup()

Define a destroy function for clean up everything after the script finished.

if __name__ == '__main__':
setup()
try:

main()
When 'Ctrl+C' is pressed, the program destroy() will be executed.
except KeyboardInterrupt:

destroy()

This is the general running structure of the code. When the program starts to run, it initializes the pin by
running the setup(), and then runs the code in the main() function to set the pin to high and low levels.
When Ctrl+C is pressed, the program, destroy() will be executed.

100 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

1.1.2 RGB LED

Introduction

In this project, we will control an RGB LED to flash various colors.

6.2. Output 101

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

102 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

After connecting the pins of R, G, and B to a current limiting resistor, connect them to the GPIO17, GPIO18, and
GPIO27 respectively. The longest pin (GND) of the LED connects to the GND of the Raspberry Pi. When the three
pins are given different PWM values, the RGB LED will display different colors.

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

Step 2: Open the code file.

cd /home/pi/raphael-kit/python

6.2. Output 103

SunFounder raphael-kit

Step 3: Run.

sudo python3 1.1.2_rgbLed.py

After the code runs, you will see that RGB displays red, green, blue, yellow, pink, and cyan.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
Set up a color table in Hexadecimal
COLOR = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF]
Set pins' channels with dictionary
pins = {'Red':17, 'Green':18, 'Blue':27}

def setup():
global p_R, p_G, p_B
GPIO.setmode(GPIO.BCM)
Set all LedPin's mode to output and initial level to High(3.3v)
for i in pins:

GPIO.setup(pins[i], GPIO.OUT, initial=GPIO.HIGH)

p_R = GPIO.PWM(pins['Red'], 2000)
p_G = GPIO.PWM(pins['Green'], 2000)
p_B = GPIO.PWM(pins['Blue'], 2000)
p_R.start(0)
p_G.start(0)
p_B.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a function to set up colors
def setColor(color):
configures the three LEDs' luminance with the inputted color value.

R_val = (color & 0xFF0000) >> 16
G_val = (color & 0x00FF00) >> 8
B_val = (color & 0x0000FF) >> 0

Map color value from 0~255 to 0~100
R_val = MAP(R_val, 0, 255, 0, 100)
G_val = MAP(G_val, 0, 255, 0, 100)
B_val = MAP(B_val, 0, 255, 0, 100)

Change the colors
p_R.ChangeDutyCycle(R_val)
p_G.ChangeDutyCycle(G_val)
p_B.ChangeDutyCycle(B_val)

print ("color_msg: R_val = %s, G_val = %s, B_val = %s"%(R_val, G_val, B_val))

def main():

(continues on next page)

104 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

while True:
for color in COLOR:

setColor(color)# change the color of the RGB LED
time.sleep(0.5)

def destroy():
Stop all pwm channel
p_R.stop()
p_G.stop()
p_B.stop()
Release resource
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

p_R = GPIO.PWM(pins['Red'], 2000)
p_G = GPIO.PWM(pins['Green'], 2000)
p_B = GPIO.PWM(pins['Blue'], 2000)

p_R.start(0)
p_G.start(0)
p_B.start(0)

Call the GPIO.PWM() function to define Red, Green and Blue as PWM pins and set the frequency of PWM pins to
2000Hz, then Use the Start() function to set the initial duty cycle to zero.

def MAP(x, in_min, in_max, out_min, out_max):
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a MAP function for mapping values. For instance, x=50, in_min=0, in_max=255, out_min=0, out_max=100.
After the map function mapping, it returns (50-0) * (100-0)/(255-0) +0=19.6, meaning that 50 in 0-255
equals 19.6 in 0-100.

def setColor(color):
R_val = (color & 0xFF0000) >> 16
G_val = (color & 0x00FF00) >> 8
B_val = (color & 0x0000FF) >> 0

Configures the three LEDs’ luminance with the inputted color value, assign the first two values of the hexadeci-
mal to R_val, the middle two assigned to G_val, the last two values to B_val. For instance, if color=0xFF00FF,
R_val=0xFF00FF & 0xFF0000>> 16 = 0xFF, G_val = 0x00, B_val=0xFF.

R_val = MAP(R_val, 0, 255, 0, 100)
G_val = MAP(G_val, 0, 255, 0, 100)
B_val = MAP(B_val, 0, 255, 0, 100)

Use map function to map the R,G,B value among 0~255 into PWM duty cycle range 0-100.

6.2. Output 105

SunFounder raphael-kit

p_R.ChangeDutyCycle(R_val)
p_G.ChangeDutyCycle(G_val)
p_B.ChangeDutyCycle(B_val)

Assign the mapped duty cycle value to the corresponding PWM channel to change the luminance.

for color in COLOR:
setColor(color)
time.sleep(0.5)

Assign every item in the COLOR list to the color respectively and change the color of the RGB LED via the
setColor() function.

Phenomenon Picture

1.1.3 LED Bar Graph

Introduction

In this project, we sequentially illuminate the lights on the LED Bar Graph.

106 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Bar Graph

6.2. Output 107

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
SDA1 Pin 3 8 2
SCL1 Pin 5 9 3
SPICE0 Pin 24 10 8

Experimental Procedures

Step 1: Build the circuit.

Note: Pay attention to the direction when connecting. If you connect it backwards, it will not light up.

108 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 1.1.3_LedBarGraph.py

After the code runs, you will see the LEDs on the LED bar turn on and off regularly.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def oddLedBarGraph():
for i in range(5):

j = i*2
GPIO.output(ledPins[j],GPIO.HIGH)
time.sleep(0.3)
GPIO.output(ledPins[j],GPIO.LOW)

def evenLedBarGraph():
for i in range(5):

j = i*2+1
GPIO.output(ledPins[j],GPIO.HIGH)
time.sleep(0.3)
GPIO.output(ledPins[j],GPIO.LOW)

(continues on next page)

6.2. Output 109

SunFounder raphael-kit

(continued from previous page)

def allLedBarGraph():
for i in ledPins:

GPIO.output(i,GPIO.HIGH)
time.sleep(0.3)
GPIO.output(i,GPIO.LOW)

def setup():
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
for i in ledPins:

GPIO.setup(i, GPIO.OUT) # Set all ledPins' mode is output
GPIO.output(i, GPIO.LOW) # Set all ledPins to high(+3.3V) to off led

def loop():
while True:

oddLedBarGraph()
time.sleep(0.3)
evenLedBarGraph()
time.sleep(0.3)
allLedBarGraph()
time.sleep(0.3)

def destroy():
for pin in ledPins:

GPIO.output(pin, GPIO.LOW) # turn off all leds
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24] Create an array and assign it to the pin number corresponding to the
LED Bar Graph (11, 12, 13, 15, 16, 18, 22, 3, 5, 24) and the array will be used to control the LED.

def oddLedBarGraph():
for i in range(5):

j = i*2
GPIO.output(ledPins[j],GPIO.HIGH)
time.sleep(0.3)
GPIO.output(ledPins[j],GPIO.LOW)

Let the LED on the odd digit of the LED Bar Graph light on in turn.

def evenLedBarGraph():
for i in range(5):

j = i*2+1
GPIO.output(ledPins[j],GPIO.HIGH)
time.sleep(0.3)
GPIO.output(ledPins[j],GPIO.LOW)

Make the LED on the even digit of the LED Bar Graph light on in turn.

110 Chapter 6. Play with Python

SunFounder raphael-kit

def allLedBarGraph():
for i in ledPins:

GPIO.output(i,GPIO.HIGH)
time.sleep(0.3)
GPIO.output(i,GPIO.LOW)

Let the LED on the LED Bar Graph light on one by one.

Phenomenon Picture

1.1.4 7-segment Display

Introduction

Let’s try to drive a 7-segment display to show a figure from 0 to 9 and A to F.

6.2. Output 111

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 7-segment Display

• 74HC595

112 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS to GPIO17, parallel output ports
to 8 segments of the LED segment display. Input data in DS pin to shift register when SH_CP (the clock input of the
shift register) is at the rising edge, and to the memory register when ST_CP (the clock input of the memory) is at the
rising edge. Then you can control the states of SH_CP and ST_CP via the Raspberry Pi GPIOs to transform serial data
input into parallel data output so as to save Raspberry Pi GPIOs and drive the display.

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

6.2. Output 113

SunFounder raphael-kit

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 1.1.4_7-Segment.py

After the code runs, you’ll see the 7-segment display display 0-9, A-F.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect. After confirming
that there are no problems, you can use the Copy button to copy the modified code, then open the source code in
Terminal via nano cammand and paste it.

import RPi.GPIO as GPIO
import time

Set up pins
SDI = 17
RCLK = 18
SRCLK = 27

Define a segment code from 0 to F in Hexadecimal
segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,
→˓0x71]

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

(continues on next page)

114 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

Shift the data to 74HC595
def hc595_shift(dat):

for bit in range(0, 8):
GPIO.output(SDI, 0x80 & (dat << bit))
GPIO.output(SRCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)

def main():
while True:

Shift the code one by one from segCode list
for code in segCode:

hc595_shift(code)
print ("segCode[%s]: 0x%02X"%(segCode.index(code), code)) # %02X means

→˓double digit HEX to print
time.sleep(0.5)

def destroy():
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,
→˓0x71]

A segment code array from 0 to F in Hexadecimal (Common cathode).

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Set ds, st_cp, sh_cp three pins to output and the initial state as low level.

GPIO.output(SDI, 0x80 & (dat << bit))

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111, when bit=2, 0x3f will shift right(<<) 2
bits. 1111 1100 (0x3f << 2) & 1000 0000 (0x80) = 1000 0000, is true.

GPIO.output(SRCLK, GPIO.HIGH)

SRCLK’s initial value was set to LOW, and here it’s set to HIGH, which is to generate a rising edge pulse, then shift
the DS date to shift register.

6.2. Output 115

SunFounder raphael-kit

GPIO.output(RCLK, GPIO.HIGH)

RCLK’s initial value was set to LOW, and here it’s set to HIGH, which is to generate a rising edge, then shift data
from shift register to storage register.

Note: The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Phenomenon Picture

1.1.5 4-Digit 7-Segment Display

Introduction

Next, follow me to try to control the 4-digit 7-segment display.

116 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 4-Digit 7-Segment Display

• 74HC595

6.2. Output 117

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24

118 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 1.1.5_4-Digit.py

After the code runs, the program takes a count, increasing by 1 per second, and the 4 digit display displays the count.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
import threading

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

counter = 0
timer1 = 0

(continues on next page)

6.2. Output 119

SunFounder raphael-kit

(continued from previous page)

def clearDisplay():
for i in range(8):

GPIO.output(SDI, 1)
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
for i in range(8):

GPIO.output(SDI, 0x80 & (data << i))
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
for i in placePin:

GPIO.output(i,GPIO.LOW)
GPIO.output(placePin[digit], GPIO.HIGH)

def timer():
global counter
global timer1
timer1 = threading.Timer(1.0, timer)
timer1.start()
counter += 1
print("%d" % counter)

def loop():
global counter
while True:

clearDisplay()
pickDigit(0)
hc595_shift(number[counter % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[counter % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[counter % 1000//100])

clearDisplay()
pickDigit(3)
hc595_shift(number[counter % 10000//1000])

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
for i in placePin:

GPIO.setup(i, GPIO.OUT)
global timer1
timer1 = threading.Timer(1.0, timer)

(continues on next page)

120 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

timer1.start()

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
global timer1
GPIO.cleanup()
timer1.cancel() # cancel the timer

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

placePin = (10, 22, 27, 17)

These four pins control the common anode pins of the four-digit 7-segment displays.

number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

A segment code array from 0 to 9 in hexadecimal (common anode).

def clearDisplay():
for i in range(8):

GPIO.output(SDI, 1)
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

Write “1” for eight times in SDI., so that the eight LEDs on the 7-segment Dispaly will turn off so as to clear the
displayed content.

def pickDigit(digit):
for i in placePin:

GPIO.output(i,GPIO.LOW)
GPIO.output(placePin[digit], GPIO.HIGH)

Select the place of the value. there is only one place that should be enable each time. The enabled place will be written
high.

def loop():
global counter
while True:

clearDisplay()
pickDigit(0)
hc595_shift(number[counter % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[counter % 100//10])

clearDisplay()
pickDigit(2)

(continues on next page)

6.2. Output 121

SunFounder raphael-kit

(continued from previous page)

hc595_shift(number[counter % 1000//100])

clearDisplay()
pickDigit(3)
hc595_shift(number[counter % 10000//1000])

The function is used to set the number displayed on the 4-digit 7-segment Dispaly.

First, start the fourth segment display, write the single-digit number. Then start the third segment display, and type
in the tens digit; after that, start the second and the first segment display respectively, and write the hundreds and
thousands digits respectively. Because the refreshing speed is very fast, we see a complete four-digit display.

timer1 = threading.Timer(1.0, timer)
timer1.start()

The module, threading is the common threading module in Pythonand Timer is the subclass of it. The prototype of
code is:

class threading.Timer(interval, function, args=[], kwargs={})

After the interval, the function will be run. Here, the interval is 1.0and the function is timer(). start () means the Timer
will start at this point.

def timer():
global counter
global timer1
timer1 = threading.Timer(1.0, timer)
timer1.start()
counter += 1
print("%d" % counter)

After Timer reaches 1.0s, the Timer function is called; add 1 to counter, and the Timer is used again to execute itself
repeatedly every second.

122 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

1.1.6 LED Dot Matrix

Introduction

As the name suggests, an LED dot matrix is a matrix composed of LEDs. The lighting up and dimming of the LEDs
formulate different characters and patterns.

6.2. Output 123

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• LED Matrix Module

Schematic Diagram

T-Board Name physical wiringPi BCM
SPIMOSI Pin 19 12 MOSI
SPICE0 pin 24 10 CE0
SPISCLK Pin 23 14 SCLK

124 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Note: Turn on the SPI before starting the experiment, refer to SPI Configuration for details. And the
Luma.LED_Matrix module is also needed.

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

6.2. Output 125

SunFounder raphael-kit

Step 3: Run.

sudo python3 1.1.6_LedMatrix.py

After running the code, the LED Matrix will display a rectangle for two seconds, then the text ‘A’ for two seconds,
and finally scroll to display the text “Hello, Nice to meet you!

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219
from luma.core.legacy import text
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT
import time

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, rotate=1)
virtual = viewport(device, width=200, height=400)

def displayRectangle():
with canvas(device) as draw:

draw.rectangle(device.bounding_box, outline="white", fill="black")

def displayLetter():
with canvas(device) as draw:

text(draw, (0, 0), "A", fill="white", font=proportional(CP437_FONT))

def scrollToDisplayText():
with canvas(virtual) as draw:

text(draw, (0, 0), "Hello, Nice to meet you!", fill="white",
→˓font=proportional(CP437_FONT))

for offset in range(150):
virtual.set_position((offset,0))
time.sleep(0.1)

def main():
while True:

displayRectangle()
time.sleep(2)
displayLetter()
time.sleep(2)
scrollToDisplayText()

def destroy():
pass

if __name__ == '__main__':
try:

main()
except KeyboardInterrupt:

destroy()

126 Chapter 6. Play with Python

SunFounder raphael-kit

Code Explanation

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219
from luma.core.legacy import text
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT
import time

Import the relevant libraries, of which luma.core is a component library that provides a Pillow-compatible canvas
for Python 3, as well as other drawing primitives and text rendering features that support small displays on Raspberry
Pi and other single-board computers. You can visit https://luma-core.readthedocs.io/en/latest/intro.html to learn more.

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, rotate=1)

Initialize the luma.led_matrix.device.max7219 class.

Note: If you want to modify the display direction of the LED Matrix, you can do so by modifying the value of rotate,
where 0 means no rotation, 1 means 90° clockwise rotation, 2 means 180° rotation, and 3 means 270° clockwise
rotation.

def displayRectangle():
with canvas(device) as draw:

draw.rectangle(device.bounding_box, outline="white", fill="black")

Display a hollow rectangle in the edge area of the LED Matrix and modify the value of fill to white to display a
solid rectangle.

def displayLetter():
with canvas(device) as draw:

text(draw, (0, 0), "A", fill="white", font=proportional(CP437_FONT))

An “A” is displayed on the (0, 0) coordinate of the LED Matrix, where CP437_FONT is a font suitable for 8*8 dot
matrix screens.

virtual = viewport(device, width=200, height=400)

There is no way to display a line of text in a single 8x8 LED matrix. We need to use the luma.core.virtual.
viewport method so that the text can be scrolled through the virtual viewport.

def scrollToDisplayText():
with canvas(virtual) as draw:

text(draw, (0, 0), "Hello, Nice to meet you!", fill="white",
→˓font=proportional(CP437_FONT))

for offset in range(150):
virtual.set_position((offset,0))
time.sleep(0.1)

scrollToDisplayText() implements “Hello, Nice to meet you!” as a scrolling text on the LED Matrix.

First, we pass virtual as an argument to the canvas() function, so that we can use the virtual window as the current
display window. Then the text() function displays “Hello, Nice to meet you!” on the LED Matrix.

6.2. Output 127

https://luma-core.readthedocs.io/en/latest/intro.html

SunFounder raphael-kit

Using the for loop function, we move the virtual window in the X direction so that we can see the “Hello, Nice to meet
you!” text scrolling.

Phenomenon Picture

128 Chapter 6. Play with Python

SunFounder raphael-kit

1.1.7 I2C LCD1602

Introduction

LCD1602 is a character type liquid crystal display, which can display 32 (16*2) characters at the same time.

Components

• GPIO Extension Board

• Breadboard

• I2C LCD1602

6.2. Output 129

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical
SDA1 Pin 3
SCL1 Pin 5

Experimental Procedures

Step 1: Build the circuit.

Step 2: Setup I2C (see I2C Configuration. If you have set I2C, skip this step.)

Step 3: Change directory.

cd /home/pi/raphael-kit/python/

Step 4: Run.

130 Chapter 6. Play with Python

SunFounder raphael-kit

sudo python3 1.1.7_Lcd1602.py

After the code runs, you can see Greetings!, From SunFounder displaying on the LCD.

Note:

• If you get the error FileNotFoundError: [Errno 2] No such file or directory: '/
dev/i2c-1', you need to refer to I2C Configuration to enable the I2C.

• If you get ModuleNotFoundError: No module named 'smbus2' error, please run sudo pip3
install smbus2.

• If the error OSError: [Errno 121] Remote I/O error appears, it means the module is miswired
or the module is broken.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import LCD1602
import time

def setup():
LCD1602.init(0x27, 1) # init(slave address, background light)
LCD1602.write(0, 0, 'Greetings!')
LCD1602.write(1, 1, 'From SunFounder')
time.sleep(2)

def destroy():
LCD1602.clear()

if __name__ == "__main__":
try:

setup()
except KeyboardInterrupt:

destroy()

Code Explanation

import LCD1602

This file is an open source file for controlling I2C LCD1602. It allows us to easily use I2C LCD1602.

LCD1602.init(0x27, 1)

The function initializes the I2C system with the designated device symbol. The first parameter is the address of the
I2C device, which can be detected through the i2cdetect command (see Appendix for details). The address of I2C
LCD1602 is generally 0x27.

LCD1602.write(0, 0, 'Greetings!')

Within this function, ‘Greetings!! ‘ is the character to be printed on the Row 0+1, column 0+1 on LCD. Now you can
see “Greetings!! From SunFounder” displayed on the LCD.

6.2. Output 131

SunFounder raphael-kit

Phenomenon Picture

6.2.2 1.2 Sound

1.2.1 Active Buzzer

Introduction

In this project, we will learn how to drive an active buzzer to beep with a PNP transistor.

132 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

6.2. Output 133

SunFounder raphael-kit

Schematic Diagram

In this experiment, an active buzzer, a PNP transistor and a 1k resistor are used between the base of the transistor
and GPIO to protect the transistor. When the GPIO17 of Raspberry Pi output is supplied with low level (0V) by
programming, the transistor will conduct because of current saturation and the buzzer will make sounds. But when
high level is supplied to the IO of Raspberry Pi, the transistor will be cut off and the buzzer will not make sounds.

Experimental Procedures

Step 1: Build the circuit. (The active buzzer has a white table sticker on the surface and a black back.)

134 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.2.1_ActiveBuzzer.py

The code run, the buzzer beeps.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Set GPIO17 as buzzer pin
BeepPin = 17

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.HIGH)

def main():
while True:

Buzzer on (Beep)
print ('Buzzer On')
GPIO.output(BeepPin, GPIO.LOW)
time.sleep(0.1)
Buzzer off
print ('Buzzer Off')
GPIO.output(BeepPin, GPIO.HIGH)
time.sleep(0.1)

def destroy():
Turn off buzzer
GPIO.output(BeepPin, GPIO.HIGH)

(continues on next page)

6.2. Output 135

SunFounder raphael-kit

(continued from previous page)

Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

GPIO.output(BeepPin, GPIO.LOW)

Set the buzzer pin as low level to make the buzzer beep.

time.sleep(0.1)

Wait for 0.1 second. Change the switching frequency by changing this parameter.

Note: Not the sound frequency. Active Buzzer cannot change sound frequency.

GPIO.output(BeepPin, GPIO.HIGH)

Close the buzzer.

136 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

1.2.2 Passive Buzzer

Introduction

In this project, we will learn how to make a passive buzzer play music.

6.2. Output 137

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

138 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

In this experiment, a passive buzzer, a PNP transistor and a 1k resistor are used between the base of the transistor and
GPIO to protect the transistor.

When GPIO17 is given different frequencies, the passive buzzer will emit different sounds; in this way, the buzzer
plays music.

6.2. Output 139

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit. (The Passive buzzer with green circuit board on the back.)

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 1.2.2_PassiveBuzzer.py

The code run, the buzzer plays a piece of music.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Buzzer = 11

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Bass tone in C major
CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Midrange tone in C
→˓major
CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of Treble tone in C major

song_1 = [CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6], # Notes of song1
CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3],
CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],
CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5]]

beat_1 = [1, 1, 3, 1, 1, 3, 1, 1, # Beats of song 1, 1 means 1/8 beat
1, 1, 1, 1, 1, 1, 3, 1,
1, 3, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 3]

(continues on next page)

140 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

song_2 = [CM[1], CM[1], CM[1], CL[5], CM[3], CM[3], CM[3], CM[1], # Notes of song2
CM[1], CM[3], CM[5], CM[5], CM[4], CM[3], CM[2], CM[2],
CM[3], CM[4], CM[4], CM[3], CM[2], CM[3], CM[1], CM[1],
CM[3], CM[2], CL[5], CL[7], CM[2], CM[1]]

beat_2 = [1, 1, 2, 2, 1, 1, 2, 2, # Beats of song 2, 1 means 1/8 beat
1, 1, 2, 2, 1, 1, 3, 1,
1, 2, 2, 1, 1, 2, 2, 1,
1, 2, 2, 1, 1, 3]

def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(Buzzer, GPIO.OUT) # Set pins' mode is output
global Buzz # Assign a global variable to replace GPIO.PWM
Buzz = GPIO.PWM(Buzzer, 440) # 440 is initial frequency.
Buzz.start(50) # Start Buzzer pin with 50% duty cycle

def loop():
while True:

print ('\n Playing song 1...')
for i in range(1, len(song_1)): # Play song 1

Buzz.ChangeFrequency(song_1[i]) # Change the frequency along the song note
time.sleep(beat_1[i] * 0.5) # delay a note for beat * 0.5s

time.sleep(1) # Wait a second for next song.

print ('\n\n Playing song 2...')
for i in range(1, len(song_2)): # Play song 1

Buzz.ChangeFrequency(song_2[i]) # Change the frequency along the song note
time.sleep(beat_2[i] * 0.5) # delay a note for beat * 0.5s

def destory():
Buzz.stop() # Stop the buzzer
GPIO.output(Buzzer, 1) # Set Buzzer pin to High
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy()

→˓will be executed.
destory()

Code Explanation

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Bass tone in C major
CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Midrange tone in C
→˓major
CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of Treble tone in C major

These are the frequencies of each note. The first 0 is to skip CL[0] so that the number 1-7 corresponds to the CDEF-
GAB of the tone.

song_1 = [CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6],
CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3],

(continues on next page)

6.2. Output 141

SunFounder raphael-kit

(continued from previous page)

CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],
CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5]]

These arrays are the notes of a song.

beat_1 = [1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1,
1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 3]

Every sound beat (each number) represents the beat, or 0.5s

Buzz = GPIO.PWM(Buzzer, 440)
Buzz.start(50)

Define pin Buzzer as PWM pin, then set its frequency to 440 and Buzz.start(50) is used to run PWM. What’s more,
set the duty cycle to 50%.

for i in range(1, len(song_1)):
Buzz.ChangeFrequency(song_1[i])
time.sleep(beat_1[i] * 0.5)

Run a for loop, then the buzzer will play the notes in the array song_1[] with the beats in the beat_1[] array, .

Now you can hear the passive buzzer playing music.

Phenomenon Picture

142 Chapter 6. Play with Python

SunFounder raphael-kit

6.2.3 1.3 Drivers

1.3.1 Motor

Introduction

In this project, we will learn to how to use L293D to drive a DC motor and make it rotate clockwise and counterclock-
wise. Since the DC Motor needs a larger current, for safety purpose, here we use the Power Supply Module to supply
motors.

Components

• GPIO Extension Board

• Breadboard

• Power Supply Module

6.2. Output 143

SunFounder raphael-kit

• L293D

• DC Motor

Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to pin of 5V, then it will output voltage of 5V.
Connect pin 1 of L293D to GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to GPIO17, then set
one pin high, while the other low. Thus you can change the motor’s rotation direction.

Experimental Procedures

Step 1: Build the circuit.

144 Chapter 6. Play with Python

SunFounder raphael-kit

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit. Insert the jumper cap of the
power module into the 5V bus strips of the breadboard.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.3.1_Motor.py

As the code runs, the motor first rotates clockwise for 5s then stops for 5s, after that, it rotates anticlockwise for 5s;
subsequently, the motor stops for 5s. This series of actions will be executed repeatedly.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

6.2. Output 145

SunFounder raphael-kit

import RPi.GPIO as GPIO
import time

Set up pins
MotorPin1 = 17
MotorPin2 = 27
MotorEnable = 22

def setup():
Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set pins to output
GPIO.setup(MotorPin1, GPIO.OUT)
GPIO.setup(MotorPin2, GPIO.OUT)
GPIO.setup(MotorEnable, GPIO.OUT, initial=GPIO.LOW)

Define a motor function to spin the motor
direction should be
1(clockwise), 0(stop), -1(counterclockwise)
def motor(direction):

Clockwise
if direction == 1:

Set direction
GPIO.output(MotorPin1, GPIO.HIGH)
GPIO.output(MotorPin2, GPIO.LOW)
Enable the motor
GPIO.output(MotorEnable, GPIO.HIGH)
print ("Clockwise")

Counterclockwise
if direction == -1:

Set direction
GPIO.output(MotorPin1, GPIO.LOW)
GPIO.output(MotorPin2, GPIO.HIGH)
Enable the motor
GPIO.output(MotorEnable, GPIO.HIGH)
print ("Counterclockwise")

Stop
if direction == 0:

Disable the motor
GPIO.output(MotorEnable, GPIO.LOW)
print ("Stop")

def main():
Define a dictionary to make the script more readable
CW as clockwise, CCW as counterclockwise, STOP as stop
directions = {'CW': 1, 'CCW': -1, 'STOP': 0}
while True:

Clockwise
motor(directions['CW'])
time.sleep(5)
Stop
motor(directions['STOP'])
time.sleep(5)
Anticlockwise
motor(directions['CCW'])
time.sleep(5)
Stop

(continues on next page)

146 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

motor(directions['STOP'])
time.sleep(5)

def destroy():
Stop the motor
GPIO.output(MotorEnable, GPIO.LOW)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

def motor(direction):
Clockwise
if direction == 1:

Set direction
GPIO.output(MotorPin1, GPIO.HIGH)
GPIO.output(MotorPin2, GPIO.LOW)
Enable the motor
GPIO.output(MotorEnable, GPIO.HIGH)
print ("Clockwise")

...

Create a function, motor() whose variable is direction. As the condition that direction=1 is met, the motor rotates
clockwise; when direction=-1, the motor rotates anticlockwise; and under the condition that direction=0, it stops
rotating.

def main():
Define a dictionary to make the script more readable
CW as clockwise, CCW as counterclockwise, STOP as stop
directions = {'CW': 1, 'CCW': -1, 'STOP': 0}
while True:

Clockwise
motor(directions['CW'])
time.sleep(5)
Stop
motor(directions['STOP'])
time.sleep(5)
Anticlockwise
motor(directions['CCW'])
time.sleep(5)
Stop
motor(directions['STOP'])
time.sleep(5)

In the main() function, create an array, directions[], in which CW is equal to 1, the value of CCW is -1, and the number
0 refers to Stop.

6.2. Output 147

SunFounder raphael-kit

As the code runs, the motor first rotates clockwise for 5s then stop for 5s, after that, it rotates anticlockwise for 5s;
subsequently, the motor stops for 5s. This series of actions will be executed repeatedly.

Now, you should see the motor blade rotating.

Phenomenon Picture

1.3.2 Servo

Introduction

In this project, we will learn how to make the servo rotate.

148 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Servo

6.2. Output 149

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

150 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 1.3.2_Servo.py

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0
degrees, circularly.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500
ServoPin = 18

def map(value, inMin, inMax, outMin, outMax):
return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

def setup():
global p
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
GPIO.setup(ServoPin, GPIO.OUT) # Set ServoPin's mode is output
GPIO.output(ServoPin, GPIO.LOW) # Set ServoPin to low
p = GPIO.PWM(ServoPin, 50) # set Frequecy to 50Hz
p.start(0) # Duty Cycle = 0

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
angle = max(0, min(180, angle))
pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
pwm = map(pulse_width, 0, 20000, 0, 100)
p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

def loop():
while True:

for i in range(0, 181, 5): #make servo rotate from 0 to 180 deg
setAngle(i) # Write to servo
time.sleep(0.002)

time.sleep(1)
for i in range(180, -1, -5): #make servo rotate from 180 to 0 deg

setAngle(i)
time.sleep(0.001)

time.sleep(1)
def destroy():

p.stop()
GPIO.cleanup()

if __name__ == '__main__': #Program start from here
setup()
try:

(continues on next page)

6.2. Output 151

SunFounder raphael-kit

(continued from previous page)

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

p = GPIO.PWM(ServoPin, 50) # set Frequecy to 50Hz
p.start(0) # Duty Cycle = 0

Set the servoPin to PWM pin, then the frequency to 50hz, and the period to 20ms.

p.start(0): Run the PWM functionand set the initial value to 0.

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
angle = max(0, min(180, angle))
pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
pwm = map(pulse_width, 0, 20000, 0, 100)
p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

Create a function, setAngle() to write angle that ranges from 0 to 180 into the servo.

angle = max(0, min(180, angle))

This code is used to limit the angle within the range 0-180°.

The min() function returns the minimum of the input values. If 180<angle, then return 180,if not, return angle.

The max() method returns the maximum element in an iterable or largest of two or more parameters. If 0>angle, then
return 0, if not, return angle.

pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
pwm = map(pulse_width, 0, 20000, 0, 100)
p.ChangeDutyCycle(pwm)

To render a range 0 ~ 180 ° to the servo, the pulse width of the servo is set to 0.5ms(500us)-2.5ms(2500us).

The period of PWM is 20ms(20000us), thus the duty cycle of PWM is (500/20000)%-(2500/20000)%, and the range
0 ~ 180 is mapped to 2.5 ~ 12.5.

152 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

1.3.3 Relay

Introduction

In this project, we will learn to use a relay. It is one of the commonly used components in automatic control system.
When the voltage, current, temperature, pressure, etc., reaches, exceeds or is lower than the predetermined value, the
relay will connect or interrupt the circuit, to control and protect the equipment.

6.2. Output 153

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Transistor

• Relay

• Diode

154 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

6.2. Output 155

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.3.3_Relay.py

While the code is running, the LED lights up. In addition, you can hear a ticktock caused by breaking normally close
contact and closing normally open contact.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

Set GPIO17 as control pin
relayPin = 17

Define a setup function for some setup
def setup():

Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set relayPin's mode to output,
and initial level to High(3.3v)
GPIO.setup(relayPin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():

while True:
print ('Relay open...')
Tick
GPIO.output(relayPin, GPIO.LOW)

(continues on next page)

156 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

time.sleep(1)
print ('...Relay close')
Tock
GPIO.output(relayPin, GPIO.HIGH)
time.sleep(1)

Define a destroy function for clean up everything after
the script finished
def destroy():

Turn off LED
GPIO.output(relayPin, GPIO.HIGH)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the child program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

GPIO.output(relayPin, GPIO.LOW)

Set the pins of transistor as low level to let the relay open, LED does not turn on.

time.sleep(1)

wait for 1 second.

GPIO.output(relayPin, GPIO.HIGH)

Set the pins of the transistor as low level to actuate the relay, LED lights up.

6.2. Output 157

SunFounder raphael-kit

Phenomenon Picture

6.3 Input

6.3.1 2.1 Controllers

2.1.1 Button

Introduction

In this project, we will learn how to turn on or off the LED by using a button.

158 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Button

6.3. Input 159

SunFounder raphael-kit

Schematic Diagram

Use a normally open button as the input of Raspberry Pi, the connection is shown in the schematic diagram below.
When the button is pressed, the GPIO18 will turn into low level (0V). We can detect the state of the GPIO18 through
programming. That is, if the GPIO18 turns into low level, it means the button is pressed. You can run the corresponding
code when the button is pressed, and then the LED will light up.

Note: The longer pin of the LED is the anode and the shorter one is the cathode.

160 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run the code.

sudo python3 2.1.1_Button.py

Now, press the button, and the LED will light up; press the button again, and the LED will go out. At the same time,
the state of the LED will be printed on the screen.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
LedPin = 17 # Set GPIO17 as LED pin
BtnPin = 18 # Set GPIO18 as button pin

Set Led status to True(OFF)
Led_status = True

Define a setup function for some setup
def setup():

Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set LedPin's mode to output,
and initial level to high (3.3v)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
Set BtnPin's mode to input,
and pull up to high (3.3V)
GPIO.setup(BtnPin, GPIO.IN)

(continues on next page)

6.3. Input 161

SunFounder raphael-kit

(continued from previous page)

Define a callback function for button callback
def swLed(ev=None):

global Led_status
Switch led status(on-->off; off-->on)
Led_status = not Led_status
GPIO.output(LedPin, Led_status)
if Led_status:

print ('LED OFF...')
else:

print ('...LED ON')

Define a main function for main process
def main():
Set up a falling detect on BtnPin,

and callback function to swLed
GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)
while True:

Don't do anything.
time.sleep(1)

Define a destroy function for clean up everything after
the script finished
def destroy():

Turn off LED
GPIO.output(LedPin, GPIO.HIGH)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

LedPin = 17

Set GPIO17 as LED pin

BtnPin = 18

Set GPIO18 as button pin

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)

Set up a falling detect on BtnPin, and then when the value of BtnPin changes from a high level to a low level, it means
that the button is pressed. The next step is calling the function, swled.

162 Chapter 6. Play with Python

SunFounder raphael-kit

def swLed(ev=None):
global Led_status
Switch led status(on-->off; off-->on)
Led_status = not Led_status
GPIO.output(LedPin, Led_status)

Define a callback function as button callback. When the button is pressed at the first timeand the condition, not
Led_status is false, GPIO.output() function is called to light up the LED. As the button is pressed once again, the state
of LED will be converted from false to true, thus the LED will turn off.

Phenomenon Picture

2.1.2 Micro Switch

Introduction

In this project, we will learn how to use Micro Switch. A Micro Switch is a small, very sensitive switch which requires
minimum compression to activate. Because they are reliable and sensitive, micro switches are often used as a safety
device.

They are used to prevent doors from closing if something or someone is in the way and other applications similar.

6.3. Input 163

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Micro Switch

• Capacitor

164 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

Connect the left pin of the Micro Switch to GPIO17, and two LEDs to pin GPIO22 and GPIO27 respectively. Then
when you press and release the move arm of the Micro Switch, you can see the two LEDs light up alternately.

6.3. Input 165

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.1.2_MicroSwitch.py

While the code is running, press the moving arm, then the yellow LED lights up; release the moving arm, the red LED
turns on.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

Set #17 as micro switch pin, #22 as led1 pin, #27 as led2 pin
microPin = 17
led1Pin = 22
led2Pin = 27

Define a setup function for some setup
def setup():

Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set microPin input

(continues on next page)

166 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

Set ledPin output,
and initial level to High(3.3v)
GPIO.setup(microPin, GPIO.IN)
GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():

while True:
micro switch high, led1 on
if GPIO.input(microPin) == 1:

print ('LED1 ON')
GPIO.output(led1Pin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)

micro switch low, led2 on
if GPIO.input(microPin) == 0:

print (' LED2 ON')
GPIO.output(led2Pin, GPIO.LOW)
GPIO.output(led1Pin, GPIO.HIGH)

time.sleep(0.5)
Define a destroy function for clean up everything after
the script finished
def destroy():

Turn off LED
GPIO.output(led1Pin, GPIO.HIGH)
GPIO.output(led2Pin, GPIO.HIGH)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

if GPIO.input(slidePin) == 1:
GPIO.output(led1Pin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)

When the moving arm of the micro switch is released, the left pin is connected to the right pin; at this time, a high
level will be read on GPIO17, and then LED1 will be on and LED2 will be off.

if GPIO.input(slidePin) == 0:
GPIO.output(led2Pin, GPIO.LOW)
GPIO.output(led1Pin, GPIO.HIGH)

When the move arm is pressed, the left pin and the middle pin are connected. At this point a low level will be read on
GPIO17, then turns LED2 on and LED1 off.

6.3. Input 167

SunFounder raphael-kit

Phenomenon Picture

2.1.3 Touch Switch Module

Introduction

In this project, you will learn about touch switch module. It can replace the traditional kinds of switch with these
advantages: convenient operation, fine touch sense, precise control and least mechanical wear.

168 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Touch Switch Module

6.3. Input 169

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1:: Build the circuit.

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.3_TouchSwitch.py

170 Chapter 6. Play with Python

SunFounder raphael-kit

While the code is running, the red LED lights up; when you tap on the touch switch module, the yellow LED turns on.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

Set #17 as touch switch pin, #22 as led1 pin, #27 as led2 pin
touchPin = 17
led1Pin = 22
led2Pin = 27

Define a setup function for some setup
def setup():

Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set touchPin input
Set ledPin output,
and initial level to High(3.3v)
GPIO.setup(touchPin, GPIO.IN)
GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():

while True:
touch switch high, led1 on
if GPIO.input(touchPin) == 1:

print ('You touch it!')
GPIO.output(led1Pin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)

touch switch low, led2 on
if GPIO.input(touchPin) == 0:

GPIO.output(led2Pin, GPIO.LOW)
GPIO.output(led1Pin, GPIO.HIGH)

time.sleep(0.5)
Define a destroy function for clean up everything after
the script finished
def destroy():

Turn off LED
GPIO.output(led1Pin, GPIO.HIGH)
GPIO.output(led2Pin, GPIO.HIGH)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

(continues on next page)

6.3. Input 171

SunFounder raphael-kit

(continued from previous page)

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

touchPin = 17
led1Pin = 22
led2Pin = 27

touchPin, led1Pin and led2Pin connects to the GPIO17, GPIO22 and GPIO27, namely BCM17, BCM22 and
BCM27.

GPIO.setmode(GPIO.BCM)
GPIO.setup(touchPin, GPIO.IN)
GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Set the GPIO modes to BCM Numbering. Set led1Pin, led2Pin to output mode and initial their level to High
(3.3v).

touch switch high, led1 on
if GPIO.input(touchPin) == 1:

print ('You touch it!')
GPIO.output(led1Pin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)

touch switch low, led2 on
if GPIO.input(touchPin) == 0:

GPIO.output(led2Pin, GPIO.LOW)
GPIO.output(led1Pin, GPIO.HIGH)

When you tap on the touch switch module, touchPin is high, led1 will light up and print “You touch it!”. When
touchPin is low, led2 will light up.

172 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

2.1.4 Slide Switch

Introduction

In this project, we will learn how to use a slide switch. Usually,the slide switch is soldered on PCB as a power switch,
but here we need to insert it into the breadboard, thus it may not be tightened. And we use it on the breadboard to
show its function.

6.3. Input 173

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Slide Switch

• Capacitor

174 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

Connect the middle pin of the Slide Switch to GPIO17, and two LEDs to pin GPIO22 and GPIO27 respectively. Then
when you pull the slide, you can see the two LEDs light up alternately.

6.3. Input 175

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.1.4_Slider.py

While the code is running, get the switch connected to the left, then the yellow LED lights up; to the right, the red
light turns on.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Set GPIO17 as slide switch pin, GPIO22 as led1 pin, GPIO27 as led2 pin
slidePin = 17
led1Pin = 22
led2Pin = 27

Define a setup function for some setup
def setup():

Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set slidePin input
Set ledPin output,
and initial level to High(3.3v)
GPIO.setup(slidePin, GPIO.IN)
GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

(continues on next page)

176 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

Define a main function for main process
def main():

while True:
slide switch high, led1 on
if GPIO.input(slidePin) == 1:

print (' LED1 ON ')
GPIO.output(led1Pin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)

slide switch low, led2 on
if GPIO.input(slidePin) == 0:

print (' LED2 ON ')
GPIO.output(led2Pin, GPIO.LOW)
GPIO.output(led1Pin, GPIO.HIGH)

time.sleep(0.5)
Define a destroy function for clean up everything after
the script finished
def destroy():

Turn off LED
GPIO.output(led1Pin, GPIO.HIGH)
GPIO.output(led2Pin, GPIO.HIGH)
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

if GPIO.input(slidePin) == 1:
GPIO.output(led1Pin, GPIO.LOW)
GPIO.output(led2Pin, GPIO.HIGH)

When the slide is pulled to the right, the middle pin and right one are connected; the Raspberry Pi reads a high level at
the middle pin, so the LED1 is on and LED2 off.

if GPIO.input(slidePin) == 0:
GPIO.output(led2Pin, GPIO.LOW)
GPIO.output(led1Pin, GPIO.HIGH)

When the slide is pulled to the left, the middle pin and left one are connected; the Raspberry Pi reads a low, so the
LED2 is on and LED1 off.

6.3. Input 177

SunFounder raphael-kit

Phenomenon Picture

2.1.5 Tilt Switch

Introduction

This is a ball tilt-switch with a metal ball inside. It is used to detect inclinations of a small angle.

178 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Tilt Switch

6.3. Input 179

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

180 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.5_Tilt.py

Place the tilt vertically, and the green LED will turns on. If you tilt it, “Tilt!” will be printed on the screen and the red
LED will turns on. Place it vertically again, and the green LED will lights on.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO

TiltPin = 17
Gpin = 27
Rpin = 22

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
GPIO.setup(TiltPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set BtnPin's mode is

→˓input, and pull up to high level(3.3V)
GPIO.add_event_detect(TiltPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
if x == 0:

GPIO.output(Rpin, 1)
GPIO.output(Gpin, 0)

(continues on next page)

6.3. Input 181

SunFounder raphael-kit

(continued from previous page)

if x == 1:
GPIO.output(Rpin, 0)
GPIO.output(Gpin, 1)

def Print(x):
if x == 0:

print (' *************')
print (' * Tilt! *')
print (' *************')

def detect(chn):
Led(GPIO.input(TiltPin))
Print(GPIO.input(TiltPin))

def loop():
while True:

pass

def destroy():
GPIO.output(Gpin, GPIO.HIGH) # Green led off
GPIO.output(Rpin, GPIO.HIGH) # Red led off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

GPIO.add_event_detect(TiltPin, GPIO.BOTH, callback=detect, bouncetime=200)

Set up a detect on TiltPin, and callback function to detect.

def Led(x):
if x == 0:

GPIO.output(Rpin, 1)
GPIO.output(Gpin, 0)

if x == 1:
GPIO.output(Rpin, 0)
GPIO.output(Gpin, 1)

Define a function Led() to turn the two LEDs on or off. If x=0, the red LED lights up; otherwise, the green LED will
be lit.

def Print(x):
if x == 0:

print (' *************')
print (' * Tilt! *')
print (' *************')

Create a function, Print() to print the characters above on the screen.

182 Chapter 6. Play with Python

SunFounder raphael-kit

def detect(chn):
Led(GPIO.input(TiltPin))
Print(GPIO.input(TiltPin))

Define a callback function for tilt callback. Get the read value of the tilt switch then the function Led() controls the
turning on or off of the two LEDs that is depended on the read value of the tilt switch.

Phenomenon Picture

2.1.6 Rotary Encoder Module

Introduction

In this project, you will learn about Rotary Encoder. A rotary encoder is an electronic switch with a set of regular
pulses in strictly timing sequence. When used with IC, it can achieve increment, decrement, page turning and other
operations such as mouse scrolling, menu selection, and so on.

6.3. Input 183

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Rotary Encoder Module

184 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

6.3. Input 185

SunFounder raphael-kit

In this example, we can connect the Rotary Encoder pin directly to the Raspberry Pi using a breadboard and 40-pin
Cable, connect the GND of the Rotary Encoder to GND, +to 5V, SW to digital GPIO27, DT to digital GPIO18, and
CLK to digital GPIO 17.

Step 2: Open the code file.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.6_RotaryEncoder.py

You will see the count on the shell. When you turn the rotary encoder clockwise, the count is increased; when turn

186 Chapter 6. Play with Python

SunFounder raphael-kit

it counterclockwise, the count is decreased. If you press the switch on the rotary encoder, the readings will return to
zero.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

clkPin = 17 # CLK Pin
dtPin = 18 # DT Pin
swPin = 27 # Button Pin

globalCounter = 0

flag = 0
Last_dt_Status = 0
Current_dt_Status = 0

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(clkPin, GPIO.IN) # input mode
GPIO.setup(dtPin, GPIO.IN)
GPIO.setup(swPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def rotaryDeal():
global flag
global Last_dt_Status
global Current_dt_Status
global globalCounter
Last_dt_Status = GPIO.input(dtPin)
while(not GPIO.input(clkPin)):

Current_dt_Status = GPIO.input(dtPin)
flag = 1

if flag == 1:
flag = 0
if (Last_dt_Status == 0) and (Current_dt_Status == 1):

globalCounter = globalCounter - 1
if (Last_dt_Status == 1) and (Current_dt_Status == 0):

globalCounter = globalCounter + 1

def swISR(channel):
global globalCounter
globalCounter = 0

def loop():
global globalCounter
tmp = 0 # Rotary Temperary

GPIO.add_event_detect(swPin, GPIO.FALLING, callback=swISR)
while True:

rotaryDeal()
if tmp != globalCounter:

(continues on next page)

6.3. Input 187

SunFounder raphael-kit

(continued from previous page)

print ('globalCounter = %d' % globalCounter)
tmp = globalCounter

def destroy():
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

→˓will be executed.
destroy()

Code Analysis

• Read dtPin value when clkPin is low.

• When clkPin is high, if dtPin goes from low to high, the count decreases, otherwise the count increases.

• swPin will output low when the shaft is pressed.

From this, the program flow is shown below:

188 Chapter 6. Play with Python

SunFounder raphael-kit

6.3. Input 189

SunFounder raphael-kit

Phenomenon Picture

2.1.7 Potentiometer

Introduction

The ADC function can be used to convert analog signals to digital signals, and in this experiment, ADC0834 is used
to get the function involving ADC. Here, we implement this process by using potentiometer. Potentiometer changes
the physical quantity – voltage, which is converted by the ADC function.

190 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Potentiometer

• ADC0834

6.3. Input 191

SunFounder raphael-kit

Schematic Diagram

192 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Note: Please place the chip by referring to the corresponding position depicted in the picture. Note that the grooves
on the chip should be on the left when it is placed.

Step 2: Open the code file

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.7_Potentiometer.py

After the code runs, rotate the knob on the potentiometer, the intensity of LED will change accordingly.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import ADC0834
import time

LedPin = 22

def setup():
global led_val
Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set all LedPin's mode to output and initial level to High(3.3v)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)

(continues on next page)

6.3. Input 193

SunFounder raphael-kit

(continued from previous page)

ADC0834.setup()
Set led as pwm channel and frequece to 2KHz
led_val = GPIO.PWM(LedPin, 2000)

Set all begin with value 0
led_val.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def destroy():
Stop all pwm channel
led_val.stop()
Release resource
GPIO.cleanup()

def loop():
while True:

res = ADC0834.getResult()
print ('res = %d' % res)
R_val = MAP(res, 0, 255, 0, 100)
led_val.ChangeDutyCycle(R_val)
time.sleep(0.2)

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

import ADC0834

import ADC0834 library. You can check the content of the library by calling the command nano ADC0834.py.

def setup():
global led_val
Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set all LedPin's mode to output and initial level to High(3.3v)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
ADC0834.setup()
Set led as pwm channel and frequece to 2KHz
led_val = GPIO.PWM(LedPin, 2000)

Set all begin with value 0
led_val.start(0)

In setup(), define the naming method as BCM, set LedPin as PWM channel and render it a frequency of 2Khz.

ADC0834.setup(): Initialize ADC0834, and connect the defined CS, CLK, DIO of ADC0834 to GPIO17, GPIO18
and GPIO27 respectively.

194 Chapter 6. Play with Python

SunFounder raphael-kit

def loop():
while True:

res = ADC0834.getResult()
print ('res = %d' % res)
R_val = MAP(res, 0, 255, 0, 100)
led_val.ChangeDutyCycle(R_val)
time.sleep(0.2)

The function getResult() is used to read the analog values of the four channels of ADC0834. By default, the function
reads the value of CH0, and if you want to read other channels, please input the channel number in (), ex. getResult(1).

The function loop() first reads the value of CH0, then assign the value to the variable res. After that, call the function
MAP to map the read value of potentiometer to 0~100. This step is used to control the duty cycle of LedPin. Now,
you may see that the brightness of LED is changing with the value of potentiometer.

Phenomenon Picture

2.1.8 Keypad

Introduction

A keypad is a rectangular array of buttons. In this project, We will use it input characters.

6.3. Input 195

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Keypad

196 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

6.3. Input 197

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

198 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.8_Keypad.py

After the code runs, the values of pressed buttons on keypad (button Value) will be printed on the screen.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

class Keypad():

def __init__(self, rowsPins, colsPins, keys):

(continues on next page)

6.3. Input 199

SunFounder raphael-kit

(continued from previous page)

self.rowsPins = rowsPins
self.colsPins = colsPins
self.keys = keys
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

def read(self):
pressed_keys = []
for i, row in enumerate(self.rowsPins):

GPIO.output(row, GPIO.HIGH)
for j, col in enumerate(self.colsPins):

index = i * len(self.colsPins) + j
if (GPIO.input(col) == 1):

pressed_keys.append(self.keys[index])
GPIO.output(row, GPIO.LOW)

return pressed_keys

def setup():
global keypad, last_key_pressed
rowsPins = [18,23,24,25]
colsPins = [10,22,27,17]
keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"]

keypad = Keypad(rowsPins, colsPins, keys)
last_key_pressed = []

def loop():
global keypad, last_key_pressed
pressed_keys = keypad.read()
if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:

print(pressed_keys)
last_key_pressed = pressed_keys
time.sleep(0.1)

Define a destroy function for clean up everything after the script finished
def destroy():

Release resource
GPIO.cleanup()

if __name__ == '__main__': # Program start from here
try:

setup()
while True:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy()

→˓will be executed.
destroy()

Code Explanation

def setup():
global keypad, last_key_pressed
rowsPins = [18,23,24,25]

(continues on next page)

200 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

colsPins = [10,22,27,17]
keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"]

keypad = Keypad(rowsPins, colsPins, keys)
last_key_pressed = []

Declare each key of the matrix keyboard to the array keys[] and define the pins on each row and column.

def loop():
global keypad, last_key_pressed
pressed_keys = keypad.read()
if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:

print(pressed_keys)
last_key_pressed = pressed_keys
time.sleep(0.1)

This is the part of the main function that reads and prints the button value.

The function keyRead() will read the state of every button.

The statement if len(pressed_keys) != 0 and last_key_pressed != pressed_keys is used to
judge

whether a key is pressed and the state of the pressed button. (If you press ‘3’ when you press ‘1’, the judgement is
tenable.)

Prints the value of the currently pressed key when the condition is tenable.

The statement last_key_pressed = pressed_keys assigns the state of each judgment to an array
last_key_pressed to facilitate the next round of conditional judgment.

def read(self):
pressed_keys = []
for i, row in enumerate(self.rowsPins):

GPIO.output(row, GPIO.HIGH)
for j, col in enumerate(self.colsPins):

index = i * len(self.colsPins) + j
if (GPIO.input(col) == 1):

pressed_keys.append(self.keys[index])
GPIO.output(row, GPIO.LOW)

return pressed_keys

This function assigns a high level to each row in turn, and when the button in the column is pressed, the column in
which the key is located gets a high level. After the two-layer loop is judged, the value of the button whose state is 1
is stored in the array pressed_keys.

If you press the key ‘3’:

6.3. Input 201

SunFounder raphael-kit

rowPins[0] is written in high level, and colPins[2] gets high level.

colPins[0]colPins[1]colPins[3] get low level.

There are four states: 0, 0, 1, 0; and we write ‘3’ into pressed_keys.

When rowPins[1] , rowPins[2] , rowPins[3] are written into high level, colPins[0] ~ colPins[4] get low level.

The loop stopped, there returns pressed_keys = ‘3’.

If you press the buttons ‘1’ and ‘3’, there will return pressed_keys = [‘1’,’3’].

202 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

2.1.9 Joystick

Introduction

In this project, We’re going to learn how joystick works. We manipulate the Joystick and display the results on the
screen.

6.3. Input 203

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Joystick Module

• ADC0834

204 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

When the data of joystick is read, there are some differents between axis: data of X and Y axis is analog, which need
to use ADC0834 to convert the analog value to digital value. Data of Z axis is digital, so you can directly use the GPIO
to read, or you can also use ADC to read.

Experimental Procedures

Step 1: Build the circuit.

6.3. Input 205

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.9_Joystick.py

After the code runs, turn the Joystick, then the corresponding values of x, y, Btn are displayed on screen.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import ADC0834
import time

BtnPin = 22

def setup():
Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
ADC0834.setup()

def destroy():
Release resource
GPIO.cleanup()

(continues on next page)

206 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def loop():
while True:

x_val = ADC0834.getResult(0)
y_val = ADC0834.getResult(1)
Btn_val = GPIO.input(BtnPin)
print ('X: %d Y: %d Btn: %d' % (x_val, y_val, Btn_val))
time.sleep(0.2)

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

def loop():
while True:

x_val = ADC0834.getResult(0)
y_val = ADC0834.getResult(1)
Btn_val = GPIO.input(BtnPin)
print ('X: %d Y: %d Btn: %d' % (x_val, y_val, Btn_val))
time.sleep(0.2)

VRX and VRY of Joystick are connected to CH0, CH1 of ADC0834 respectively. So the function getResult() is called
to read the values of CH0 and CH1. Then the read values should be stored in the variables x_val and y_val. In addition,
read the value of SW of joystick and store it into the variable Btn_val. Finally, the values of x_val, y_val and Btn_val
shall be printed with print() function.

6.3. Input 207

SunFounder raphael-kit

Phenomenon Picture

6.3.2 2.2 Sensors

2.2.1 Photoresistor

Introduction

Photoresistor is a commonly used component of ambient light intensity in life. It helps the controller to recognize day
and night and realize light control functions such as night lamp. This project is very similar to potentiometer, and you
might think it changing the voltage to sensing light.

208 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• ADC0834

• Photoresistor

6.3. Input 209

SunFounder raphael-kit

Schematic Diagram

210 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.1_Photoresistor.py

When the code is running, the brightness of the LED will change according to the light intensity sensed by the
photoresistor.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import ADC0834
import time
LedPin = 22
def setup():

global led_val
Set the GPIO modes to BCM Numbering
GPIO.setmode(GPIO.BCM)
Set all LedPin's mode to output and initial level to High(3.3v)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
ADC0834.setup()
Set led as pwm channel and frequece to 2KHz
led_val = GPIO.PWM(LedPin, 2000)
Set all begin with value 0
led_val.start(0)

def destroy():
Stop all pwm channel

(continues on next page)

6.3. Input 211

SunFounder raphael-kit

(continued from previous page)

led_val.stop()
Release resource
GPIO.cleanup()

def loop():
while True:

analogVal = ADC0834.getResult()
print ('analog value = %d' % analogVal)
led_val.ChangeDutyCycle(analogVal*100/255)
time.sleep(0.2)

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

def loop():
while True:

analogVal = ADC0834.getResult()
print ('analog value = %d' % analogVal)
led_val.ChangeDutyCycle(analogVal*100/255)
time.sleep(0.2)

Read the analog value of CH0 of ADC0834. By default, the function getResult() is used to read the value
of CH0, so if you want to read other channels, please input 1, 2, or 3 into () of the function getResult().
Next, what you need is to print the value via the print function. Because the changing element is the duty cycle
of LedPin, the computational formula, analogVal*100/255 is needed to convert analogVal into percentage.
Finally, ChangeDutyCycle() is called to write the percentage into LedPin.

212 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

2.2.2 Thermistor

Introduction

Just like photoresistor can sense light, thermistor is a temperature sensitive electronic device that can be used for
realizing functions of temperature control, such as making a heat alarm.

6.3. Input 213

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Thermistor

• ADC0834

214 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

6.3. Input 215

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file

sudo python3 2.2.2_Thermistor.py

With the code run, the thermistor detects ambient temperature which will be printed on the screen once it finishes the
program calculation.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import RPi.GPIO as GPIO
import ADC0834
import time
import math

def init():
ADC0834.setup()

def loop():
while True:

analogVal = ADC0834.getResult()
Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15

(continues on next page)

216 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

Fah = Cel * 1.8 + 32
print ('Celsius: %.2f °C Fahrenheit: %.2f ' % (Cel, Fah))
time.sleep(0.2)

if __name__ == '__main__':
init()
try:

loop()
except KeyboardInterrupt:

ADC0834.destroy()

Code Explanation

import math

There is a numerics library which declares a set of functions to compute common mathematical operations and trans-
formations.

analogVal = ADC0834.getResult()

This function is used to read the value of the thermistor.

Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15
Fah = Cel * 1.8 + 32
print ('Celsius: %.2f °C Fahrenheit: %.2f ' % (Cel, Fah))

These calculations convert the thermistor values into centigrade degree and Fahrenheit degree.

Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)

These two lines of codes are calculating the voltage distribution with the read value analog so as to get Rt (resistance
of thermistor).

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

This code refers to plugging Rt into the formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature.

temp = temp - 273.15

Convert Kelvin temperature into centigrade degree.

Fah = Cel * 1.8 + 32

Convert the centigrade degree into Fahrenheit degree.

print ('Celsius: %.2f °C Fahrenheit: %.2f ' % (Cel, Fah))

Print centigrade degree, Fahrenheit degree and their units on the display.

6.3. Input 217

SunFounder raphael-kit

Phenomenon Picture

2.2.3 DHT-11

Introduction

The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal
output of temperature and humidity. The technology of a dedicated digital modules collection and the technology of
the temperature and humidity sensing are applied to ensure that the product has high reliability and excellent stability.

The sensors include a wet element resistive sensor and a NTC temperature sensor and they are connected to a high
performance 8-bit microcontroller.

218 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Humiture Sensor Module

6.3. Input 219

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

220 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.3_DHT.py

After the code runs, the program will print the temperature and humidity detected by DHT11 on the computer screen.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

dhtPin = 17

GPIO.setmode(GPIO.BCM)

MAX_UNCHANGE_COUNT = 100

STATE_INIT_PULL_DOWN = 1
STATE_INIT_PULL_UP = 2
STATE_DATA_FIRST_PULL_DOWN = 3
STATE_DATA_PULL_UP = 4
STATE_DATA_PULL_DOWN = 5

def readDht11():
GPIO.setup(dhtPin, GPIO.OUT)
GPIO.output(dhtPin, GPIO.HIGH)
time.sleep(0.05)
GPIO.output(dhtPin, GPIO.LOW)
time.sleep(0.02)
GPIO.setup(dhtPin, GPIO.IN, GPIO.PUD_UP)

unchanged_count = 0
last = -1

(continues on next page)

6.3. Input 221

SunFounder raphael-kit

(continued from previous page)

data = []
while True:

current = GPIO.input(dhtPin)
data.append(current)
if last != current:

unchanged_count = 0
last = current

else:
unchanged_count += 1
if unchanged_count > MAX_UNCHANGE_COUNT:

break

state = STATE_INIT_PULL_DOWN

lengths = []
current_length = 0

for current in data:
current_length += 1

if state == STATE_INIT_PULL_DOWN:
if current == GPIO.LOW:

state = STATE_INIT_PULL_UP
else:

continue
if state == STATE_INIT_PULL_UP:

if current == GPIO.HIGH:
state = STATE_DATA_FIRST_PULL_DOWN

else:
continue

if state == STATE_DATA_FIRST_PULL_DOWN:
if current == GPIO.LOW:

state = STATE_DATA_PULL_UP
else:

continue
if state == STATE_DATA_PULL_UP:

if current == GPIO.HIGH:
current_length = 0
state = STATE_DATA_PULL_DOWN

else:
continue

if state == STATE_DATA_PULL_DOWN:
if current == GPIO.LOW:

lengths.append(current_length)
state = STATE_DATA_PULL_UP

else:
continue

if len(lengths) != 40:
#print ("Data not good, skip")
return False

shortest_pull_up = min(lengths)
longest_pull_up = max(lengths)
halfway = (longest_pull_up + shortest_pull_up) / 2
bits = []
the_bytes = []
byte = 0

(continues on next page)

222 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

for length in lengths:
bit = 0
if length > halfway:

bit = 1
bits.append(bit)

#print ("bits: %s, length: %d" % (bits, len(bits)))
for i in range(0, len(bits)):

byte = byte << 1
if (bits[i]):

byte = byte | 1
else:

byte = byte | 0
if ((i + 1) % 8 == 0):

the_bytes.append(byte)
byte = 0

#print (the_bytes)
checksum = (the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3]) & 0xFF
if the_bytes[4] != checksum:

#print ("Data not good, skip")
return False

return the_bytes[0], the_bytes[2]

def main():

while True:
result = readDht11()
if result:

humidity, temperature = result
print ("humidity: %s %%, Temperature: %s °C" % (humidity, temperature))

time.sleep(1)

def destroy():
GPIO.cleanup()

if __name__ == '__main__':
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

def readDht11():
GPIO.setup(dhtPin, GPIO.OUT)
GPIO.output(dhtPin, GPIO.HIGH)
time.sleep(0.05)
GPIO.output(dhtPin, GPIO.LOW)
time.sleep(0.02)
GPIO.setup(dhtPin, GPIO.IN, GPIO.PUD_UP)
unchanged_count = 0
last = -1
data = []
#...

This function is used to implement the functions of DHT11. It stores the detected data in the the_bytes[] array. DHT11

6.3. Input 223

SunFounder raphael-kit

transmits data of 40 bits at a time. The first 16 bits are related to humidity, the middle 16 bits are related to temperature,
and the last eight bits are used for verification. The data format is:

8bit humidity integer data +8bit humidity decimal data +8bit temperature integer data + 8bit temperature
decimal data + 8bit check bit.

When the validity is detected via the check bit, the function returns two results: 1. error; 2. humidity and temperature.

checksum = (the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3]) & 0xFF
if the_bytes[4] != checksum:

#print ("Data not good, skip")
return False

return the_bytes[0], the_bytes[2]

For example, if the received date is 00101011(8-bit value of humidity integer) 00000000 (8-bit value of humidity
decimal) 00111100 (8-bit value of temperature integer) 00000000 (8-bit value of temperature decimal) 01100111
(check bit)

Calculation:

00101011+00000000+00111100+00000000=01100111.

If the final result is equal to the check bit data, the data transmission is abnormal: return False.

If the final result is equal to the check bit data, the received data is correct, then there will return the_bytes[0] and
the_bytes[2] and output “Humidity =43%Temperature =60C”.

Phenomenon Picture

224 Chapter 6. Play with Python

SunFounder raphael-kit

2.2.4 Reed Switch Module

Introduction

In this project, we will learn about the reed switch, which is an electrical switch that operates by means of an applied
magnetic field.

6.3. Input 225

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Reed Switch Module

226 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit.

6.3. Input 227

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.2.4_ReedSwitch.py

The green LED will light up when the code is run. If a magnet is placed close to the reed switch module, the red LED
lights up; take away the magnet and the green LED lights up again.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

ReedPin = 17
Gpin = 27
Rpin = 22

def setup():
GPIO.setmode(GPIO.BCM) #
GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
GPIO.setup(ReedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set ReedPin's mode is

→˓input, and pull up to high level(3.3V)

(continues on next page)

228 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

GPIO.add_event_detect(ReedPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
if x == 0:

GPIO.output(Rpin, 1)
GPIO.output(Gpin, 0)

if x == 1:
GPIO.output(Rpin, 0)
GPIO.output(Gpin, 1)

def detect(self):
Led(GPIO.input(ReedPin))

def loop():
while True:

pass

def destroy():
GPIO.output(Gpin, GPIO.HIGH) # Green led on
GPIO.output(Rpin, GPIO.LOW) # Red led off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
detect()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

Code Explanation

ReedPin = 17
Gpin = 27
Rpin = 22

def setup():
GPIO.setmode(GPIO.BCM) #
GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
GPIO.setup(ReedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set ReedPin's mode is

→˓input, and pull up to high level(3.3V)
GPIO.add_event_detect(ReedPin, GPIO.BOTH, callback=detect, bouncetime=200)

Set the GPIO modes to BCM Numbering. ReedPin, Gpin and Rpin connects to the GPIO17, GPIO27 and GPIO22.

GPIO.add_event_detect() is used to add an event that is triggered by a change in the value (level) of
ReedPin, at which point the callback function detect() is called.

def Led(x):
if x == 0:

GPIO.output(Rpin, 1)
GPIO.output(Gpin, 0)

if x == 1:
GPIO.output(Rpin, 0)
GPIO.output(Gpin, 1)

6.3. Input 229

SunFounder raphael-kit

Define a function Led() to turn the two LEDs on or off. If x=0, the red LED lights up; otherwise, the green LED
will be lit.

def detect(self):
Led(GPIO.input(ReedPin))

In this callback function, the value of the reed switch is used to control the 2 LEDs.

Phenomenon Picture

2.2.5 IR Obstacle Avoidance Sensor

Introduction

In this project, we will learn IR obstacle avoidance module, which is a sensor module that can be used to detect
obstacles at short distances, with small interference, easy to assemble, easy to use, etc. It can be widely used in robot
obstacle avoidance, obstacle avoidance trolley, assembly line counting, etc.

230 Chapter 6. Play with Python

SunFounder raphael-kit

Components Required

• GPIO Extension Board

• Breadboard

• Obstacle Avoidance Module

6.3. Input 231

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit

232 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.2.5_IrObstacle.py

After the code runs, when you put your hand in front of the module’s probe, the output indicator on the module lights
up and the “Detected Barrier!” will be repeatedly printed on the screen until the your hand is removed.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

ObstaclePin = 17

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(ObstaclePin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def loop():
while True:

if (0 == GPIO.input(ObstaclePin)):
print ("Detected Barrier!")

time.sleep(1)

def destroy():
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

→˓will be executed.
destroy()

Code Explanation

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(ObstaclePin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Set the GPIO mode to BCM Numbering. Set ObstaclePin to input mode and initial it to High level (3.3v).

def loop():
while True:

if (0 == GPIO.input(ObstaclePin)):
print ("Detected Barrier!")

6.3. Input 233

SunFounder raphael-kit

When ObstaclePin is low level, print “Detected Barrier!”. It means that an obstacle is detected.

Phenomenon Picture

2.2.6 Speed Sensor Module

Introduction

In this project, we will learn the use of the speed sensor module. A Speed sensor module is a type of tachometer that
is used to measure the speed of a rotating object like a motor.

234 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Speed Sensor Module

6.3. Input 235

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

236 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.2.6_speed_sensor_module.py

After the code runs, the green LED will light up. If you place an obstacle in the gap of the speed sensor module, the
“light blocked” will be printed on the screen and the red LED will be lit. Remove the obstacle and the green LED will
light up again.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO

speedPin = 17
Gpin = 27
Rpin = 22

def setup():
GPIO.setmode(GPIO.BCM) #
GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
GPIO.setup(speedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set speedPin's mode

→˓is input, and pull up to high level(3.3V)
GPIO.add_event_detect(speedPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
if x == 0:

GPIO.output(Rpin, 0)
GPIO.output(Gpin, 1)

if x == 1:
GPIO.output(Rpin, 1)
GPIO.output(Gpin, 0)
print ('Light was blocked')

def detect(chn):
Led(GPIO.input(speedPin))

def loop():
while True:

pass

def destroy():
GPIO.output(Gpin, GPIO.LOW) # Green led off
GPIO.output(Rpin, GPIO.LOW) # Red led off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

(continues on next page)

6.3. Input 237

SunFounder raphael-kit

(continued from previous page)

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

Code Explanation

GPIO.add_event_detect(speedPin, GPIO.BOTH, callback=detect, bouncetime=200)

Add an event here, triggered by a change in the level of speedPin and call detect() to control the 2 LEDs on
and off.

def Led(x):
if x == 0:

GPIO.output(Rpin, 0)
GPIO.output(Gpin, 1)

if x == 1:
GPIO.output(Rpin, 1)
GPIO.output(Gpin, 0)
print ('Light was blocked')

Define a function Led() that turns the red LED on and prints Light was blocked when the parameter is 1; turn
the green LED on when the parameter is 0.

def detect(chn):
Led(GPIO.input(speedPin))

Define a callback function where the value of speedPin will control the turning on or off of the 2 LEDs.

238 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

2.2.7 PIR

Introduction

In this project, we will make a device by using the human body infrared pyroelectric sensors. When someone gets
closer to the LED, the LED will turn on automatically. If not, the light will turn off. This infrared motion sensor is a
kind of sensor that can detect the infrared emitted by human and animals.

6.3. Input 239

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

• PIR Motion Sensor Module

240 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

6.3. Input 241

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.7_PIR.py

After the code runs, PIR detects surroundings and let RGB LED glow yellow if it senses someone walking by.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

242 Chapter 6. Play with Python

SunFounder raphael-kit

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

rgbPins = {'Red':18, 'Green':27, 'Blue':22}
pirPin = 17 # the pir connect to pin17

def setup():
global p_R, p_G, p_B
GPIO.setmode(GPIO.BCM) # Set the GPIO modes to BCM Numbering
GPIO.setup(pirPin, GPIO.IN) # Set pirPin to input
Set all LedPin's mode to output and initial level to High(3.3v)
for i in rgbPins:

GPIO.setup(rgbPins[i], GPIO.OUT, initial=GPIO.HIGH)

Set all led as pwm channel and frequece to 2KHz
p_R = GPIO.PWM(rgbPins['Red'], 2000)
p_G = GPIO.PWM(rgbPins['Green'], 2000)
p_B = GPIO.PWM(rgbPins['Blue'], 2000)

Set all begin with value 0
p_R.start(0)
p_G.start(0)
p_B.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a function to set up colors
def setColor(color):

(continues on next page)

6.3. Input 243

SunFounder raphael-kit

(continued from previous page)

configures the three LEDs' luminance with the inputted color value .
Devide colors from 'color' veriable
R_val = (color & 0xFF0000) >> 16
G_val = (color & 0x00FF00) >> 8
B_val = (color & 0x0000FF) >> 0
Map color value from 0~255 to 0~100
R_val = MAP(R_val, 0, 255, 0, 100)
G_val = MAP(G_val, 0, 255, 0, 100)
B_val = MAP(B_val, 0, 255, 0, 100)

#Assign the mapped duty cycle value to the corresponding PWM channel to change
→˓the luminance.

p_R.ChangeDutyCycle(R_val)
p_G.ChangeDutyCycle(G_val)
p_B.ChangeDutyCycle(B_val)
#print ("color_msg: R_val = %s, G_val = %s, B_val = %s"%(R_val, G_val, B_val))

def loop():
while True:

pir_val = GPIO.input(pirPin)
if pir_val==GPIO.HIGH:

setColor(0xFFFF00)
else :

setColor(0x0000FF)

def destroy():
p_R.stop()
p_G.stop()
p_B.stop()
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

Code Explanation

rgbPins = {'Red':18, 'Green':27, 'Blue':22}

def setup():
global p_R, p_G, p_B
GPIO.setmode(GPIO.BCM)
......
for i in rgbPins:

GPIO.setup(rgbPins[i], GPIO.OUT, initial=GPIO.HIGH)
p_R = GPIO.PWM(rgbPins['Red'], 2000)
p_G = GPIO.PWM(rgbPins['Green'], 2000)
p_B = GPIO.PWM(rgbPins['Blue'], 2000)
p_R.start(0)
p_G.start(0)
p_B.start(0)

def MAP(x, in_min, in_max, out_min, out_max):
(continues on next page)

244 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def setColor(color):
...

These codes are used to set the color of the RGB LED, and please refer to 1.1.2 RGB LED for more details.

def loop():
while True:

pir_val = GPIO.input(pirPin)
if pir_val==GPIO.HIGH:

setColor(0xFFFF00)
else :

setColor(0x0000FF)

When PIR detects the human infrared spectrum, RGB LED emits the yellow light; if not, emits the blue light.

Phenomenon Picture

6.3. Input 245

SunFounder raphael-kit

2.2.8 Ultrasonic Sensor Module

Introduction

The ultrasonic sensor uses ultrasonic to accurately detect objects and measure distances. It sends out ultrasonic waves
and converts them into electronic signals.

Components

• GPIO Extension Board

• Breadboard

• Ultrasonic Module

246 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

6.3. Input 247

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.8_Ultrasonic.py

With the code run, the ultrasonic sensor module detects the distance between the obstacle ahead and the module itself,
then the distance value will be printed on the screen.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

TRIG = 16
ECHO = 18

def setup():
GPIO.setmode(GPIO.BOARD)
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)

def distance():
GPIO.output(TRIG, 0)
time.sleep(0.000002)

GPIO.output(TRIG, 1)
time.sleep(0.00001)

(continues on next page)

248 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

GPIO.output(TRIG, 0)

while GPIO.input(ECHO) == 0:
a = 0

time1 = time.time()
while GPIO.input(ECHO) == 1:

a = 1
time2 = time.time()

during = time2 - time1
return during * 340 / 2 * 100

def loop():
while True:

dis = distance()
print ('Distance: %.2f' % dis)
time.sleep(0.3)

def destroy():
GPIO.cleanup()

if __name__ == "__main__":
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

def distance():

This function is used to realize the function of ultrasonic sensor by calculating the return detection distance.

GPIO.output(TRIG, 1)
time.sleep(0.00001)
GPIO.output(TRIG, 0)

This is sending out a 10us ultrasonic pulse.

while GPIO.input(ECHO) == 0:
a = 0

time1 = time.time()

This empty loop is used to ensure that when the trigger signal is sent, there is no interfering echo signal and then get
the current time.

while GPIO.input(ECHO) == 1:
a = 1

time2 = time.time()

This empty loop is used to ensure that the next step is not performed until the echo signal is received and then get the
current time.

during = time2 - time1

Execute the interval calculation.

6.3. Input 249

SunFounder raphael-kit

return during * 340 / 2 * 100

The distance is calculated in the light of time interval and the speed of sound propagation. The speed of sound in the
air: 340m/s.

Phenomenon Picture

2.2.9 MPU6050 Module

Introduction

The MPU-6050 is the world’s first and only 6-axis motion tracking devices (3-axis Gyroscope and 3-axis Accelerom-
eter) designed for smartphones, tablets and wearable sensors that have these features, including the low power, low
cost, and high performance requirements.

In this experiment, use I2C to obtain the values of the three-axis acceleration sensor and three-axis gyroscope for
MPU6050 and display them on the screen.

250 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• MPU6050 Module

6.3. Input 251

SunFounder raphael-kit

Schematic Diagram

MPU6050 communicates with the microcontroller through the I2C bus interface. The SDA1 and SCL1 need to be
connected to the corresponding pin.

252 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/python

Step 4: Run the executable file.

sudo python3 2.2.9_mpu6050.py

With the code run, the angle of deflection of the x-axis and y-axis and the acceleration, angular velocity on each axis
read by MPU6050 will be printed on the screen after being calculating.

Note:

• If you get the error FileNotFoundError: [Errno 2] No such file or directory: '/
dev/i2c-1', you need to refer to I2C Configuration to enable the I2C.

• If you get ModuleNotFoundError: No module named 'smbus2' error, please run sudo pip3
install smbus2.

• If the error OSError: [Errno 121] Remote I/O error appears, it means the module is miswired
or the module is broken.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import smbus
import math
import time

(continues on next page)

6.3. Input 253

SunFounder raphael-kit

(continued from previous page)

Power management registers
power_mgmt_1 = 0x6b
power_mgmt_2 = 0x6c

def read_byte(adr):
return bus.read_byte_data(address, adr)

def read_word(adr):
high = bus.read_byte_data(address, adr)
low = bus.read_byte_data(address, adr+1)
val = (high << 8) + low
return val

def read_word_2c(adr):
val = read_word(adr)
if (val >= 0x8000):

return -((65535 - val) + 1)
else:

return val

def dist(a,b):
return math.sqrt((a*a)+(b*b))

def get_y_rotation(x,y,z):
radians = math.atan2(x, dist(y,z))
return -math.degrees(radians)

def get_x_rotation(x,y,z):
radians = math.atan2(y, dist(x,z))
return math.degrees(radians)

bus = smbus.SMBus(1) # or bus = smbus.SMBus(1) for Revision 2 boards
address = 0x68 # This is the address value read via the i2cdetect command

Now wake the 6050 up as it starts in sleep mode
bus.write_byte_data(address, power_mgmt_1, 0)

while True:
time.sleep(0.1)
gyro_xout = read_word_2c(0x43)
gyro_yout = read_word_2c(0x45)
gyro_zout = read_word_2c(0x47)

print ("gyro_xout : ", gyro_xout, " scaled: ", (gyro_xout / 131))
print ("gyro_yout : ", gyro_yout, " scaled: ", (gyro_yout / 131))
print ("gyro_zout : ", gyro_zout, " scaled: ", (gyro_zout / 131))

accel_xout = read_word_2c(0x3b)
accel_yout = read_word_2c(0x3d)
accel_zout = read_word_2c(0x3f)

accel_xout_scaled = accel_xout / 16384.0
accel_yout_scaled = accel_yout / 16384.0
accel_zout_scaled = accel_zout / 16384.0

print ("accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled)
(continues on next page)

254 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

print ("accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled)
print ("accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled)

print ("x rotation: " , get_x_rotation(accel_xout_scaled, accel_yout_scaled,
→˓accel_zout_scaled))

print ("y rotation: " , get_y_rotation(accel_xout_scaled, accel_yout_scaled,
→˓accel_zout_scaled))

time.sleep(1)

Code Explanation

def read_word(adr):
high = bus.read_byte_data(address, adr)
low = bus.read_byte_data(address, adr+1)
val = (high << 8) + low
return val

def read_word_2c(adr):
val = read_word(adr)
if (val >= 0x8000):

return -((65535 - val) + 1)
else:

return val

Read sensor data sent from MPU6050.

def get_y_rotation(x,y,z):
radians = math.atan2(x, dist(y,z))
return -math.degrees(radians)

Calculate the deflection angle of the y-axis.

def get_x_rotation(x,y,z):
radians = math.atan2(y, dist(x,z))
return math.degrees(radians)

Calculate the deflection angle of the x-axis.

gyro_xout = read_word_2c(0x43)
gyro_yout = read_word_2c(0x45)
gyro_zout = read_word_2c(0x47)

print ("gyro_xout : ", gyro_xout, " scaled: ", (gyro_xout / 131))
print ("gyro_yout : ", gyro_yout, " scaled: ", (gyro_yout / 131))
print ("gyro_zout : ", gyro_zout, " scaled: ", (gyro_zout / 131))

Read the values of the x axis, y axis and z axis on the gyroscope sensor, convert the metadata to angular velocity
values, and then print them.

accel_xout = read_word_2c(0x3b)
accel_yout = read_word_2c(0x3d)
accel_zout = read_word_2c(0x3f)

accel_xout_scaled = accel_xout / 16384.0
accel_yout_scaled = accel_yout / 16384.0

(continues on next page)

6.3. Input 255

SunFounder raphael-kit

(continued from previous page)

accel_zout_scaled = accel_zout / 16384.0

print ("accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled)
print ("accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled)
print ("accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled)

Read the values of the x axis, y axis and z axis on the acceleration sensor, convert the elements to accelerated speed
value (gravity unit), and print them.

print ("x rotation: " , get_x_rotation(accel_xout_scaled, accel_yout_scaled, accel_
→˓zout_scaled))
print ("y rotation: " , get_y_rotation(accel_xout_scaled, accel_yout_scaled, accel_
→˓zout_scaled))

Print the deflection angles of the x-axis and y-axis.

Phenomenon Picture

2.2.10 MFRC522 RFID Module

Introduction

Radio Frequency Identification (RFID) refers to technologies that use wireless communication between an object (or
tag) and interrogating device (or reader) to automatically track and identify such objects.

Some of the most common applications for this technology include retail supply chains, military supply chains, auto-
mated payment methods, baggage tracking and management, document tracking and pharmaceutical management, to
name a few.

In this project, we will use RFID for reading and writing.

256 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• MFRC522 Module

6.3. Input 257

SunFounder raphael-kit

Schematic Diagram

258 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Install the Spidev and MFRC522 libraries.

Step 3: Set up SPI (refer to SPI Configuration for more details. If you have set SPI, skip this step.)

Step 4: Go to the folder of the code.

cd /home/pi/raphael-kit/python

Step 5: After running 2.2.10_write.py. You need to write a message first, press Enter to confirm, then put the
card on the MFRC522 module, wait for “Data writing is complete” to appear and take the card away, or rewrite the
message to another card and exit by Ctrl+C.

sudo python3 2.2.10_write.py

6.3. Input 259

SunFounder raphael-kit

Step 6: Now run 2.2.10_read.py to read the information of the tag or card you have written.

sudo python3 2.2.10_read.py

Code Explanation

reader = SimpleMFRC522()

Instantiate SimpleMFRC522() class.

reader.read()

This function is used to read card data. If the reading is successful, id and text will be returned.

reader.write(text)

This function is used to write information to the card, press Enter key to finish writing. text is the information to
be written to the card.

Phenomenon Picture

260 Chapter 6. Play with Python

SunFounder raphael-kit

6.4 Audiovisual

Note: When use the camera module, you may need a screen for a better experience, refer to: Connect your Raspberry
Pi. Of course, if you don’t have a screen, you can also access the Raspberry Pi desktop remotely, for a detailed tutorial
please refer to Remote Desktop.

6.4.1 3.1.1 Photograph Module

Introduction

In this kit, equipped with a camera module, let’s try to take a picture with Raspberry Pi.

Components

For more information on how to connect the camera module and its configuration, please refer to Camera Module.

6.4. Audiovisual 261

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

Experimental Procedures

Step 1: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 2: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 3.1.1_PhotographModule.py

After the code runs, the camera will take a photo. Now you can see the photo named my_photo.jpg in the /home/
pi directory.

Note: You can also open 3.1.1_PhotographModule.py in the /home/pi/raphael-kit/python/ path
with a Python IDE, click Run button to run, and stop the code with Stop button.

If you want to download the photo to your PC, please refer to Filezilla Software.

Code

from picamera import PiCamera

camera = PiCamera()

def setup():
camera.start_preview(alpha=200)

def main():
camera.capture('/home/pi/my_photo.jpg')
while True:

pass

def destroy():
camera.stop_preview()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

from picamera import PiCamera

camera = PiCamera()

Import the picamera library and instantiate the PiCamera class to use the camera module.

start_preview(**options)

Show the preview overlay and change the transparency level of the preview with alpha - from 0 to 255. This method
starts a camera preview as an overlay on the Pi’s primary display (HDMI or composite). By default, the renderer will

262 Chapter 6. Play with Python

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

be opaque and fullscreen.

This means the default preview overrides whatever is currently visible on the display. More specifically, the preview
does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply
an overlay on the Pi’s video output. To stop the preview and reveal the display again, call stop_preview() . The
preview can be started and stopped multiple times during the lifetime of the PiCamera object.

camera.capture('/home/pi/my_photo.jpg')

Capture an image from the camera, storing it in /home/pi/.

Note: You can use camera.capture() function and for loop together to achieve continuous shooting. And use
the delay function to adjust the time interval for taking pictures.

for i in 5:
camera.capture('/home/pi/my_photo%s.jpg' % i)

6.4.2 3.1.2 Video Module

Introduction

In addition to taking photos, the Camera Module can also be used to record videos.

Components

For more information on how to connect the camera module and its configuration, please refer to Camera Module.

6.4. Audiovisual 263

SunFounder raphael-kit

Experimental Procedures

Step 1: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 2: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 3.1.2_VideoModule.py

Run the code to start recording. Press Ctrl+C to end the recording. Name the video my_video.h264 and store it
in the /home/pi directory.

Note: You can also open 3.1.2_PhotographModule.py in the /home/pi/raphael-kit/python/ path
with a Python IDE, click Run button to run, and stop the code with Stop button.

If you want to send photos to your PC, please refer to Filezilla Software.

Code

from picamera import PiCamera

camera = PiCamera()

def setup():
camera.start_preview(alpha=200)

def main():
camera.start_recording('/home/pi/my_video.h264')
while True:

pass

def destroy():
camera.stop_recording()
camera.stop_preview()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

start_recording(output, format=None, resize=None, splitter_port=1, **options)

Start recording video from the camera, storing it in output.

camera.stop_recording()

End the recording.

264 Chapter 6. Play with Python

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

6.4.3 3.1.3 Audio Module

Introduction

In this project, let’s make a DIY stereo with an audio power amplifier module, 8ohm/2w speakers and a 3.5mm Audio
cable.

Components

• GPIO Extension Board

• Breadboard

• Audio Module and Speaker

6.4. Audiovisual 265

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm
audio jack.

266 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 3.1.3_AudioModule.py

After the code runs, you can enjoy the music.

Note: If your speaker have no sound, it may be because the Raspberry Pi has selected the wrong audio output (The
default is HDMI), you need to Change Audio Output to Headphones.

If you feel that the volume of the speakers is too low, you can Adjust Volume.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

from pygame import mixer

mixer.init()

def main():
mixer.music.load('/home/pi/raphael-kit/music/my_music.mp3')
mixer.music.set_volume(0.7)
mixer.music.play()
while True:

(continues on next page)

6.4. Audiovisual 267

SunFounder raphael-kit

(continued from previous page)

pass# Don't do anything.

def destroy():
mixer.music.stop()

if __name__ == '__main__':
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

from pygame import mixer

mixer.init()

Import the mixer method in the pygame library and initialize the method.

mixer.music.load('/home/pi/raphael-kit/music/my_music.mp3')
mixer.music.set_volume(0.7)
mixer.music.play()

This code reads the my_music.mp3 file in the /home/pi/raphael-kit/music directory and sets the volume
to 0.7(The range is 0~1). The Raspberry Pi will start playing audio When mixer.music.play() is called.

Note: You can also upload other music files to your Raspberry Pi. For a detailed tutorial, please refer to: Filezilla
Software.

mixer.music.stop()

Calling mixer.music.stop() will stop playing audio. In addition, you can also pause with mixer.music.
pause() and continue with mixer.music.unpause().

268 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

6.4.4 3.1.4 Text-to-speech

Introduction

In many places, we can come into contact with TTS (Text-to-speech) technology, which converts text into natural-
sounding speech and brings people a good interactive experience.

Let’s try to make your project speak.

6.4. Audiovisual 269

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Audio Module and Speaker

270 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm
audio jack.

6.4. Audiovisual 271

SunFounder raphael-kit

Step 2: Install espeak module.

sudo apt-get install espeak -y

Step 3: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 4: Run.

python3 3.1.4_Text-to-speech.py

Raspberry pi will greet you kindly after the code runs, and it will say goodbye to you when the code stops.

Note: If your speaker have no sound, it may be because the Raspberry Pi has selected the wrong audio output (The
default is HDMI), you need to Change Audio Output to Headphones.

If you feel that the volume of the speakers is too low, you can Adjust Volume.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect. After confirming
that there are no problems, you can use the Copy button to copy the modified code, then open the source code in
Terminal via nano cammand and paste it.

from tts import TTS

tts = TTS(engine="espeak")

(continues on next page)

272 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

tts.lang('en-US')

def main():
tts.say('Hello, nice to meet you!')

def destroy():
tts.say('See you later')

if __name__ == '__main__':
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

from tts import TTS

tts = TTS(engine="espeak")

Import the TTS class and instantiate an object.

tts.lang('en-US')

Set the language.

Note: Currently the switchable language only supports English.

tts.say("Hello, nice to meet you!")

Fill in the text to be said as a parameter, after executing tts.say(), Raspberry Pi will say the text you wrote.

6.4. Audiovisual 273

SunFounder raphael-kit

Phenomenon Picture

6.5 IoT

In this article, we’ll show you how to connect your Raspberry Pi to the Blynk platform to make some interesting IoT
projects.

Blynk is a full suite of software required to prototype, deploy, and remotely manage connected electronic devices at
any scale: from personal IoT projects to millions of commercial connected products. With Blynk anyone can connect
their hardware to the cloud and build a no-code iOS, Android, and web applications to analyze real-time and historical
data coming from devices, control them remotely from anywhere in the world, receive important notifications, and
much more. . .

274 Chapter 6. Play with Python

SunFounder raphael-kit

6.5.1 Get Start with Blynk

You will learn how to use Blynk in this project.

In the event that you trigger widgets on Blynk, your Raspberry Pi will print out their values.

Follow the steps below, and note that you must do them in order and not skip any chapters.

6.5. IoT 275

SunFounder raphael-kit

1. Configuring the Blynk

1. Go to the BLYNK and click START FREE.

2. Fill in your email address to register an account.

276 Chapter 6. Play with Python

https://blynk.io/

SunFounder raphael-kit

3. Go to your email address to complete your account registration.

6.5. IoT 277

SunFounder raphael-kit

4. Afterwards, Blynk Tour will appear and you can read it to learn the basic information about the Blynk.

5. Next we need to create a template and device, click Cancel.

278 Chapter 6. Play with Python

SunFounder raphael-kit

6. Go to Template from the navigation bar.

7. Create New Template

6.5. IoT 279

SunFounder raphael-kit

8. Fill in NAME, feel free to do so; HARDWARE should be Raspberry Pi. Then Done.

9. You will be redirected to the Info page, just click on save in the top right corner.

10. Go to Search page from the navigation bar.

280 Chapter 6. Play with Python

SunFounder raphael-kit

11. Create New Device.

12. From template.

6.5. IoT 281

SunFounder raphael-kit

13. Select TEMPLATE as the one you just set, DEVICE NAME can be customized. Then click Create.

14. You should now see a page like this one, which means that your initial Blynk setup is complete.

282 Chapter 6. Play with Python

SunFounder raphael-kit

2. Edit Dashboard

1. Click on the menu icon in the upper right corner and select edit dashboard.

2. Then drag any CONTROL Widgets you want onto the Dashboard. I dragged a Switch and a Slider.

6.5. IoT 283

SunFounder raphael-kit

3. Tap the setting icon on the widget.

4. Create Datastream, select Virtual Pin

284 Chapter 6. Play with Python

SunFounder raphael-kit

5. Complete the datastream setup. Here is the datastream created for Switch, so DATA TYPE select Interger,
MIN and MAX set to 0 and 1. Create and then Save.

6.5. IoT 285

SunFounder raphael-kit

6. Use the same steps to create a Datastream for the slider widget, and again, modify DATA TYPE, MIN and
MAX to what you need.

286 Chapter 6. Play with Python

SunFounder raphael-kit

7. When finished, click Save And Apply at the top right.

6.5. IoT 287

SunFounder raphael-kit

3. Install the Blynk library

Run the following command to install.

cd /home/pi
git clone https://github.com/vshymanskyy/blynk-library-python.git
cd blynk-library-python
sudo python3 setup.py

4. Download the Example

We have provided some examples, please run the following command to download them.

cd /home/pi
git clone https://github.com/sunfounder/blynk-raspberrypi-python.git

5. Run the Code

1. Go to Blynk’s Device Info page, you will see some information under FIRMWARE CONFIGURATION, you
need to copy BLYNK_AUTH_TOKEN down.

2. Edit the code.

cd /home/pi/blynk-raspberrypi-python
sudo nano blynk_start.py

3. Find the line below and past your BLYNK_AUTH_TOKEN.

BLYNK_AUTH = 'YourAuthToken'

4. Run the code.

sudo python3 blynk_start.py

5. Go to Blynk, and operate the widget on Dashboard.

288 Chapter 6. Play with Python

SunFounder raphael-kit

6. Now you will be able to see your actions on the terminal.

..
___ __ __
/ _)/ /_ _____ / /__

/ _ / / // / _ \/ '_/
/____/_/_, /_//_/_/_\

/___/ for Python v1.0.0 (linux)

Connecting to blynk.cloud:443...
Blynk ready. Ping: 142 ms
V0 value: ['1']
V0 value: ['0']
V1 value: ['3']
V1 value: ['8']
V0 value: ['1']

6.5.2 Smart Light

In this project, we use Blynk’s Silder to control the brightness of the LED, turning it on and off with Switch.

Note: Before starting this project, we recommend that you complete Get Start with Blynk. The following will give
you a clear understanding of Blynk.

1. Wiring

6.5. IoT 289

SunFounder raphael-kit

2. Create Widget and Datastream

1. Click on the menu icon in the upper right corner and select edit dashboard.

2. Add a Switch widget and a Slider widget to the Dashboard.

290 Chapter 6. Play with Python

SunFounder raphael-kit

3. Create a Datastream for the Switch widget (I used V3). It will be used to control the turning on and off of the
LED.

6.5. IoT 291

SunFounder raphael-kit

4. Create a Datastream for the Slider widget (I used V2), its value range is 0 to 100, it will be used to control the
brightness of the LED.

292 Chapter 6. Play with Python

SunFounder raphael-kit

5. When finished, click Save And Apply at the top right.

3. Run the Code

1. Edit the code

6.5. IoT 293

SunFounder raphael-kit

cd /home/pi/blynk-raspberrypi-python
sudo nano blynk_light.py

2. Find the line below and past your BLYNK_AUTH_TOKEN.

BLYNK_AUTH = 'YourAuthToken'

3. Run the code.

sudo python3 blynk_light.py

4. Go to Blynk, operate widget on Dashboard. now you click switch widget will turn on/off LED. slide Slider
widget will change LED brightness.

5. If you want to use Blynk on mobile devices, please refer to How to use Blynk on mobile device?.

6.5.3 Door Window Sensor

When you’re outside, you’ve probably had this confusion. “Are the doors and windows of my house closed?”

To solve this problem, in this project, we will build a door and window sensor with Reed Switch and magnets.

Install this sensor and magnet on both sides of the door or window. You will be able to check whether your doors and
windows are closed or not from the Blynk APP on your phone.

Note: Before starting this project, we recommend that you complete Get Start with Blynk. The following will give
you a clear understanding of Blynk.

1. Wiring

294 Chapter 6. Play with Python

SunFounder raphael-kit

2. Create Datastream

1. Click on the menu icon in the upper right corner and select edit dashboard.

2. Go to the Datastreams page and create a New Datastream.

6.5. IoT 295

SunFounder raphael-kit

3. Create a Virtual Pin V4.

4. When finished, click Save And Apply at the top right.

3. Run the Code

1. Edit the code

cd /home/pi/blynk-raspberrypi-python
sudo nano blynk_reed.py

2. Find the line below and past your BLYNK_AUTH_TOKEN.

BLYNK_AUTH = 'YourAuthToken'

3. Run the code.

sudo python3 blynk_reed.py

4. Open Blynk APP

Note: As datastreams can only be created in Blynk on the web, you will need to reference different projects to create
datastreams on the web, then follow the tutorial below to create widgets in Blynk on your mobile device.

296 Chapter 6. Play with Python

SunFounder raphael-kit

1. Open Google Play or APP Store on your mobile device and search for “Blynk IoT” (not Blynk(legacy)) to
download.

2. After opening the APP, login in, this account should be the same as the account used on the web client.

3. Then go to Dashboard (if you don’t have one, create one) and you will see that the Dashboard for mobile and
web are independent of each other.

4. Click Edit Icon.

5. Click on the blank area.

6. Choose LED widget.

6.5. IoT 297

SunFounder raphael-kit

7. Now you will see a LED widget appear in the blank area, even if it looks like a blank grid, click on it.

8. LED Settings will appear, select the V4 datastreams you just set in the web page. Note that each widget
corresponds to a different datastream in each project.

9. Go back to the Dashboard page. Now if you see that the LED widget is filled with color, your door or window
is open; if the LED widget is not filled with color, the door or window is closed.

298 Chapter 6. Play with Python

SunFounder raphael-kit

6.5.4 Smart Fan

In this project, you can see the temperature from Blynk and turn on the fan remotely.

Note: Before starting this project, we recommend that you complete Get Start with Blynk. The following will give
you a clear understanding of Blynk.

1. Wiring

2. Create Widget and Datastream

1. Click on the menu icon in the upper right corner and select edit dashboard.

2. Add a Switch widget and a Label widget to the Dashboard.

6.5. IoT 299

SunFounder raphael-kit

3. Create a Datastream (I used V3) for the Switch widget. It will be used to turn on the Motor.

300 Chapter 6. Play with Python

SunFounder raphael-kit

4. Create a Datastream for the Label widget(I used V0). It will be used to display the temperature. Set DATA
TYPE to String.

6.5. IoT 301

SunFounder raphael-kit

5. When finished, click Save And Apply at the top right.

3. Run the Code

1. Edit the code

cd /home/pi/blynk-raspberrypi-python
sudo nano blynk_motor.py

2. Find the line below and past your BLYNK_AUTH_TOKEN.

302 Chapter 6. Play with Python

SunFounder raphael-kit

BLYNK_AUTH = 'YourAuthToken'

3. Run the code.

sudo python3 blynk_motor.py

4. Go to Blynk, on the Dashboard you can check the temperature via Label widget; you can turn on/off the fan via
Switch widget.

5. If you want to use Blynk on mobile devices, please refer to How to use Blynk on mobile device?.

6.5.5 Temperature Recorder

In this project, you can see the current temperature and the temperature change line graph from Blynk.

Note: Before starting this project, we recommend that you complete Get Start with Blynk. The following will give
you a clear understanding of Blynk.

1. Wiring

2. Create Widget and Datastream

1. Click on the menu icon in the upper right corner and select edit dashboard.

2. Add a Gauge widget and a Chart widget to the Dashboard.

6.5. IoT 303

SunFounder raphael-kit

3. Create a Datastream for the Gauge widget (I used V5). It will be used to display the temperature. Set DATA
TYPE to Double, DECIMALS to #. # (two valid decimal places).

304 Chapter 6. Play with Python

SunFounder raphael-kit

4. Add the V5 Datastream you just created to the Chart widget.

6.5. IoT 305

SunFounder raphael-kit

5. When finished, click Save And Apply at the top right.

3. Run the Code

1. Edit the code

cd /home/pi/blynk-raspberrypi-python
sudo nano blynk_temp.py

2. Find the line below and past your BLYNK_AUTH_TOKEN.

BLYNK_AUTH = 'YourAuthToken'

3. Run the code.

sudo python3 blynk_temp.py

4. Go to Blynk. Now you can view the temperature and temperature change line graph on the Dashboard.

306 Chapter 6. Play with Python

SunFounder raphael-kit

5. If you want to use Blynk on mobile devices, please refer to How to use Blynk on mobile device?.

6.6 Extension

6.6.1 4.1.1 Camera

Introduction

Here we will make a camera with a shutter, when you press the button, the camera shoots while the LED flashes.

6.6. Extension 307

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Button

• Camera Module

308 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18

Experimental Procedures

Step 1: Build the circuit.

6.6. Extension 309

SunFounder raphael-kit

Step 2: To connect the camera module and complete the configuration, please refer to: Camera Module.

Step 3: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 4: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 5: Run.

sudo python3 4.1.1_Camera.py

After the code runs, press the button, the Raspberry Pi will flash the LED and take a picture. The photo will be named
my_photo.jpg and stored in the /home/pi directory.

Note: You can also open 4.1.1_Camera.py in the /home/pi/raphael-kit/python/ path with a Python
IDE, click Run button to run, and stop the code with Stop button.

If you want to download the photo to your PC, please refer to Filezilla Software.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

from picamera import PiCamera
import RPi.GPIO as GPIO
import time

camera = PiCamera()

LedPin = 17 # Set GPIO17 as LED pin
BtnPin = 18 # Set GPIO18 as button pin

status = False

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
GPIO.setup(BtnPin, GPIO.IN)
camera.start_preview(alpha=200)

def takePhotos(pin):
global status
status = True

def main():
global status
GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)
while True:

if status:
for i in range(5):

(continues on next page)

310 Chapter 6. Play with Python

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

(continued from previous page)

GPIO.output(LedPin, GPIO.LOW)
time.sleep(0.1)
GPIO.output(LedPin, GPIO.HIGH)
time.sleep(0.1)

camera.capture('/home/pi/my_photo.jpg')
print ('Take a photo!')
status = False

else:
GPIO.output(LedPin, GPIO.HIGH)

time.sleep(1)

def destroy():
camera.stop_preview()
GPIO.output(LedPin, GPIO.HIGH)
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)

Set the event of BtnPin, when the button is pressed (the level signal changes from high to low) , call the function
takePhotos().

def takePhotos(pin):
global status
status = True

When takePhotos() is called, modify the status to True.

if status:
for i in range(5):

GPIO.output(LedPin, GPIO.LOW)
time.sleep(0.1)
GPIO.output(LedPin, GPIO.HIGH)
time.sleep(0.1)

camera.capture('/home/pi/my_photo.jpg')
print ('Take a photo!')
status = False

else:
GPIO.output(LedPin, GPIO.HIGH)

time.sleep(1)

When status is True, the Raspberry Pi will flash the LED and take a picture. The photo will be named my_photo.
jpg and stored in the /home/pi directory.

6.6. Extension 311

SunFounder raphael-kit

Phenomenon Picture

6.6.2 4.1.2 Music Player

Introduction

In project 3.1.3 Audio Module, let speaker play a song. Now we add 3 buttons to control the play/pause and volume of
the music.

312 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Audio Module and Speaker

• Button

6.6. Extension 313

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm
audio jack.

314 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 4.1.2_MusicPlayer.py

After the code runs, Raspberry Pi will play the my_music.mp3 file in the /home/pi/raphael-kit/music
directory.

• Button 1 pauses/play the music.

• Button 2 decreases the volume.

• Button 3 increases the volume.

If you want to upload other music files to Raspberry Pi, you can refer to Filezilla Software.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

from pygame import mixer
import RPi.GPIO as GPIO
import time

BtnPin1 = 18
BtnPin2 = 17
BtnPin3 = 27
volume = 0.7

(continues on next page)

6.6. Extension 315

SunFounder raphael-kit

(continued from previous page)

status = False
upPressed = False
downPressed = False
playPressed = False

def setup():
mixer.init()
GPIO.setmode(GPIO.BCM)
GPIO.setup(BtnPin1, GPIO.IN, GPIO.PUD_UP)
GPIO.setup(BtnPin2, GPIO.IN, GPIO.PUD_UP)
GPIO.setup(BtnPin3, GPIO.IN, GPIO.PUD_UP)

def clip(x,min,max):
if x < min:

return min
elif x > max:

return max
return x

def play(pin):
global playPressed
playPressed = True

def volDown(pin):
global downPressed
downPressed = True

def volUp(pin):
global upPressed
upPressed = True

def main():
global volume, status
global downPressed, upPressed, playPressed
mixer.music.load('/home/pi/raphael-kit/music/my_music.mp3')
mixer.music.set_volume(volume)
mixer.music.play()
GPIO.add_event_detect(BtnPin1, GPIO.FALLING, callback=play)
GPIO.add_event_detect(BtnPin2, GPIO.FALLING, callback=volDown)
GPIO.add_event_detect(BtnPin3, GPIO.FALLING, callback=volUp)
while True:

if upPressed:
volume = volume + 0.1
upPressed = False

if downPressed:
volume = volume - 0.1
downPressed = False

if playPressed:
if status:

mixer.music.pause()
status = not status

else:
mixer.music.unpause()
status = not status

playPressed = False
time.sleep(0.5)

(continues on next page)

316 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

volume = clip(volume,0.2,1)
mixer.music.set_volume(volume)
time.sleep(0.1)

def destroy():
Release resource
GPIO.cleanup()
mixer.music.stop()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

Code Explanation

from pygame import mixer

mixer.init()

Import the Mixer method in the pygame library and initialize the method.

BtnPin1 = 18
BtnPin2 = 17
BtnPin3 = 27
volume = 0.7

Define the pin ports of the three buttons and set the initial volume to 0.7.

upPressed = False
downPressed = False
playPressed = False

UpPressed, downPressed and playPressed are all interrupt flags, the corresponding task will be executed
When they are True.

def clip(x,min,max):
if x < min:

return min
elif x > max:

return max
return x

The clip() function is used to set the upper and lower limits of input parameters.

GPIO.add_event_detect(BtnPin1, GPIO.FALLING, callback=play)
GPIO.add_event_detect(BtnPin2, GPIO.FALLING, callback=volDown)
GPIO.add_event_detect(BtnPin3, GPIO.FALLING, callback=volUp)

Set the key detection events of BtnPin1, BtnPin2 and BtnPin3.

• When BtnPin1 is pressed, the interrupt function play() is executed.

6.6. Extension 317

SunFounder raphael-kit

• when BtnPin2 is pressed, the interrupt function volDown() is executed.

• When BtnPin3 is pressed, the interrupt function volUp() is executed.

Phenomenon Picture

6.6.3 4.1.3 Speech Clock

Introduction

In this project, let’s make a voice clock with a speaker and a 4-digit 7-segment display. The 4-digit 7-segment display
will display the time, and the speaker will broadcast the time every hour.

318 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Audio Module and Speaker

• 4-Digit 7-Segment Display

• 74HC595

6.6. Extension 319

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24

320 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Before this project, you need to make sure you complete 3.1.4 Text-to-speech.

Step 2: Use the command date to view the local time.

date

If the local time is different from the real time, you need to use the following command to set the time zone.

sudo dpkg-reconfigure tzdata

Choose your time zone.

6.6. Extension 321

SunFounder raphael-kit

Step 3: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 4.1.3_SpeechClock.py

When the code is run, the 4-digit 7-segment will display the time and chime on every hour.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
from tts import TTS
import time

tts = TTS(engine="espeak")
tts.lang('en-US')

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

(continues on next page)

322 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
for i in placePin:

GPIO.setup(i, GPIO.OUT)

def clearDisplay():
for i in range(8):

GPIO.output(SDI, 1)
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
for i in range(8):

GPIO.output(SDI, 0x80 & (data << i))
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
for i in placePin:

GPIO.output(i,GPIO.LOW)
GPIO.output(placePin[digit], GPIO.HIGH)

def loop():
status = 0
while True:

time.localtime(time.time())
hour = int(time.strftime('%H',time.localtime(time.time())))
minute = int(time.strftime('%M',time.localtime(time.time())))

clearDisplay()
pickDigit(0)
hc595_shift(number[minute % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[minute % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[hour % 10])

clearDisplay()
pickDigit(3)
hc595_shift(number[hour % 100//10])

if minute == 0 and status == 0:
tts.say('The time is now ' + str(hour) + ' hours and ' + str(minute) + '

→˓minutes')
status = 1

elif minute != 0:
(continues on next page)

6.6. Extension 323

SunFounder raphael-kit

(continued from previous page)

status = 0

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

time.localtime(time.time())
hour = int(time.strftime('%H',time.localtime(time.time())))
minute = int(time.strftime('%M',time.localtime(time.time())))

Through the function time.time(), we can get the timestamp of the current time (the number of floating-point
seconds that have passed since the 1970 epoch), and then use the time formatting method of the time module (time.
localtime(time.time())) to process the current timestamp, so that we can format the timestamp as a local
time.

The input result is:

time.struct_time(tm_year=2021, tm_mon=5, tm_mday=28, tm_hour=13, tm_min=54,
tm_sec=26, tm_wday=4, tm_yday=148, tm_isdst=0)

Finally, we use the time.strftime() method to format the large string of information into what we want.
If you want to get the current hour, you can get it through the function time.strftime('%H',time.
localtime(time.time())) .

The output of the specified formatted string obtained by modifying the first parameter are listed below.

%y Two-digit year representation(00-99)
%Y Four-digit year representation(000-9999)
%m month(01-12)
%H Day of the month(0-31)
%I Hours in a 24-hour clock(0-23)
%M Hours in 12-hour clock(01-12)
%y Minutes(00=59)
%S second(00-59)
%a Local simplified week name
%A Full local week name
%b Local simplified month name
%B Local full month name
%c Local corresponding date and time display
%j Day of the year(001-366)
%p The equivalent of local A.M. or P.M.
%U Num of weeks of one year(00-53)starting with Sunday
%w Week (0-6), starting with Sunday
%W Num of weeks of one year(00-53)starting with Monday
%x Local corresponding date representation
%X Local corresponding time representation
%Z The name of the current time zone

324 Chapter 6. Play with Python

SunFounder raphael-kit

Note: The output of the time.strftime() method is all string variables. Before using it, remember to do a
coercive type conversion.

clearDisplay()
pickDigit(0)
hc595_shift(number[minute % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[minute % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[hour % 10])

clearDisplay()
pickDigit(3)
hc595_shift(number[hour % 100//10])

The tens digit of the hour is displayed on the first 7-segment digital display, and the ones digit is displayed on the
second. Then the tens digit of the minutes is displayed on the third digital display, and the ones digit are displayed on
the last.

if minute == 0 and status == 0:
tts.say('The time is now ' + str(hour) + ' hours and ' + str(minute) + ' minutes')
status = 1

elif minute != 0:
status = 0

When the number of minutes is 0 (by hour), the Raspberry Pi will use TTS to announce the time for us.

6.6. Extension 325

SunFounder raphael-kit

Phenomenon Picture

6.6.4 4.1.4 Automatic Capture Camera

Introduction

When you are out, the little squirrels in the woods might visit your windowsill. Let’s make a automatic capture camera
to leave pictures of these little cuties!

326 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Camera Module

• PIR Motion Sensor Module

6.6. Extension 327

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17

Experimental Procedures

Before this project, you need to make sure you complete 3.1.1 Photograph Module .

Step 1: Build the circuit.

328 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: To connect the camera module and complete the configuration, please refer to: Camera Module.

Step 3: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 4: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

6.6. Extension 329

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

Step 5: Run.

sudo python3 4.1.4_AutomaticCaptureCamera.py

After the code runs, PIR will detect the surrounding environment, and if it senses the little squirrel passing by, the
camera will take a photo. The photo interval is 3 seconds, and the total number of photos taken will be displayed
through the print window.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

Note: You can also open 4.1.4_AutomaticCaptureCamera.py in the /home/pi/raphael-kit/
python/ path with a Python IDE, click Run button to run, and stop the code with Stop button.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

from picamera import PiCamera
import RPi.GPIO as GPIO
import time

camera = PiCamera()

pirPin = 17 # the pir connect to pin17

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(pirPin, GPIO.IN)
camera.start_preview(alpha=200)

(continues on next page)

330 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def main():
i = 1
while True:

pirVal = GPIO.input(pirPin)
if pirVal==GPIO.HIGH:

camera.capture('/home/pi/capture%s.jpg' % i)
print('The number is %s' % i)
time.sleep(3)
i = i + 1

def destroy():
GPIO.cleanup()
camera.stop_preview()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

pirVal = GPIO.input(pirPin)
if pirVal==GPIO.HIGH:

camera.capture('/home/pi/capture%s.jpg' % i)
print('The number is %s' % i)
time.sleep(3)
i = i + 1

Every time a little squirrel is detected by the PIR module, the Raspberry Pi will take a photo and tell you through the
print window how many pictures have been taken. The interval between each photo is 3s.

6.6. Extension 331

SunFounder raphael-kit

Phenomenon Picture

6.6.5 4.1.5 Intelligent Visual Doorbell

Introduction

In this project, let’s make a DIY intelligent visual doorbell.

332 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Button

• Audio Module and Speaker

• Camera Module

6.6. Extension 333

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

334 Chapter 6. Play with Python

SunFounder raphael-kit

Before this project, you need to make sure you complete 3.1.3 Audio Module & 3.1.2 Video Module.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 4.1.5_DoorBell.py

After the code runs, when the button is pressed, a bell will sound, and the camera will record a 5s video, which is
stored as the visitor.h264 file in the /home/pi directory. If you have a screen, you can also view visitors by
previewing the video in real time.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from picamera import PiCamera
from pygame import mixer
import RPi.GPIO as GPIO
import time

camera = PiCamera()

BtnPin = 18
status = False

(continues on next page)

6.6. Extension 335

SunFounder raphael-kit

(continued from previous page)

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(BtnPin, GPIO.IN, GPIO.PUD_UP)
mixer.init()

def takePhotos(pin):
global status
status = True

def main():
global status
GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)
while True:

if status:
mixer.music.load('/home/pi/raphael-kit/music/doorbell.wav')
mixer.music.set_volume(0.7)
mixer.music.play()
camera.start_preview(alpha=200)
camera.start_recording('/home/pi/visitor.h264')
print ('Have a visitor')
time.sleep(5)
mixer.music.stop()
camera.stop_preview()
camera.stop_recording()
status = False

def destroy():
GPIO.cleanup()
mixer.music.stop()
camera.stop_preview()
camera.stop_recording()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

status = False

This is a flag used to record whether the doorbell is used.

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)

Set the event of BtnPin, when the button is pressed (the level signal changes from high to low) , call the function
takePhotos().

if status:
mixer.music.load('/home/pi/raphael-kit/music/doorbell.wav')
mixer.music.set_volume(0.7)
mixer.music.play()
camera.start_preview(alpha=200)
camera.start_recording('/home/pi/visitor.h264')

(continues on next page)

336 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

print ('Have a visitor')
time.sleep(5)
mixer.music.stop()
camera.stop_preview()
camera.stop_recording()
status = False

Five seconds are used here to play music and record videos, thus functioning as a doorbell.

Phenomenon Picture

6.6.6 4.1.6 Magnetic Induction Alarm System

Introduction

When you get a precious vase, you can make a magnetic induction alarm system for it, no matter who moves it, you
can hear the alarm in time.

6.6. Extension 337

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

• Reed Switch Module

338 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

Step 2: Get into the folder of the code.

6.6. Extension 339

SunFounder raphael-kit

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.6_MagneticAlarmSystem.py

If the reed switch is affected by the magnet (for example, the reed switch is placed on the base and the magnet is
placed in the vase), the object is safe. At this time, the reed switch is in the closed state, and the buzzer is silent. After
removing the magnet (such as the vase being stolen), the reed switch is not affected by the magnetic, the switch opens,
and the buzzer sounds an alarm.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

BeepPin = 17
ReedPin = 18

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.HIGH)
GPIO.setup(ReedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def loop():
while True:

if GPIO.input(ReedPin) == 0:
GPIO.output(BeepPin, GPIO.HIGH)

else:
GPIO.output(BeepPin, GPIO.LOW)
time.sleep(0.1)
GPIO.output(BeepPin, GPIO.HIGH)
time.sleep(0.1)

def destroy():
GPIO.output(BeepPin, GPIO.HIGH)
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

def loop():
while True:

if GPIO.input(ReedPin) == 0:
GPIO.output(BeepPin, GPIO.HIGH)

(continues on next page)

340 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

else:
GPIO.output(BeepPin, GPIO.LOW)
time.sleep(0.1)
GPIO.output(BeepPin, GPIO.HIGH)
time.sleep(0.1)

We judge the state of the reed switch in the main loop. If the reed switch is closed, the buzzer does not work; otherwise,
the buzzer beeps.

Phenomenon Picture

6.6.7 4.1.7 Counting Device

Introduction

Here we will make a number-displaying counter system, consisting of a PIR sensor and a 4-digit segment display.
When the PIR detects that someone is passing by, the number on the 4-digit segment display will add 1. You can use
this counter to count the number of people walking through the passageway.

6.6. Extension 341

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 4-Digit 7-Segment Display

• 74HC595

• PIR Motion Sensor Module

342 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO26 Pin 37 25 26

6.6. Extension 343

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.7_CountingDevice.py

After the code runs, when the PIR detects that someone is passing by, the number on the 4-digit segment display will
add 1.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

344 Chapter 6. Play with Python

SunFounder raphael-kit

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

sensorPin = 26

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

counter = 0

def clearDisplay():
for i in range(8):

GPIO.output(SDI, 1)
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
for i in range(8):

GPIO.output(SDI, 0x80 & (data << i))
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

(continues on next page)

6.6. Extension 345

SunFounder raphael-kit

(continued from previous page)

def pickDigit(digit):
for i in placePin:

GPIO.output(i,GPIO.LOW)
GPIO.output(placePin[digit], GPIO.HIGH)

def display():
global counter
clearDisplay()
pickDigit(0)
hc595_shift(number[counter % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[counter % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[counter % 1000//100])

clearDisplay()
pickDigit(3)
hc595_shift(number[counter % 10000//1000])

def loop():
global counter
currentState = 0
lastState = 0
while True:

display()
currentState=GPIO.input(sensorPin)
if (currentState == 0) and (lastState == 1):

counter +=1
lastState=currentState

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
for i in placePin:

GPIO.setup(i, GPIO.OUT)
GPIO.setup(sensorPin, GPIO.IN)

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

Based on 1.1.5 4-Digit 7-Segment Display, this project adds PIR module to change the automatic counting into count
detecting. When the PIR detects that someone is passing by, the number on the 4-digit segment display will add 1.

346 Chapter 6. Play with Python

SunFounder raphael-kit

def display():
global counter
clearDisplay()
pickDigit(0)
hc595_shift(number[counter % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[counter % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[counter % 1000//100])

clearDisplay()
pickDigit(3)
hc595_shift(number[counter % 10000//1000])

First, start the fourth segment display, write the single-digit number. Then start the third segment display, and type
in the tens digit; after that, start the second and the first segment display respectively, and write the hundreds and
thousands digits respectively. Because the refreshing speed is very fast, we see a complete four-digit display.

def loop():
global counter

currentState = 0
lastState = 0
while True:

display()
currentState=GPIO.input(sensorPin)
if (currentState == 0) and (lastState == 1):

counter +=1
lastState=currentState

This is the main function: display the number on the 4-digit segment display and read the PIR value. When the PIR
detects that someone is passing by, the number on the 4-digit segment display will add 1.

6.6. Extension 347

SunFounder raphael-kit

Phenomenon Picture

6.6.8 4.1.8 Welcome

Introduction

In this project, we will use PIR to sense the movement of pedestrians, and use servos, LED, buzzer to simulate the
work of the sensor door of the convenience store. When the pedestrian appears within the sensing range of the PIR,
the indicator light will be on, the door will be opened, and the buzzer will play the opening bell.

348 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• PIR Motion Sensor Module

• Servo

6.6. Extension 349

SunFounder raphael-kit

• Buzzer

• Transistor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO18 Pin 12 1 18
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit.

350 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.8_Welcome.py

After the code runs, if the PIR sensor detects someone passing by, the door will automatically open (simulated by the
servo), turn on the indicator and play the doorbell music. After the doorbell music plays, the system will automatically
close the door and turn off the indicator light, waiting for the next time someone passes by.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

6.6. Extension 351

SunFounder raphael-kit

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500

ledPin = 18 # define the ledPin
pirPin = 17 # define the sensorPin
servoPin = 22 # define the servoPin
buzPin = 27 # define the buzzerpin

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes

CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes

CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

song = [CH[5],CH[2],CM[6],CH[2],CH[3],CH[6],CH[3],CH[5],CH[3],CM[6],CH[2]]

beat = [1,1,1,1,1,2,1,1,1,1,1,]

def setup():
global p
global Buzz # Assign a global variable to replace GPIO.PWM
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output

(continues on next page)

352 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

GPIO.setup(pirPin, GPIO.IN) # Set sensorPin's mode is input
GPIO.setup(servoPin, GPIO.OUT) # Set servoPin's mode is output
GPIO.output(servoPin, GPIO.LOW) # Set servoPin to low
GPIO.setup(buzPin, GPIO.OUT) # Set pins' mode is output

Buzz = GPIO.PWM(buzPin, 440) # 440 is initial frequency.
Buzz.start(50) # Start Buzzer pin with 50% duty ration

p = GPIO.PWM(servoPin, 50) # set Frequece to 50Hz
p.start(0) # Duty Cycle = 0

def map(value, inMin, inMax, outMin, outMax):
return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
angle = max(0, min(180, angle))
pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
pwm = map(pulse_width, 0, 20000, 0, 100)
p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

def doorbell():
for i in range(1, len(song)): # Play song 1

Buzz.ChangeFrequency(song[i]) # Change the frequency along the song note
time.sleep(beat[i] * 0.25) # delay a note for beat * 0.25s

time.sleep(1) # Wait a second for next song.

def closedoor():
GPIO.output(ledPin, GPIO.LOW)
for i in range(180, -1, -1): #make servo rotate from 180 to 0 deg

setAngle(i)
time.sleep(0.001)

time.sleep(1)
def opendoor():

GPIO.output(ledPin, GPIO.HIGH)
for i in range(0, 181, 1): #make servo rotate from 0 to 180 deg

setAngle(i) # Write to servo
time.sleep(0.001)

time.sleep(1)
doorbell()
closedoor()

def loop():
while True:

if GPIO.input(pirPin)==GPIO.HIGH:
opendoor()

def destroy():
GPIO.cleanup() # Release resource
p.stop()
Buzz.stop()

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
(continues on next page)

6.6. Extension 353

SunFounder raphael-kit

(continued from previous page)

except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will
→˓be executed.

destroy()

Code Explanation

def setup():
global p
global Buzz # Assign a global variable to replace GPIO.PWM
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output
GPIO.setup(pirPin, GPIO.IN) # Set sensorPin's mode is input
GPIO.setup(buzPin, GPIO.OUT) # Set pins' mode is output
Buzz = GPIO.PWM(buzPin, 440) # 440 is initial frequency.
Buzz.start(50) # Start Buzzer pin with 50% duty ration
GPIO.setup(servoPin, GPIO.OUT) # Set servoPin's mode is output
GPIO.output(servoPin, GPIO.LOW) # Set servoPin to low
p = GPIO.PWM(servoPin, 50) # set Frequece to 50Hz
p.start(0) # Duty Cycle = 0

These statements are used to initialize the pins of each component.

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
angle = max(0, min(180, angle))
pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
pwm = map(pulse_width, 0, 20000, 0, 100)
p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

Create a function, servowrite to write the angle in the servo that is 0-180.

def doorbell():
for i in range(1,len(song)): # Play song1

Buzz.ChangeFrequency(song[i]) # Change the frequency along the song note
time.sleep(beat[i] * 0.25) # delay a note for beat * 0.25s

Create a function, doorbell to enable the buzzer to play music.

def closedoor():
GPIO.output(ledPin, GPIO.LOW)
Buzz.ChangeFrequency(1)
for i in range(180, -1, -1): #make servo rotate from 180 to 0 deg

setAngle(i)
time.sleep(0.001)

Close the door and turn off the indicator light.

def opendoor():
GPIO.output(ledPin, GPIO.HIGH)
for i in range(0, 181, 1): #make servo rotate from 0 to 180 deg

setAngle(i) # Write to servo
time.sleep(0.001)

doorbell()
closedoor()

The function, opendoor() consists of several parts: turn on the indicator light, turn the servo (to simulate the action
of opening the door), play the doorbell music of the convenience store, and call the function , closedoor() after
playing music.

354 Chapter 6. Play with Python

SunFounder raphael-kit

def loop():
while True:

if GPIO.input(pirPin)==GPIO.HIGH:
opendoor()

When PIR senses that someone is passing by, it calls the function, opendoor() .

Phenomenon Picture

6.6. Extension 355

SunFounder raphael-kit

6.6.9 4.1.9 Reversing Alarm

Introduction

In this project, we will use LCD, buzzer and ultrasonic sensors to make a reverse assist system. We can put it on the
remote control vehicle to simulate the actual process of reversing the car into the garage.

Components

• GPIO Extension Board

• Breadboard

356 Chapter 6. Play with Python

SunFounder raphael-kit

• Resistor

• Buzzer

• Transistor

• Ultrasonic Module

• I2C LCD1602

Schematic Diagram

Ultrasonic sensor detects the distance between itself and the obstacle that will be displayed on the LCD in the form
of code. At the same time, the ultrasonic sensor let the buzzer issue prompt sound of different frequency according to
different distance value.

T-Board Name physical wiringPi BCM
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO17 Pin 11 0 17
SDA1 Pin 3
SCL1 Pin 5

Experimental Procedures

Step 1: Build the circuit.

6.6. Extension 357

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.9_ReversingAlarm.py

As the code runs, ultrasonic sensor module detects the distance to the obstacle and then displays the information about
the distance on LCD1602; besides, buzzer emits warning tone whose frequency changes with the distance.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import LCD1602
import time
import RPi.GPIO as GPIO

TRIG = 16
ECHO = 18
BUZZER = 11

def lcdsetup():
LCD1602.init(0x27, 1) # init(slave address, background light)
LCD1602.clear()
LCD1602.write(0, 0, 'Ultrasonic Starting')
LCD1602.write(1, 1, 'By SunFounder')

(continues on next page)

358 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

time.sleep(2)

def setup():
GPIO.setmode(GPIO.BOARD)
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)
GPIO.setup(BUZZER, GPIO.OUT, initial=GPIO.LOW)
lcdsetup()

def distance():
GPIO.output(TRIG, 0)
time.sleep(0.000002)

GPIO.output(TRIG, 1)
time.sleep(0.00001)
GPIO.output(TRIG, 0)

while GPIO.input(ECHO) == 0:
a = 0

time1 = time.time()
while GPIO.input(ECHO) == 1:

a = 1
time2 = time.time()

during = time2 - time1
return during * 340 / 2 * 100

def destroy():
GPIO.output(BUZZER, GPIO.LOW)
GPIO.cleanup()
LCD1602.clear()

def loop():
while True:

dis = distance()
print (dis, 'cm')
print ('')
GPIO.output(BUZZER, GPIO.LOW)
if (dis > 400):

LCD1602.clear()
LCD1602.write(0, 0, 'Error')
LCD1602.write(3, 1, 'Out of range')
time.sleep(0.5)

else:
LCD1602.clear()
LCD1602.write(0, 0, 'Distance is')
LCD1602.write(5, 1, str(round(dis,2)) +' cm')
if(dis>=50):

time.sleep(0.5)
elif(dis<50 and dis>20):

for i in range(0,2,1):
GPIO.output(BUZZER, GPIO.HIGH)
time.sleep(0.05)
GPIO.output(BUZZER, GPIO.LOW)
time.sleep(0.2)

elif(dis<=20):
for i in range(0,5,1):

(continues on next page)

6.6. Extension 359

SunFounder raphael-kit

(continued from previous page)

GPIO.output(BUZZER, GPIO.HIGH)
time.sleep(0.05)
GPIO.output(BUZZER, GPIO.LOW)
time.sleep(0.05)

if __name__ == "__main__":
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

def lcdsetup():
LCD1602.init(0x27, 1) # init(slave address, background light)

def setup():
GPIO.setmode(GPIO.BOARD)
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)
GPIO.setup(BUZZER, GPIO.OUT, initial=GPIO.LOW)
lcdsetup()

In this program, we apply the previously used components synthetically. Here we use buzzers, LCD and ultrasonic.
We can initialize them in the same way as we did before.

dis = distance()
print (dis, 'cm')
print ('')
GPIO.output(BUZZER, GPIO.LOW)
if (dis > 400):

LCD1602.clear()
LCD1602.write(0, 0, 'Error')
LCD1602.write(3, 1, 'Out of range')
time.sleep(0.5)

else:
LCD1602.clear()
LCD1602.write(0, 0, 'Distance is')
LCD1602.write(5, 1, str(round(dis,2)) +' cm')

Here we get the values of the ultrasonic sensor and get the distance through calculation. If the value of distance is
greater than the range of value to be detected, an error message is printed on the LCD. And if the distance is within
the working range, the corresponding results will be output.

LCD1602.write(5, 1, str(round(dis,2)) +' cm')

Since the LCD output only supports character types, we need to use str () to convert numeric values to characters. We
are going to round it to two decimal places.

if(dis>=50):
time.sleep(0.5)

elif(dis<50 and dis>20):
for i in range(0,2,1):

GPIO.output(BUZZER, GPIO.HIGH)

(continues on next page)

360 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

time.sleep(0.05)
GPIO.output(BUZZER, GPIO.LOW)
time.sleep(0.2)

elif(dis<=20):
for i in range(0,5,1):

GPIO.output(BUZZER, GPIO.HIGH)
time.sleep(0.05)
GPIO.output(BUZZER, GPIO.LOW)
time.sleep(0.05)

This judgment condition is used to control the sound of the buzzer. According to the difference in distance, it can be
divided into three cases, in which there will be different sound frequencies. Since the total value of delay is 500, all of
them can provide a 500ms interval for the ultrasonic sensor to work.

Phenomenon Picture

6.6.10 4.1.10 Smart Fan

Introduction

In this project, we will use motors, buttons and thermistors to make a manual + automatic smart fan whose wind speed
is adjustable.

6.6. Extension 361

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Power Supply Module

• Thermistor

• L293D

• ADC0834

• Button

• DC Motor

362 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
GPIO5 Pin 29 21 5
GPIO6 Pin 31 22 6
GPIO13 Pin 33 23 13

6.6. Extension 363

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit. Insert the jumper cap of the
power module into the 5V bus strips of the breadboard.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 4.1.10_SmartFan.py

As the code runs, start the fan by pressing the button. Every time you press, 1 speed grade is adjusted up or down.
There are 5 kinds of speed grades: 0~4. When set to the 4th speed grade and you press the button, the fan stops working
with a 0 wind speed.

Once the temperature goes up or down for more than 2°C, the speed automatically gets 1-grade faster or slower.

364 Chapter 6. Play with Python

SunFounder raphael-kit

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
import ADC0834
import math

Set up pins
MotorPin1 = 5
MotorPin2 = 6
MotorEnable = 13
BtnPin = 22

def setup():
global p_M1,p_M2
ADC0834.setup()
GPIO.setmode(GPIO.BCM)
GPIO.setup(MotorPin1, GPIO.OUT)
GPIO.setup(MotorPin2, GPIO.OUT)
p_M1=GPIO.PWM(MotorPin1,2000)
p_M2=GPIO.PWM(MotorPin2,2000)
p_M1.start(0)
p_M2.start(0)
GPIO.setup(MotorEnable, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(BtnPin, GPIO.IN)

def temperature():
analogVal = ADC0834.getResult()
Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15
Fah = Cel * 1.8 + 32
return Cel

def motor(level):
if level == 0:

GPIO.output(MotorEnable, GPIO.LOW)
return 0

if level>=4:
level = 4

GPIO.output(MotorEnable, GPIO.HIGH)
p_M1.ChangeDutyCycle(level*25)
return level

def main():
lastState=0
level=0
markTemp = temperature()
while True:

currentState =GPIO.input(BtnPin)
(continues on next page)

6.6. Extension 365

SunFounder raphael-kit

(continued from previous page)

currentTemp=temperature()
if currentState == 1 and lastState == 0:

level=(level+1)%5
markTemp = currentTemp
time.sleep(0.5)

lastState=currentState
if level!=0:

if currentTemp-markTemp <= -2:
level = level -1
markTemp=currentTemp

if currentTemp-markTemp >= 2:
level = level +1
markTemp=currentTemp

level = motor(level)

def destroy():
GPIO.output(MotorEnable, GPIO.LOW)
p_M1.stop()
p_M2.stop()
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

def temperature():
analogVal = ADC0834.getResult()
Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15
Fah = Cel * 1.8 + 32
return Cel

temperture() works by converting thermistor values read by ADC0834 into temperature values. Refer to 2.2.2
Thermistor for more details.

def motor(level):
if level == 0:

GPIO.output(MotorEnable, GPIO.LOW)
return 0

if level>=4:
level = 4

GPIO.output(MotorEnable, GPIO.HIGH)
p_M1.ChangeDutyCycle(level*25)
return level

This function controls the rotating speed of the motor. The range of the Lever: 0-4 (level 0 stops the working motor).
One level adjustment stands for a 25% change of the wind speed.

366 Chapter 6. Play with Python

SunFounder raphael-kit

def main():
lastState=0
level=0
markTemp = temperature()
while True:

currentState =GPIO.input(BtnPin)
currentTemp=temperature()
if currentState == 1 and lastState == 0:

level=(level+1)%5
markTemp = currentTemp
time.sleep(0.5)

lastState=currentState
if level!=0:

if currentTemp-markTemp <= -2:
level = level -1
markTemp=currentTemp

if currentTemp-markTemp >= 2:
level = level +1
markTemp=currentTemp

level = motor(level)

The function main() contains the whole program process as shown:

1) Constantly read the button state and the current temperature.

2) Every press makes level+1 and at the same time, the temperature is updated. The Level ranges 1~4.

3) As the fan works (the level is not 0), the temperature is under detection. A 2°C+ change causes the up and
down of the level.

4) The motor changes the rotating speed with the Level.

Phenomenon Picture

6.6. Extension 367

SunFounder raphael-kit

6.6.11 4.1.11 Battery Indicator

Introduction

In this project, we will make a battery indicator device that can visually display the battery level on the LED Bargraph.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Bar Graph

• ADC0834

368 Chapter 6. Play with Python

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO25 Pin 22 6 25
GPIO12 Pin 32 26 12
GPIO16 Pin 36 27 16
GPIO20 Pin 38 28 20
GPIO21 Pin 40 29 21
GPIO5 Pin 29 21 5
GPIO6 Pin 31 22 6
GPIO13 Pin 33 23 13
GPIO19 Pin 35 24 19
GPIO26 Pin 37 25 26

6.6. Extension 369

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.11_BatteryIndicator.py

After the program runs, give the 3rd pin of ADC0834 and the GND a lead-out wire separately and then lead them to
the two poles of a battery separately. You can see the corresponding LED on the LED Bargraph is lit up to display the
power level (measuring range: 0-5V).

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import ADC0834
import time

ledPins = [25, 12, 16, 20, 21, 5, 6, 13, 19, 26]

def setup():
GPIO.setmode(GPIO.BCM)
ADC0834.setup()
for i in ledPins:

GPIO.setup(i, GPIO.OUT)
GPIO.output(i, GPIO.HIGH)

(continues on next page)

370 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def LedBarGraph(value):
for i in ledPins:

GPIO.output(i,GPIO.HIGH)
for i in range(value):

GPIO.output(ledPins[i],GPIO.LOW)

def destroy():
GPIO.cleanup()

def loop():
while True:

analogVal = ADC0834.getResult()
LedBarGraph(int(analogVal/25))

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

def LedBarGraph(value):
for i in ledPins:

GPIO.output(i,GPIO.HIGH)
for i in range(value):

GPIO.output(ledPins[i],GPIO.LOW)

This function works for controlling the turning on or off of the 10 LEDs on the LED Bargraph. We give these 10 LEDs
high levels to let they are off at first, then decide how many LEDs are lit up by changing the received analog value.

def loop():
while True:

analogVal = ADC0834.getResult()
LedBarGraph(int(analogVal/25))

analogVal produces values (0-255) with varying voltage values (0-5V), ex., if a 3V is detected on a battery, the
corresponding value 152 is displayed on the voltmeter.

The 10 LEDs on the LED Bargraph are used to display the analogVal readings. 255/10=25, so every 25 the analog
value increases, one more LED turns on, ex., if “analogVal=150 (about 3V), there are 6 LEDs turning on.”

6.6. Extension 371

SunFounder raphael-kit

Phenomenon Picture

6.6.12 4.1.12 Traffic Light

Introduction

In this project, we will use LED lights of three colors to realize the change of traffic lights and a four-digit 7-segment
display will be used to display the timing of each traffic state.

372 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• 4-Digit 7-Segment Display

• 74HC595

6.6. Extension 373

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
SPICE0 Pin 24 10 8
SPICE1 Pin 26 11 7

374 Chapter 6. Play with Python

SunFounder raphael-kit

6.6. Extension 375

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.12_TrafficLight.py

As the code runs, LEDs will simulate the color changing of traffic lights. Firstly, the red LED lights up for 60s, then
the green LED lights up for 30s; next, the yellow LED lights up for 5s. After that, the red LED lights up for 60s
once again. In this way, this series of actions will be executed repeatedly. Meanwhile, the 4-digit 7-segment display
displays the countdown time continuously.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import threading

#define the pins connect to 74HC595
SDI = 24 #serial data input(DS)
RCLK = 23 #memory clock input(STCP)

(continues on next page)

376 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

SRCLK = 18 #shift register clock input(SHCP)
number = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90)

placePin = (10,22,27,17)
ledPin =(25,8,7)

greenLight = 30
yellowLight = 5
redLight = 60
lightColor=("Red","Green","Yellow")

colorState=0
counter = 60
timer1 = 0

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
for pin in placePin:

GPIO.setup(pin,GPIO.OUT)
for pin in ledPin:

GPIO.setup(pin,GPIO.OUT)
global timer1
timer1 = threading.Timer(1.0,timer)
timer1.start()

def clearDisplay():
for i in range(8):

GPIO.output(SDI, 1)
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
for i in range(8):

GPIO.output(SDI, 0x80 & (data << i))
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
for i in placePin:

GPIO.output(i,GPIO.LOW)
GPIO.output(placePin[digit], GPIO.HIGH)

def timer(): #timer function
global counter
global colorState
global timer1
timer1 = threading.Timer(1.0,timer)
timer1.start()
counter-=1

(continues on next page)

6.6. Extension 377

SunFounder raphael-kit

(continued from previous page)

if (counter is 0):
if(colorState is 0):

counter= greenLight
if(colorState is 1):

counter=yellowLight
if (colorState is 2):

counter=redLight
colorState=(colorState+1)%3

print ("counter : %d color: %s "%(counter,lightColor[colorState]))

def lightup():
global colorState
for i in range(0,3):

GPIO.output(ledPin[i], GPIO.HIGH)
GPIO.output(ledPin[colorState], GPIO.LOW)

def display():
global counter

a = counter % 10000//1000 + counter % 1000//100
b = counter % 10000//1000 + counter % 1000//100 + counter % 100//10
c = counter % 10000//1000 + counter % 1000//100 + counter % 100//10 + counter % 10

if (counter % 10000//1000 == 0):
clearDisplay()

else:
clearDisplay()
pickDigit(3)
hc595_shift(number[counter % 10000//1000])

if (a == 0):
clearDisplay()

else:
clearDisplay()
pickDigit(2)
hc595_shift(number[counter % 1000//100])

if (b == 0):
clearDisplay()

else:
clearDisplay()
pickDigit(1)
hc595_shift(number[counter % 100//10])

if(c == 0):
clearDisplay()

else:
clearDisplay()
pickDigit(0)
hc595_shift(number[counter % 10])

def loop():
while True:

display()
lightup()

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
(continues on next page)

378 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

global timer1
GPIO.cleanup()
timer1.cancel() #cancel the timer

if __name__ == '__main__': # Program starting from here
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

SDI = 24 #serial data input(DS)
RCLK = 23 #memory clock input(STCP)
SRCLK = 18 #shift register clock input(SHCP)
number = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90)
placePin = (10,22,27,17)

def clearDisplay():
def hc595_shift(data):
def pickDigit(digit):
def display():

These codes are used to realize the function of number display of 4-Digit 7-Segment. Refer to chapter 1.1.5 of the
document for more details. Here, we use the codes to display countdown of traffic light time.

ledPin =(25,8,7)
colorState=0

def lightup():
global colorState
for i in range(0,3):

GPIO.output(ledPin[i], GPIO.HIGH)
GPIO.output(ledPin[colorState], GPIO.LOW)

The codes are used to switch the LED on and off.

greenLight = 30
yellowLight = 5
redLight = 60
lightColor=("Red","Green","Yellow")

colorState=0
counter = 60
timer1 = 0

def timer(): #timer function
global counter
global colorState
global timer1
timer1 = threading.Timer(1.0,timer)
timer1.start()
counter-=1
if (counter is 0):

(continues on next page)

6.6. Extension 379

SunFounder raphael-kit

(continued from previous page)

if(colorState is 0):
counter= greenLight

if(colorState is 1):
counter=yellowLight

if (colorState is 2):
counter=redLight

colorState=(colorState+1)%3
print ("counter : %d color: %s "%(counter,lightColor[colorState]))

The codes are used to switch the timer on and off. Refer to chapter 1.1.5 for more details. Here, when the timer returns
to zero, colorState will be switched so as to switch LED, and the timer will be assigned to a new value.

def setup():
...
global timer1
timer1 = threading.Timer(1.0,timer)
timer1.start()

def loop():
while True:

display()
lightup()

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
global timer1
GPIO.cleanup()
timer1.cancel() #cancel the timer

if __name__ == '__main__': # Program starting from here
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

In setup() function, start the timer. In loop() function, a while True is used: call the relative functions of 4-Digit
7-Segment and LED circularly.

380 Chapter 6. Play with Python

SunFounder raphael-kit

Phenomenon Picture

6.6.13 4.1.13 Overheat Monitor

Introduction

You may want to make an overheat monitoring device that applies to various situations, ex., in the factory, if we
want to have an alarm and the timely automatic turning off of the machine when there is a circuit overheating. In
this project, we will use thermistor, joystick, buzzer, LED and LCD to make an smart temperature monitoring device
whose threshold is adjustable.

6.6. Extension 381

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Joystick Module

• ADC0834

382 Chapter 6. Play with Python

SunFounder raphael-kit

• Transistor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin15 3 22
GPIO23 Pin16 4 23
GPIO24 Pin18 5 24
SDA1 Pin 3
SCL1 Pin 5

6.6. Extension 383

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.13_OverheatMonitor.py

As the code runs, the current temperature and the high-temperature threshold 40 are displayed on I2C LCD1602. If
the current temperature is larger than the threshold, the buzzer and LED are started to alarm you.

Joystick here is for your pressing to adjust the high-temperature threshold. Toggling the Joystick in the direction of
X-axis and Y-axis can adjust (turn up or down) the current high-temperature threshold. Press the Joystick once again
to reset the threshold to initial value.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

384 Chapter 6. Play with Python

SunFounder raphael-kit

#!/usr/bin/env python3

import LCD1602
import RPi.GPIO as GPIO
import ADC0834
import time
import math

Joy_BtnPin = 22
buzzPin = 23
ledPin = 24

upperTem = 40

def setup():
ADC0834.setup()
GPIO.setmode(GPIO.BCM)
GPIO.setup(ledPin, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(buzzPin, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(Joy_BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
LCD1602.init(0x27, 1)

def get_joystick_value():
x_val = ADC0834.getResult(1)
y_val = ADC0834.getResult(2)
if(x_val > 200):

return 1
elif(x_val < 50):

return -1
elif(y_val > 200):

return -10
elif(y_val < 50):

return 10
else:

return 0

def upper_tem_setting():
global upperTem
LCD1602.write(0, 0, 'Upper Adjust: ')
change = int(get_joystick_value())
upperTem = upperTem + change
strUpperTem = str(upperTem)
LCD1602.write(0, 1, strUpperTem)
LCD1602.write(len(strUpperTem),1, ' ')
time.sleep(0.1)

def temperature():
analogVal = ADC0834.getResult()
Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15
Fah = Cel * 1.8 + 32
return round(Cel,2)

def monitoring_temp():
global upperTem

(continues on next page)

6.6. Extension 385

SunFounder raphael-kit

(continued from previous page)

Cel=temperature()
LCD1602.write(0, 0, 'Temp: ')
LCD1602.write(0, 1, 'Upper: ')
LCD1602.write(6, 0, str(Cel))
LCD1602.write(7, 1, str(upperTem))
time.sleep(0.1)
if Cel >= upperTem:

GPIO.output(buzzPin, GPIO.HIGH)
GPIO.output(ledPin, GPIO.HIGH)

else:
GPIO.output(buzzPin, GPIO.LOW)
GPIO.output(ledPin, GPIO.LOW)

def loop():
lastState=1
stage=0
while True:

currentState=GPIO.input(Joy_BtnPin)
if currentState==1 and lastState ==0:

stage=(stage+1)%2
time.sleep(0.1)
LCD1602.clear()

lastState=currentState
if stage == 1:

upper_tem_setting()
else:

monitoring_temp()

def destroy():
LCD1602.clear()
ADC0834.destroy()
GPIO.cleanup()

if __name__ == '__main__': # Program start from here
try:

setup()
while True:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy()

→˓will be executed.
destroy()

Code Explanation

def get_joystick_value():
x_val = ADC0834.getResult(1)
y_val = ADC0834.getResult(2)
if(x_val > 200):

return 1
elif(x_val < 50):

return -1
elif(y_val > 200):

return -10
elif(y_val < 50):

return 10
else:

return 0

386 Chapter 6. Play with Python

SunFounder raphael-kit

This function reads values of X and Y. If X>200, there will return “1”; X<50, return “-1”; y>200, return “-10”, and
y<50, return “10”.

def upper_tem_setting():
global upperTem
LCD1602.write(0, 0, 'Upper Adjust: ')
change = int(get_joystick_value())
upperTem = upperTem + change

LCD1602.write(0, 1, str(upperTem))
LCD1602.write(len(strUpperTem),1, ' ')

time.sleep(0.1)

This function is for adjusting the threshold and displaying it on the I2C LCD1602.

def temperature():
analogVal = ADC0834.getResult()
Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15
Fah = Cel * 1.8 + 32
return round(Cel,2)

Read the analog value of the CH0 (thermistor) of ADC0834 and then convert it to temperature value.

def monitoring_temp():
global upperTem
Cel=temperature()
LCD1602.write(0, 0, 'Temp: ')
LCD1602.write(0, 1, 'Upper: ')
LCD1602.write(6, 0, str(Cel))
LCD1602.write(7, 1, str(upperTem))
time.sleep(0.1)
if Cel >= upperTem:

GPIO.output(buzzPin, GPIO.HIGH)
GPIO.output(ledPin, GPIO.HIGH)

else:
GPIO.output(buzzPin, GPIO.LOW)
GPIO.output(ledPin, GPIO.LOW)

As the code runs, the current temperature and the high-temperature threshold 40 are displayed on I2C LCD1602. If
the current temperature is larger than the threshold, the buzzer and LED are started to alarm you.

def loop():
lastState=1
stage=0
while True:

currentState=GPIO.input(Joy_BtnPin)
if currentState==1 and lastState ==0:

stage=(stage+1)%2
time.sleep(0.1)
LCD1602.clear()

lastState=currentState
if stage == 1:

upper_tem_setting()
else:

monitoring_temp()

The function main() contains the whole program process as shown:

6.6. Extension 387

SunFounder raphael-kit

1) When the program starts, the initial value of stage is 0, and the current temperature and the high-temperature
threshold 40 are displayed on I2C LCD1602. If the current temperature is larger than the threshold, the buzzer
and the LED are started to alarm you.

2) Press the Joystick, and stage will be 1 and you can adjust the high-temperature threshold. Toggling the Joystick
in the direction of X-axis and Y-axis can adjust (turn up or down) the current high-temperature threshold. Press
the Joystick once again to reset the threshold to initial value.

Phenomenon Picture

6.6.14 4.1.14 Password Lock

Introduction

In this project, we will use a keypad and a LCD to make a combination lock. The LCD will display a corresponding
prompt for you to type your password on the Keypad. If the password is input correctly, “Correct” will be displayed.

On the basis of this project, we can add additional electronic components, such as buzzer, LED and so on, to add
different experimental phenomena for password input.

388 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• I2C LCD1602

• Keypad

6.6. Extension 389

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
SDA1 Pin 3
SCL1 Pin 5

390 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

6.6. Extension 391

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.14_PasswordLock.py

After the code runs, keypad is used to input password: 1984. If the “CORRECT” appears on LCD1602, there is no
wrong with the password; otherwise, “WRONG KEY” will appear.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

392 Chapter 6. Play with Python

SunFounder raphael-kit

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import LCD1602

##################### HERE IS THE KEYPAD LIBRARY TRANSPLANTED FROM Arduino ###########
→˓#
#class Key:Define some of the properties of Key
class Keypad():

def __init__(self, rowsPins, colsPins, keys):
self.rowsPins = rowsPins
self.colsPins = colsPins
self.keys = keys
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

def read(self):
pressed_keys = []
for i, row in enumerate(self.rowsPins):

GPIO.output(row, GPIO.HIGH)
for j, col in enumerate(self.colsPins):

index = i * len(self.colsPins) + j
if (GPIO.input(col) == 1):

pressed_keys.append(self.keys[index])
GPIO.output(row, GPIO.LOW)

return pressed_keys

################ EXAMPLE CODE START HERE ################
LENS = 4
password=['1','9','8','4']
testword=['0','0','0','0']
keyIndex=0

def check():
for i in range(0,LENS):

if(password[i]!=testword[i]):
return 0

return 1

def setup():
global keypad, last_key_pressed
rowsPins = [18,23,24,25]
colsPins = [10,22,27,17]
keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"]

keypad = Keypad(rowsPins, colsPins, keys)
last_key_pressed = []
LCD1602.init(0x27, 1) # init(slave address, background light)
LCD1602.clear()
LCD1602.write(0, 0, 'WELCOME!')
LCD1602.write(2, 1, 'Enter password')

(continues on next page)

6.6. Extension 393

SunFounder raphael-kit

(continued from previous page)

time.sleep(2)

def destroy():
LCD1602.clear()
GPIO.cleanup()

def loop():
global keyIndex
global LENS
global keypad, last_key_pressed
while(True):

pressed_keys = keypad.read()
if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:

LCD1602.clear()
LCD1602.write(0, 0, "Enter password:")
LCD1602.write(15-keyIndex,1, pressed_keys)
testword[keyIndex]=pressed_keys
keyIndex+=1
if (keyIndex is LENS):

if (check() is 0):
LCD1602.clear()
LCD1602.write(3, 0, "WRONG KEY!")
LCD1602.write(0, 1, "please try again")

else:
LCD1602.clear()
LCD1602.write(4, 0, "CORRECT!")
LCD1602.write(2, 1, "welcome back")

keyIndex=keyIndex%LENS

last_key_pressed = pressed_keys
time.sleep(0.1)

if __name__ == '__main__': # Program start from here
try:

setup()
loop()

except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will
→˓be executed.

destroy()

Code Explanation

LENS = 4
password=['1','9','8','4']
...
rowsPins = [18,23,24,25]
colsPins = [10,22,27,17]
keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"]

Here, we define the length of the password LENS, the array keys that store the matrix keyboard keys, and the array
password that stores the correct password.

class Keypad():
(continues on next page)

394 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def __init__(self, rowsPins, colsPins, keys):
self.rowsPins = rowsPins
self.colsPins = colsPins
self.keys = keys
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

...

This class is the code that reads the values of the pressed keys. Refer to 2.1.8 Keypad of this document for more
details.

while(True):
pressed_keys = keypad.read()
if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:

LCD1602.clear()
LCD1602.write(0, 0, "Enter password:")
LCD1602.write(15-keyIndex,1, pressed_keys)
testword[keyIndex]=pressed_keys
keyIndex+=1

...

Read the key value and store it in the test array testword. If the number of stored key values is more than 4, the
correctness of the password is automatically verified, and the verification results are displayed on the LCD interface.

def check():
for i in range(0,LENS):

if(password[i]!=testword[i]):
return 0

return 1

Verify the correctness of the password. Return 1 if the password is entered correctly, and 0 if not.

6.6. Extension 395

SunFounder raphael-kit

Phenomenon Picture

6.6.15 4.1.15 Alarm Bell

Introduction

In this project, we will make a manual alarm device. You can replace the toggle switch with a thermistor or a photo-
sensitive sensor to make a temperature alarm or a light alarm.

396 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Buzzer

• Slide Switch

6.6. Extension 397

SunFounder raphael-kit

• Transistor

• Capacitor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

398 Chapter 6. Play with Python

SunFounder raphael-kit

6.6. Extension 399

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.15_AlarmBell.py

After the program starts, the toggle switch will be toggled to the right, and the buzzer will give out alarm sounds. At
the same time, the red and green LEDs will flash at a certain frequency.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import threading

BeepPin=22
ALedPin=17
BLedPin=27
switchPin=18

Buzz=0
flag =0
note=150
pitch=20

(continues on next page)

400 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(BeepPin, GPIO.OUT)
GPIO.setup(ALedPin,GPIO.OUT,initial=GPIO.LOW)
GPIO.setup(BLedPin,GPIO.OUT,initial=GPIO.LOW)
GPIO.setup(switchPin,GPIO.IN)
global Buzz
Buzz=GPIO.PWM(BeepPin,note)

def ledWork():
while flag:

GPIO.output(ALedPin,GPIO.HIGH)
time.sleep(0.5)
GPIO.output(ALedPin,GPIO.LOW)
GPIO.output(BLedPin,GPIO.HIGH)
time.sleep(0.5)
GPIO.output(BLedPin,GPIO.LOW)

def buzzerWork():
global pitch
global note
while flag:

if note >= 800 or note <=130:
pitch = -pitch

note = note + pitch
Buzz.ChangeFrequency(note)
time.sleep(0.01)

def on():
global flag
flag = 1
Buzz.start(50)
tBuzz = threading.Thread(target=buzzerWork)
tBuzz.start()
tLed = threading.Thread(target=ledWork)
tLed.start()

def off():
global flag
flag = 0
Buzz.stop()
GPIO.output(ALedPin,GPIO.LOW)
GPIO.output(BLedPin,GPIO.LOW)

def main():
lastState=0
while True:

currentState =GPIO.input(switchPin)
if currentState == 1 and lastState == 0:

on()
elif currentState == 0 and lastState == 1:

off()
lastState=currentState

def destroy():
off()
GPIO.cleanup()

(continues on next page)

6.6. Extension 401

SunFounder raphael-kit

(continued from previous page)

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

import threading

Here, we import the Threading module and it allows you to do multiple things at once, while normal programs can
only execute code from top to bottom. With Threading modules, the LED and the buzzer can work separately.

def ledWork():
while flag:

GPIO.output(ALedPin,GPIO.HIGH)
time.sleep(0.5)
GPIO.output(ALedPin,GPIO.LOW)
GPIO.output(BLedPin,GPIO.HIGH)
time.sleep(0.5)
GPIO.output(BLedPin,GPIO.LOW)

The function ledWork() helps to set the working state of these 2 LEDs: it keeps the green LED lighting up for 0.5s
and then turns off; similarly, keeps the red LED lighting up for 0.5s and then turns off.

def buzzerWork():
global pitch
global note
while flag:

if note >= 800 or note <=130:
pitch = -pitch

note = note + pitch
Buzz.ChangeFrequency(note)
time.sleep(0.01)

The function buzzWork() is used to set the working state of the buzzer. Here we set the frequency as between 130
and 800, to accumulate or decay at an interval of 20.

def on():
global flag
flag = 1
Buzz.start(50)
tBuzz = threading.Thread(target=buzzerWork)
tBuzz.start()
tLed = threading.Thread(target=ledWork)
tLed.start()

In the function on() :

1) Define the mark “flag=1”, indicating the ending of the control thread.

2) Start the Buzz, and set the duty cycle to 50%.

3) Create 2 separate threads so that the LED and the buzzer can work at the same time.

threading.Thread() function is used to create the thread and its prototype is as follows:

402 Chapter 6. Play with Python

SunFounder raphael-kit

class threading.Thread(group=None, target=None, name=None, args=(),
kwargs={}, *, daemon=None)

Among the construction methods, the principal parameter is target, we need to assign a callable object (here are
the functions ledWork and BuzzWork) to target.

Next start() is called to start the thread object, ex., tBuzz.start() is used to start the newly installed tBuzz
thread.

def off():
global flag
flag = 0
Buzz.stop()
GPIO.output(ALedPin,GPIO.LOW)
GPIO.output(BLedPin,GPIO.LOW)

The function Off() defines “flag=0” so as to exit the threads ledWork and BuzzWork and then turn off the buzzer
and the LED.

def main():
lastState=0
while True:

currentState =GPIO.input(switchPin)
if currentState == 1 and lastState == 0:

on()
elif currentState == 0 and lastState == 1:

off()
lastState=currentState

Main() contains the whole process of the program: firstly read the value of the slide switch; if the toggle switch is
toggled to the right (the reading is 1), the function on() is called, the buzzer is driven to emit sounds and the the red
and the green LEDs blink. Otherwise, the buzzer and the LED don’t work.

6.6. Extension 403

SunFounder raphael-kit

Phenomenon Picture

6.6.16 4.1.16 Morse Code Generator

Introduction

In this project, we’ll make a Morse code generator, where you type in a series of English letters in the Raspberry Pi to
make it appear as Morse code.

404 Chapter 6. Play with Python

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Buzzer

• Transistor

6.6. Extension 405

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit. (Pay attention to poles of the buzzer: The one with + label is the positive pole and the other
is the negative.)

406 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 4.1.16_MorseCodeGenerator.py

After the program runs, type a series of characters, and the buzzer and the LED will send the corresponding Morse
code signals.

Code

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

BeepPin=22
ALedPin=17

MORSECODE = {
'A':'01', 'B':'1000', 'C':'1010', 'D':'100', 'E':'0', 'F':'0010', 'G':'110',
'H':'0000', 'I':'00', 'J':'0111', 'K':'101', 'L':'0100', 'M':'11', 'N':'10',
'O':'111', 'P':'0110', 'Q':'1101', 'R':'010', 'S':'000', 'T':'1',
'U':'001', 'V':'0001', 'W':'011', 'X':'1001', 'Y':'1011', 'Z':'1100',
'1':'01111', '2':'00111', '3':'00011', '4':'00001', '5':'00000',
'6':'10000', '7':'11000', '8':'11100', '9':'11110', '0':'11111',
'?':'001100', '/':'10010', ',':'110011', '.':'010101', ';':'101010',
'!':'101011', '@':'011010', ':':'111000',
}

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(ALedPin,GPIO.OUT,initial=GPIO.LOW)

def on():
GPIO.output(BeepPin, 1)
GPIO.output(ALedPin, 1)

def off():
GPIO.output(BeepPin, 0)
GPIO.output(ALedPin, 0)

def beep(dt): # dt for delay time.
on()
time.sleep(dt)
off()
time.sleep(dt)

def morsecode(code):
pause = 0.25
for letter in code:

for tap in MORSECODE[letter]:
if tap == '0':

beep(pause/2)
if tap == '1':

beep(pause)

(continues on next page)

6.6. Extension 407

SunFounder raphael-kit

(continued from previous page)

time.sleep(pause)

def main():
while True:

code=input("Please input the messenger:")
code = code.upper()
print(code)
morsecode(code)

def destroy():
print("")
GPIO.output(BeepPin, GPIO.LOW)
GPIO.output(ALedPin, GPIO.LOW)
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

MORSECODE = {
'A':'01', 'B':'1000', 'C':'1010', 'D':'100', 'E':'0', 'F':'0010', 'G':'110',
'H':'0000', 'I':'00', 'J':'0111', 'K':'101', 'L':'0100', 'M':'11', 'N':'10',
'O':'111', 'P':'0110', 'Q':'1101', 'R':'010', 'S':'000', 'T':'1',
'U':'001', 'V':'0001', 'W':'011', 'X':'1001', 'Y':'1011', 'Z':'1100',
'1':'01111', '2':'00111', '3':'00011', '4':'00001', '5':'00000',
'6':'10000', '7':'11000', '8':'11100', '9':'11110', '0':'11111',
'?':'001100', '/':'10010', ',':'110011', '.':'010101', ';':'101010',
'!':'101011', '@':'011010', ':':'111000',
}

This structure MORSE is the dictionary of the Morse code, containing characters A-Z, numbers 0-9 and marks “?” “/”
“:” “,” “.” “;” “!” “@” .

def on():
GPIO.output(BeepPin, 1)
GPIO.output(ALedPin, 1)

The function on() starts the buzzer and the LED.

def off():
GPIO.output(BeepPin, 0)
GPIO.output(ALedPin, 0)

The function off() is used to turn off the buzzer and the LED.

def beep(dt): # x for dalay time.
on()
time.sleep(dt)
off()
time.sleep(dt)

Define a function beep() to make the buzzer and the LED emit sounds and blink in a certain interval of dt.

408 Chapter 6. Play with Python

SunFounder raphael-kit

def morsecode(code):
pause = 0.25
for letter in code:

for tap in MORSECODE[letter]:
if tap == '0':

beep(pause/2)
if tap == '1':

beep(pause)
time.sleep(pause)

The function morsecode() is used to process the Morse code of input characters by making the “1” of the code
keep emitting sounds or lights and the “0”shortly emit sounds or lights, ex., input “SOS”, and there will be a signal
containing three short three long and then three short segments “ · · · - - - · · · ”.

def main():
while True:

code=input("Please input the messenger:")
code = code.upper()
print(code)
morsecode(code)

When you type the relevant characters with the keyboard, upper() will convert the input letters to their capital form.

printf() then prints the clear text on the computer screen, and the morsecod() function causes the buzzer and
the LED to emit Morse code.

Phenomenon Picture

6.6. Extension 409

SunFounder raphael-kit

6.6.17 4.1.17 GAME– Guess Number

Introduction

Guessing Numbers is a fun party game where you and your friends take turns inputting a number (0~99). The range
will be smaller with the inputting of the number till a player answers the riddle correctly. Then the player is defeated
and punished. For example, if the lucky number is 51 which the players cannot see, and the player inputs 50, the
prompt of number range changes to 50~99; if the player inputs 70, the range of number can be 50~70; if the player
inputs 51, this player is the unlucky one. Here, we use keypad to input numbers and use LCD to output outcomes.

Components

• GPIO Extension Board

• Breadboard

410 Chapter 6. Play with Python

SunFounder raphael-kit

• Resistor

• Keypad

• I2C LCD1602

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
SPIMOSI Pin 19 12 10
GPIO22 Pin 15 3 22
GPIO27 Pin 13 2 27
GPIO17 Pin 11 0 17
SDA1 Pin 3 SDA1(8) SDA1(2)
SCL1 Pin 5 SCL1(9) SDA1(3)

6.6. Extension 411

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

412 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Setup I2C (see I2C Configuration.)

Step 3: Change directory.

cd /home/pi/raphael-kit/python/

Step 4: Run.

sudo python3 4.1.17_GAME_GuessNumber.py

After the program runs, there displays the initial page on the LCD:

Welcome!
Press A to go!

Press ‘A’, and the game will start and the game page will appear on the LCD.

6.6. Extension 413

SunFounder raphael-kit

Enter number:
0 ‹point‹ 99

A random number ‘point’ is produced but not displayed on the LCD when the game starts, and what you need to do
is to guess it. The number you have typed appears at the end of the first line till the final calculation is finished. (Press
‘D’ to start the comparation, and if the input number is larger than 10, the automatic comparation will start.)

The number range of ‘point’ is displayed on the second line. And you must type the number within the range.
When you type a number, the range narrows; if you got the lucky number luckily or unluckily, there will appear
“You’ve got it!”

Note:

• If you get the error FileNotFoundError: [Errno 2] No such file or directory: '/
dev/i2c-1', you need to refer to I2C Configuration to enable the I2C.

• If you get ModuleNotFoundError: No module named 'smbus2' error, please run sudo pip3
install smbus2.

• If the error OSError: [Errno 121] Remote I/O error appears, it means the module is miswired
or the module is broken.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import LCD1602
import random

##################### HERE IS THE KEYPAD LIBRARY TRANSPLANTED FROM Arduino ###########
→˓#
#class Key:Define some of the properties of Key
class Keypad():

def __init__(self, rowsPins, colsPins, keys):
self.rowsPins = rowsPins
self.colsPins = colsPins
self.keys = keys
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

def read(self):
pressed_keys = []
for i, row in enumerate(self.rowsPins):

GPIO.output(row, GPIO.HIGH)
for j, col in enumerate(self.colsPins):

index = i * len(self.colsPins) + j
if (GPIO.input(col) == 1):

(continues on next page)

414 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

pressed_keys.append(self.keys[index])
GPIO.output(row, GPIO.LOW)

return pressed_keys

################ EXAMPLE CODE START HERE ################

count = 0
pointValue = 0
upper=99
lower=0

def setup():
global keypad, last_key_pressed,keys
rowsPins = [18,23,24,25]
colsPins = [10,22,27,17]
keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"]

keypad = Keypad(rowsPins, colsPins, keys)
last_key_pressed = []
LCD1602.init(0x27, 1) # init(slave address, background light)
LCD1602.clear()
LCD1602.write(0, 0, 'Welcome!')
LCD1602.write(0, 1, 'Press A to Start!')

def init_new_value():
global pointValue,upper,count,lower
pointValue = random.randint(0,99)
upper = 99
lower = 0
count = 0
print('point is %d' %(pointValue))

def detect_point():
global count,upper,lower
if count > pointValue:

if count < upper:
upper = count

elif count < pointValue:
if count > lower:

lower = count
elif count == pointValue:

count = 0
return 1

count = 0
return 0

def lcd_show_input(result):
LCD1602.clear()
if result == 1:

LCD1602.write(0,1,'You have got it!')
time.sleep(5)
init_new_value()
lcd_show_input(0)
return

LCD1602.write(0,0,'Enter number:')
(continues on next page)

6.6. Extension 415

SunFounder raphael-kit

(continued from previous page)

LCD1602.write(13,0,str(count))
LCD1602.write(0,1,str(lower))
LCD1602.write(3,1,' < Point < ')
LCD1602.write(13,1,str(upper))

def loop():
global keypad, last_key_pressed,count
while(True):

result = 0
pressed_keys = keypad.read()
if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:

if pressed_keys == ["A"]:
init_new_value()
lcd_show_input(0)

elif pressed_keys == ["D"]:
result = detect_point()
lcd_show_input(result)

elif pressed_keys[0] in keys:
if pressed_keys[0] in list(["A","B","C","D","#","*"]):

continue
count = count * 10
count += int(pressed_keys[0])
if count >= 10:

result = detect_point()
lcd_show_input(result)

print(pressed_keys)
last_key_pressed = pressed_keys
time.sleep(0.1)

Define a destroy function for clean up everything after the script finished
def destroy():

Release resource
GPIO.cleanup()
LCD1602.clear()

if __name__ == '__main__': # Program start from here
try:

setup()
while True:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will

→˓be executed.
destroy()

Code Explanation

At the beginning part of the code are the functional functions of keypad and I2C LCD1602. You can learning more
details about them in 1.1.7 I2C LCD1602 and 2.1.8 Keypad.

Here, what we need to know is as follows:

def init_new_value():
global pointValue,upper,count,lower
pointValue = random.randint(0,99)
upper = 99
lower = 0
count = 0
print('point is %d' %(pointValue))

416 Chapter 6. Play with Python

SunFounder raphael-kit

The function produces the random number ‘point’ and resets the range hint of the point.

def detect_point():
global count,upper,lower
if count > pointValue:

if count < upper:
upper = count

elif count < pointValue:
if count > lower:

lower = count
elif count == pointValue:

count = 0
return 1

count = 0
return 0

detect_point() compares the input number (count) with the produced “point”. If the comparing outcome is that
they are not same, count will assign values to upper and lower and return ‘0’; otherwise, if the outcome indicates
they are same, there returns ‘1’.

def lcd_show_input(result):
LCD1602.clear()
if result == 1:

LCD1602.write(0,1,'You have got it!')
time.sleep(5)
init_new_value()
lcd_show_input(0)
return

LCD1602.write(0,0,'Enter number:')
LCD1602.write(13,0,str(count))
LCD1602.write(0,1,str(lower))
LCD1602.write(3,1,' < Point < ')
LCD1602.write(13,1,str(upper))

This function works for displaying the game page.

str(count): Because write() can only support the data type — string, str() is needed to convert the number
into string.

def loop():
global keypad, last_key_pressed,count
while(True):

result = 0
pressed_keys = keypad.read()
if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:

if pressed_keys == ["A"]:
init_new_value()
lcd_show_input(0)

elif pressed_keys == ["D"]:
result = detect_point()
lcd_show_input(result)

elif pressed_keys[0] in keys:
if pressed_keys[0] in list(["A","B","C","D","#","*"]):

continue
count = count * 10
count += int(pressed_keys[0])
if count >= 10:

result = detect_point()

(continues on next page)

6.6. Extension 417

SunFounder raphael-kit

(continued from previous page)

lcd_show_input(result)
print(pressed_keys)

last_key_pressed = pressed_keys
time.sleep(0.1)

main() contains the whole process of the program, as show below:

1) Initialize I2C LCD1602 and Keypad.

2) Judge whether the button is pressed and get the button reading.

3) If the button ‘A’ is pressed, a random number 0-99 will appear then the game starts.

4) If the button ‘D’ is detected to have been pressed, the program will enter into the outcome judgement.

5) If the button 0-9 is pressed, the value of count will be changed; if the count is larger than 10, then the judgement
starts.

6) The changes of the game and its values are displayed on LCD1602.

Phenomenon Picture

418 Chapter 6. Play with Python

SunFounder raphael-kit

6.6.18 4.1.18 GAME - 10 Second

Introduction

Next, follow me to make a game device to challenge your concentration. Tie the tilt switch to a stick to make a magic
wand. Shake the wand, the 4-digit segment display will start counting, shake again will let it stop counting. If you
succeed in keeping the displayed count at 10.00, then you win. You can play the game with your friends to see who is
the time wizard.

Components

• GPIO Extension Board

• Breadboard

• Resistor

6.6. Extension 419

SunFounder raphael-kit

• 4-Digit 7-Segment Display

• 74HC595

• Tilt Switch

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO26 Pin 37 25 26

420 Chapter 6. Play with Python

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.18_GAME_10Second.py

Shake the wand, the 4-digit segment display will start counting, shake again will let it stop counting. If you succeed
in keeping the displayed count at 10.00, then you win. Shake it one more time to start the next round of the game.

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time
import threading

sensorPin = 26

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

(continues on next page)

6.6. Extension 421

SunFounder raphael-kit

(continued from previous page)

counter = 0
timer =0
gameState =0

def clearDisplay():
for i in range(8):

GPIO.output(SDI, 1)
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
for i in range(8):

GPIO.output(SDI, 0x80 & (data << i))
GPIO.output(SRCLK, GPIO.HIGH)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
for i in placePin:

GPIO.output(i,GPIO.LOW)
GPIO.output(placePin[digit], GPIO.HIGH)

def display():
global counter
clearDisplay()
pickDigit(0)
hc595_shift(number[counter % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[counter % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[counter % 1000//100]-0x80)

clearDisplay()
pickDigit(3)
hc595_shift(number[counter % 10000//1000])

def stateChange():
global gameState
global counter
global timer1
if gameState == 0:

counter = 0
time.sleep(1)
timer()

elif gameState ==1:
timer1.cancel()
time.sleep(1)

gameState = (gameState+1)%2

(continues on next page)

422 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

def loop():
global counter
currentState = 0
lastState = 0
while True:

display()
currentState=GPIO.input(sensorPin)
if (currentState == 0) and (lastState == 1):

stateChange()
lastState=currentState

def timer():
global counter
global timer1
timer1 = threading.Timer(0.01, timer)
timer1.start()
counter += 1

def setup():
GPIO.setmode(GPIO.BCM)
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
for i in placePin:

GPIO.setup(i, GPIO.OUT)
GPIO.setup(sensorPin, GPIO.IN)

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
GPIO.cleanup()
global timer1
timer1.cancel()

if __name__ == '__main__': # Program starting from here
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

Code Explanation

def stateChange():
global gameState
global counter
global timer1
if gameState == 0:

counter = 0
time.sleep(1)
timer()

elif gameState ==1:
timer1.cancel()
time.sleep(1)

gameState = (gameState+1)%2

The game is divided into two modes:

gameState==0 is the “start” mode, in which the time is timed and displayed on the segment display, and the tilting
switch is shaken to enter the “show” mode.

6.6. Extension 423

SunFounder raphael-kit

gameState==1 is the “show” mode, which stops the timing and displays the time on the segment display. Shaking
the tilt switch again will reset the timer and restart the game.

def loop():
global counter
currentState = 0
lastState = 0
while True:

display()
currentState=GPIO.input(sensorPin)
if (currentState == 0) and (lastState == 1):

stateChange()
lastState=currentState

loop() is the main function. First, the time is displayed on the 4-bit segment display and the value of the tilt switch
is read. If the state of the tilt switch has changed, stateChange() is called.

def timer():
global counter
global timer1
timer1 = threading.Timer(0.01, timer)
timer1.start()
counter += 1

After the interval reaches 0.01s, the timer function is called; add 1 to counter, and the timer is used again to execute
itself repeatedly every 0.01s.

Phenomenon Picture

424 Chapter 6. Play with Python

SunFounder raphael-kit

6.6.19 4.1.19 AttendanceSystem

Introduction

Let’s make a simple attendance system. When we scan the card, the Raspberry Pi will record our information and
generate a csv file.

Components

• GPIO Extension Board

• Breadboard

• Audio Module and Speaker

6.6. Extension 425

SunFounder raphael-kit

• LED Matrix Module

• MFRC522 Module

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO25 Pin 22 6 25
SPIMOSI Pin 19 12 MOSI
SPIMISO Pin 19 12 MISO
SPICE0 pin 24 10 CE0
SPICE1 pin 26 11 CE1
SPISCLK Pin 23 14 SCLK

Experimental Procedures

Note: Turn on the SPI before starting the experiment, refer to SPI Configuration for details.

The Luma.LED_Matrix and the Spidev and MFRC522 libraries are also needed.

Step 1: Build the circuit.

426 Chapter 6. Play with Python

SunFounder raphael-kit

Step 2: Run the 2.2.10_write.py file to modify the content of the rfid card.

cd /home/pi/raphael-kit/python
sudo python3 2.2.10_write.py

Step 3: Enter the name (here we use John``as an example) and press ``Enter to confirm, then put the
card on the MFRC522 module, wait for “Data writing is complete” to appear and take the card away, or rewrite the
message to another card and exit by Ctrl+C.

Step 4: Get into the folder of code and run.

cd /home/pi/raphael-kit/python
sudo python3 4.1.19_Attendance_Machine.py

After starting the program, we put the RFID card close to the MFRC522 RFID Module, the Raspberry Pi will send
out a voice to greet you and display it on the LED matrix.

We can also find a .csv file that records the time and list in the same directory. Open it with the nano command and
you will see the record just now.

6.6. Extension 427

SunFounder raphael-kit

sudo nano attendance_sheet.2021.06.29.csv

Code

Note: You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path
like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import time
from tts import TTS
import RPi.GPIO as GPIO
from mfrc522 import SimpleMFRC522
from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219
from luma.core.legacy import text
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT

serial = spi(port=0, device=1, gpio=noop())
device = max7219(serial, rotate=1)
virtual = viewport(device, width=200, height=400)

reader = SimpleMFRC522()

tts = TTS(engine="espeak")
tts.lang('en-US')

attendance_statistics = {}

def get_time():
time.time()
year = str(time.strftime('%Y',time.localtime(time.time())))
month = str(time.strftime('%m',time.localtime(time.time())))
day = str(time.strftime('%d',time.localtime(time.time())))
hour = str(time.strftime('%H',time.localtime(time.time())))
minute = str(time.strftime('%M',time.localtime(time.time())))
second = str(time.strftime('%S',time.localtime(time.time())))

(continues on next page)

428 Chapter 6. Play with Python

SunFounder raphael-kit

(continued from previous page)

present_time = year + '.' + month + '.' + day + '.' + hour + '.' + minute + '.' +
→˓second

present_date = year + '.' + month + '.' + day
return present_date, present_time

def main():
while True:

print("Reading...Please place the card...")
id, name = reader.read()
print(id,name)
greeting = name.rstrip() + ", Welcome!"
present_date, present_time = get_time()
attendance_statistics[name.rstrip()] = present_time
tts.say(greeting)
with open('attendance_sheet.' + present_date + '.csv', 'w') as f:

[f.write('{0} {1}\n'.format(key, value)) for key, value in attendance_
→˓statistics.items()]

with canvas(virtual) as draw:
text(draw, (0, 0), greeting, fill="white", font=proportional(CP437_FONT))

for offset in range(95):
virtual.set_position((offset,0))
time.sleep(0.1)

def destroy():
GPIO.cleanup()
pass

if __name__ == '__main__':
try:

main()
except KeyboardInterrupt:

destroy()

Code Explanation

In order to better understand the program, you may need to complete 1.1.6 LED Dot Matrix , 2.2.10 MFRC522 RFID
Module and 3.1.4 Text-to-speech first.

def get_time():
time.time()
year = str(time.strftime('%Y',time.localtime(time.time())))
month = str(time.strftime('%m',time.localtime(time.time())))
day = str(time.strftime('%d',time.localtime(time.time())))
hour = str(time.strftime('%H',time.localtime(time.time())))
minute = str(time.strftime('%M',time.localtime(time.time())))
second = str(time.strftime('%S',time.localtime(time.time())))
present_time = year + '.' + month + '.' + day + '.' + hour + '.' + minute + '.

→˓' + second
present_date = year + '.' + month + '.' + day
return present_date, present_time

Use the get_time() function to get the current timestamp and return two values. Among them, present_date
is accurate to the number of days of the current timestamp, and present_time is accurate to the number of seconds
of the current timestamp.

6.6. Extension 429

SunFounder raphael-kit

id, name = reader.read()
greeting = name.rstrip() + ", Welcome!"
present_date, present_time = get_time()
attendance_statistics[name.rstrip()] = present_time

The reader.read() function reads the name information, and then creates a greeting. Then an
attendance_statistics dictionary is generated, and name.rstrip() and present_time are stored as
keys and values.

tts.say(greeting)

Say a greeting through the speaker.

with open('attendance_sheet.' + present_date + '.csv', 'w') as f:
[f.write('{0} {1}\n'.format(key, value)) for key, value in attendance_statistics.

→˓items()]

Write the attendance_statistics to the .csv file.

with canvas(virtual) as draw:
text(draw, (0, 0), greeting, fill="white", font=proportional(CP437_FONT))

for offset in range(95):
virtual.set_position((offset,0))
time.sleep(0.1)

Scroll to display this greeting.

Phenomenon Picture

430 Chapter 6. Play with Python

SunFounder raphael-kit

6.6. Extension 431

SunFounder raphael-kit

432 Chapter 6. Play with Python

CHAPTER

SEVEN

PLAY WITH C

7.1 Install and Check the WiringPi

wiringPi is a C language GPIO library applied to the Raspberry Pi. It complies with GUN Lv3. The functions
in wiringPi are similar to those in the wiring system of Arduino. They enable the users familiar with Arduino to use
wiringPi more easily.

wiringPi includes lots of GPIO commands which enable you to control all kinds of interfaces on Raspberry Pi.

Please run the following command to install wiringPi library.

sudo apt-get update
git clone https://github.com/WiringPi/WiringPi
cd WiringPi
./build

You can test whether the wiringPi library is installed successfully or not by the following instruction.

gpio -v

Check the GPIO with the following command:

gpio readall

433

SunFounder raphael-kit

For more details about wiringPi, you can refer to WiringPi.

7.2 Output

7.2.1 1.1 Displays

1.1.1 Blinking LED

Introduction

In this project, we will learn how to make a blinking LED by programming. Through your settings, your LED can
produce a series of interesting phenomena. Now, go for it.

434 Chapter 7. Play with C

https://github.com/WiringPi/WiringPi

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

7.2. Output 435

SunFounder raphael-kit

Schematic Diagram

In this experiment, connect a 220 resistor to the anode (the long pin of the LED), then the resistor to 3.3 V, and connect
the cathode (the short pin) of the LED to GPIO17 of Raspberry Pi. Therefore, to turn on an LED, we need to make
GPIO17 low (0V) level. We can get this phenomenon by programming.

Note: Pin11 refers to the 11th pin of the Raspberry Pi from left to right, and its corresponding wiringPi and BCM
pin numbers are shown in the following table.

In the C language related content, we make GPIO0 equivalent to 0 in the wiringPi. Among the Python language related
content, BCM 17 is 17 in the BCM column of the following table. At the same time, they are the same as the 11th pin
on the Raspberry Pi, Pin 11.

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17

Experimental Procedures

Step 1: Build the circuit.

436 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Go to the folder of the code.

1) If you use a screen, you’re recommended to take the following steps.

Go to /home/pi/ and find the folder raphael-kit.

Find C in the folder, right-click on it and select Open in Terminal.

7.2. Output 437

SunFounder raphael-kit

Then a window will pop up as shown below. So now you’ve entered the path of the code 1.1.1_BlinkingLed.c .

438 Chapter 7. Play with C

SunFounder raphael-kit

In the following projects, we will use command to enter the code file instead of right-clicking. But you can choose the
method you prefer.

2) If you log into the Raspberry Pi remotely, use cd to change directory:

cd /home/pi/raphael-kit/c/1.1.1/

Note: Change directory to the path of the code in this experiment via cd.

In either way, now you are in the folder C. The subsequent procedures based on these two methods are the same. Let’s
move on.

Step 3: Compile the code

gcc 1.1.1_BlinkingLed.c -o BlinkingLed -lwiringPi

Note: gcc is GNU Compiler Collection. Here, it functions like compiling the C language file 1.1.
1_BlinkingLed.c and outputting an executable file.

In the command, -omeans outputting (the character immediately following -o is the filename output after compilation,
and an executable named BlinkingLed will generate here) and -lwiringPi is to load the library wiringPi (l is
the abbreviation of library).

Step 4: Run the executable file output in the previous step.

7.2. Output 439

SunFounder raphael-kit

sudo ./BlinkingLed

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

To control the GPIO, you need to run the program, by the command, sudo (superuser do). The command ./ indicates
the current directory. The whole command is to run the BlinkingLed in the current directory.

After the code runs, you will see the LED flashing.

If you want to edit the code file 1.1.1_BlinkingLed.c, stop the code and then type the following command to
open it:

nano 1.1.1_BlinkingLed.c

Press Ctrl+X to exit. If you have modified the code, there will be a prompt asking whether to save the changes or
not. Type in Y (save) or N (don’t save). Then press Enter to exit. Repeat Step 3 and Step 4 to see the effect
after modifying.

Code

The program code is shown as follows:

#include <wiringPi.h>
#include <stdio.h>
#define LedPin 0
int main(void)
{

// When initialize wiring failed, print message to screen

(continues on next page)

440 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

if(wiringPiSetup() == -1){
printf("setup wiringPi failed !");
return 1;

}
pinMode(LedPin, OUTPUT);// Set LedPin as output to write value to it.
while(1){

// LED on
digitalWrite(LedPin, LOW);
printf("...LED on\n");
delay(500);
// LED off
digitalWrite(LedPin, HIGH);
printf("LED off...\n");
delay(500);

}
return 0;

}

Code Explanation

#include <wiringPi.h>

The hardware drive library is designed for the C language of Raspberry Pi. Adding this library is conducive to the
initialization of hardware, and the output of I/O ports, PWM, etc.

#include <stdio.h>

Standard I/O library. The pintf function used for printing the data displayed on the screen is realized by this library.
There are many other performance functions for you to explore.

#define LedPin 0

Pin GPIO17 of the T_Extension Board is corresponding to the GPIO0 in wiringPi. Assign GPIO0 to LedPin, LedPin
represents GPIO0 in the code later.

if(wiringPiSetup() == -1){
printf("setup wiringPi failed !");
return 1;

This initialises wiringPi and assumes that the calling program is going to be using the wiringPi pin numbering scheme.

This function needs to be called with root privileges. When initialize wiring failed, print message to screen. The
function return is used to jump out of the current function. Using return in main() function will end the program.

pinMode(LedPin, OUTPUT);

Set LedPin as output to write value to it.

digitalWrite(LedPin, LOW);

Set GPIO0 as 0V (low level). Since the cathode of LED is connected to GPIO0, thus the LED will light up if GPIO0
is set low. On the contrary, set GPIO0 as high level, LED will go out.

printf("...LED off\n");

The printf function is a standard library function and its function prototype is in the header file stdio.h.

7.2. Output 441

SunFounder raphael-kit

The general form of the call is: printf(" format control string ", output table columns).
The format control string is used to specify the output format, which is divided into format string and non-format string.
The format string starts with % followed by format characters, such as %d for decimal integer output. Unformatted
strings are printed as prototypes. What is used here is a non-format string, followed by \n that is a newline character,
representing automatic line wrapping after printing a string.

delay(500);

Keeps the current HIGH or LOW state for 500ms.

This is a function that suspends the program for a period of time. And the speed of the program is determined by our
hardware. Here we turn on or off the LED. If there is no delay function, the program will run the whole program very
fast and continuously loop. So we need the delay function to help us write and debug the program.

return 0;

Usually, it is placed behind the main function, indicating that the function returns 0 on successful execution.

Phenomenon Picture

442 Chapter 7. Play with C

SunFounder raphael-kit

1.1.2 RGB LED

Introduction

In this project, we will control an RGB LED to flash various colors.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

7.2. Output 443

SunFounder raphael-kit

Schematic Diagram

After connecting the pins of R, G, and B to a current limiting resistor, connect them to the GPIO17, GPIO18, and
GPIO27 respectively. The longest pin (GND) of the LED connects to the GND of the Raspberry Pi. When the three
pins are given different PWM values, the RGB LED will display different colors.

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.1.2/

444 Chapter 7. Play with C

SunFounder raphael-kit

Step 3: Compile the code.

gcc 1.1.2_rgbLed.c -lwiringPi

Note: When the instruction gcc is executed, if -o is not called, then the executable file is named a.out.

Step 4: Run the executable file.

sudo ./a.out

After the code runs, you will see that RGB displays red, green, blue, yellow, pink, and cyan.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>
#define uchar unsigned char
#define LedPinRed 0
#define LedPinGreen 1
#define LedPinBlue 2

void ledInit(void){
softPwmCreate(LedPinRed, 0, 100);
softPwmCreate(LedPinGreen,0, 100);
softPwmCreate(LedPinBlue, 0, 100);

}

void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
softPwmWrite(LedPinRed, r_val);
softPwmWrite(LedPinGreen, g_val);
softPwmWrite(LedPinBlue, b_val);

}

int main(void){

if(wiringPiSetup() == -1){ //when initialize wiring failed, printf messageto
→˓screen

printf("setup wiringPi failed !");
return 1;

}

ledInit();
while(1){

printf("Red\n");
ledColorSet(0xff,0x00,0x00); //red
delay(500);
printf("Green\n");
ledColorSet(0x00,0xff,0x00); //green
delay(500);
printf("Blue\n");
ledColorSet(0x00,0x00,0xff); //blue

(continues on next page)

7.2. Output 445

SunFounder raphael-kit

(continued from previous page)

delay(500);
printf("Yellow\n");
ledColorSet(0xff,0xff,0x00); //yellow
delay(500);
printf("Purple\n");
ledColorSet(0xff,0x00,0xff); //purple
delay(500);
printf("Cyan\n");
ledColorSet(0xc0,0xff,0x3e); //cyan
delay(500);

}
return 0;

}

Code Explanation

#include <softPwm.h>

Library used for realizing the pwm function of the software.

void ledInit(void){
softPwmCreate(LedPinRed, 0, 100);
softPwmCreate(LedPinGreen,0, 100);
softPwmCreate(LedPinBlue, 0, 100);

}

The function is to use software to create a PWM pin, set its period between 0x100us-100x100us.

The prototype of the function softPwmCreate(LedPinRed, 0, 100) is as follows:

int softPwmCreate(int pin,int initialValue,int pwmRange);

• Parameter pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

• Parameter initialValue: The initial pulse width is that initialValue times100us.

• Parameter pwmRange: the period of PWM is that pwmRange times100us.

void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
softPwmWrite(LedPinRed, r_val);
softPwmWrite(LedPinGreen, g_val);
softPwmWrite(LedPinBlue, b_val);

}

This function is to set the colors of the LED. Using RGB, the formal parameter r_val represents the luminance of the
red one, g_val of the green one, b_val of the blue one.

The prototype of the function softPwmWrite(LedPinBlue, b_val) is as follows

void softPwmWrite (int pin, int value) ;

• Parameter pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

• Parameter Value: The pulse width of PWM is value times 100us. Note that value can only be less than
pwmRange defined previously, if it is larger than pwmRange, the value will be given a fixed value, pwmRange.

ledColorSet(0xff,0x00,0x00);

446 Chapter 7. Play with C

SunFounder raphael-kit

Call the function defined before. Write 0xff into LedPinRed and 0x00 into LedPinGreen and LedPinBlue. Only the
Red LED lights up after running this code. If you want to light up LEDs in other colors, just modify the parameters.

Phenomenon Picture

1.1.3 LED Bar Graph

Introduction

In this project, we sequentially illuminate the lights on the LED Bar Graph.

7.2. Output 447

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Bar Graph

448 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
SDA1 Pin 3 8 2
SCL1 Pin 5 9 3
SPICE0 Pin 24 10 8

Experimental Procedures

Step 1: Build the circuit.

Note: Pay attention to the direction when connecting. If you connect it backwards, it will not light up.

7.2. Output 449

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd ~/raphael-kit/c/1.1.3/

Step 3: Compile the code.

gcc 1.1.3_LedBarGraph.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, you will see the LEDs on the LED bar turn on and off regularly.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

int pins[10] = {0,1,2,3,4,5,6,8,9,10};
void oddLedBarGraph(void){

for(int i=0;i<5;i++){
int j=i*2;
digitalWrite(pins[j],HIGH);
delay(300);
digitalWrite(pins[j],LOW);

}
}
void evenLedBarGraph(void){

for(int i=0;i<5;i++){

(continues on next page)

450 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

int j=i*2+1;
digitalWrite(pins[j],HIGH);
delay(300);
digitalWrite(pins[j],LOW);

}
}
void allLedBarGraph(void){

for(int i=0;i<10;i++){
digitalWrite(pins[i],HIGH);
delay(300);
digitalWrite(pins[i],LOW);

}
}
int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
printf("setup wiringPi failed !");
return 1;

}
for(int i=0;i<10;i++){ //make led pins' mode is output

pinMode(pins[i], OUTPUT);
digitalWrite(pins[i],LOW);

}
while(1){

oddLedBarGraph();
delay(300);
evenLedBarGraph();
delay(300);
allLedBarGraph();
delay(300);

}
return 0;

}

Code Explanation

int pins[10] = {0,1,2,3,4,5,6,8,9,10};

Create an array and assign it to the pin number corresponding to the LED Bar Graph (0,1,2,3,4,5,6,8,9,10) and the
array will be used to control the LED.

void oddLedBarGraph(void){
for(int i=0;i<5;i++){

int j=i*2;
digitalWrite(pins[j],HIGH);
delay(300);
digitalWrite(pins[j],LOW);

}
}

Let the LED on the odd digit of the LED Bar Graph light on in turn.

void evenLedBarGraph(void){
for(int i=0;i<5;i++){

int j=i*2+1;
digitalWrite(pins[j],HIGH);

(continues on next page)

7.2. Output 451

SunFounder raphael-kit

(continued from previous page)

delay(300);
digitalWrite(pins[j],LOW);

}
}

Make the LED on the even digit of the LED Bar Graph light on in turn.

void allLedBarGraph(void){
for(int i=0;i<10;i++){

digitalWrite(pins[i],HIGH);
delay(300);
digitalWrite(pins[i],LOW);

}
}

Let the LED on the LED Bar Graph light on one by one.

Phenomenon Picture

1.1.4 7-segment Display

Introduction

Let’s try to drive a 7-segment display to show a figure from 0 to 9 and A to F.

452 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 7-segment Display

• 74HC595

7.2. Output 453

SunFounder raphael-kit

Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS to GPIO17, parallel output ports
to 8 segments of the LED segment display. Input data in DS pin to shift register when SH_CP (the clock input of the
shift register) is at the rising edge, and to the memory register when ST_CP (the clock input of the memory) is at the
rising edge. Then you can control the states of SH_CP and ST_CP via the Raspberry Pi GPIOs to transform serial data
input into parallel data output so as to save Raspberry Pi GPIOs and drive the display.

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

454 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/c/1.1.4/

Step 3: Compile.

gcc 1.1.4_7-Segment.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

After the code runs, you’ll see the 7-segment display display 0-9, A-F.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)
unsigned char SegCode[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,
→˓0x7c,0x39,0x5e,0x79,0x71};

void init(void){
pinMode(SDI, OUTPUT);
pinMode(RCLK, OUTPUT);
pinMode(SRCLK, OUTPUT);
digitalWrite(SDI, 0);
digitalWrite(RCLK, 0);
digitalWrite(SRCLK, 0);

(continues on next page)

7.2. Output 455

SunFounder raphael-kit

(continued from previous page)

}

void hc595_shift(unsigned char dat){
int i;
for(i=0;i<8;i++){

digitalWrite(SDI, 0x80 & (dat << i));
digitalWrite(SRCLK, 1);
delay(1);
digitalWrite(SRCLK, 0);

}
digitalWrite(RCLK, 1);
delay(1);
digitalWrite(RCLK, 0);

}

int main(void){
int i;
if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen

printf("setup wiringPi failed !");
return 1;

}
init();
while(1){

for(i=0;i<16;i++){
printf("Print %1X on Segment\n", i); // %X means hex output
hc595_shift(SegCode[i]);
delay(500);

}
}
return 0;

}

Code Explanation

unsigned char SegCode[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,
→˓0x7c,0x39,0x5e,0x79,0x71};

A segment code array from 0 to F in Hexadecimal (Common cathode).

void init(void){
pinMode(SDI, OUTPUT);
pinMode(RCLK, OUTPUT);
pinMode(SRCLK, OUTPUT);
digitalWrite(SDI, 0);
digitalWrite(RCLK, 0);
digitalWrite(SRCLK, 0);

}

Set ds, st_cp, sh_cp three pins to OUTPUT, and the initial state as 0.

void hc595_shift(unsigned char dat){}

To assign 8 bit value to 74HC595’s shift register.

digitalWrite(SDI, 0x80 & (dat << i));

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111, when i=2, 0x3f will shift left(<<) 2 bits.

456 Chapter 7. Play with C

SunFounder raphael-kit

1111 1100 (0x3f << 2) & 1000 0000 (0x80) = 1000 0000, is true.

digitalWrite(SRCLK, 1);

SRCLK’s initial value was set to 0, and here it’s set to 1, which is to generate a rising edge pulse, then shift the DS
date to shift register.

digitalWrite(RCLK, 1);

RCLK’s initial value was set to 0, and here it’s set to 1, which is to generate a rising edge, then shift data from shift
register to storage register.

while(1){
for(i=0;i<16;i++){

printf("Print %1X on Segment\n", i); // %X means hex output
hc595_shift(SegCode[i]);
delay(500);

}
}

In this for loop, we use %1X to output i as a hexadecimal number. Apply i to find the corresponding segment code in
the SegCode[] array, and employ hc595_shift() to pass the SegCode into 74HC595’s shift register.

Note: The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Phenomenon Picture

7.2. Output 457

SunFounder raphael-kit

1.1.5 4-Digit 7-Segment Display

Introduction

Next, follow me to try to control the 4-digit 7-segment display.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 4-Digit 7-Segment Display

• 74HC595

458 Chapter 7. Play with C

SunFounder raphael-kit

Note: In this projiect, for the 4-Digit 7-Segment Display we should use BS model,if you use AS model it may not
light up.

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24

7.2. Output 459

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.1.5/

Step 3: Compile the code.

gcc 1.1.5_4-Digit.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, the program takes a count, increasing by 1 per second, and the 4-digit 7-segment display displays
the count.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>

#define SDI 5
#define RCLK 4
#define SRCLK 1

(continues on next page)

460 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

const int placePin[] = {12, 3, 2, 0};
unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

int counter = 0;

void pickDigit(int digit)
{

for (int i = 0; i < 4; i++)
{

digitalWrite(placePin[i], 0);
}
digitalWrite(placePin[digit], 1);

}

void hc595_shift(int8_t data)
{

int i;
for (i = 0; i < 8; i++)
{

digitalWrite(SDI, 0x80 & (data << i));
digitalWrite(SRCLK, 1);
delayMicroseconds(1);
digitalWrite(SRCLK, 0);

}
digitalWrite(RCLK, 1);
delayMicroseconds(1);
digitalWrite(RCLK, 0);

}

void clearDisplay()
{

int i;
for (i = 0; i < 8; i++)
{

digitalWrite(SDI, 1);
digitalWrite(SRCLK, 1);
delayMicroseconds(1);
digitalWrite(SRCLK, 0);

}
digitalWrite(RCLK, 1);
delayMicroseconds(1);
digitalWrite(RCLK, 0);

}

void loop()
{

while(1){
clearDisplay();
pickDigit(0);
hc595_shift(number[counter % 10]);

clearDisplay();
pickDigit(1);
hc595_shift(number[counter % 100 / 10]);

clearDisplay();
(continues on next page)

7.2. Output 461

SunFounder raphael-kit

(continued from previous page)

pickDigit(2);
hc595_shift(number[counter % 1000 / 100]);

clearDisplay();
pickDigit(3);
hc595_shift(number[counter % 10000 / 1000]);
}

}

void timer(int timer1)
{

if (timer1 == SIGALRM)
{

counter++;
alarm(1);
printf("%d\n", counter);

}
}

void main(void)
{

if (wiringPiSetup() == -1)
{

printf("setup wiringPi failed !");
return;

}
pinMode(SDI, OUTPUT);
pinMode(RCLK, OUTPUT);
pinMode(SRCLK, OUTPUT);

for (int i = 0; i < 4; i++)
{

pinMode(placePin[i], OUTPUT);
digitalWrite(placePin[i], HIGH);

}
signal(SIGALRM, timer);
alarm(1);
loop();

}

Code Explanation

const int placePin[] = {12, 3, 2, 0};

These four pins control the common anode pins of the four-digit 7-segment display.

unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

A segment code array from 0 to 9 in Hexadecimal (Common anode).

void pickDigit(int digit)
{

for (int i = 0; i < 4; i++)
{

digitalWrite(placePin[i], 0);
}

(continues on next page)

462 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

digitalWrite(placePin[digit], 1);
}

Select the place of the value. there is only one place that should be enable each time. The enabled place will be written
high.

void loop()
{

while(1){
clearDisplay();
pickDigit(0);
hc595_shift(number[counter % 10]);

clearDisplay();
pickDigit(1);
hc595_shift(number[counter % 100 / 10]);

clearDisplay();
pickDigit(2);
hc595_shift(number[counter % 1000 / 100]);

clearDisplay();
pickDigit(3);
hc595_shift(number[counter % 10000 / 1000]);
}

}

The functionis used to set the number displayed on the 4-digit 7-segment display.

• clearDisplay()write in 11111111 to turn off these eight LEDs on 7-segment display so as to clear the
displayed content.

• pickDigit(0)pick the fourth 7-segment display.

• hc595_shift(number[counter%10])the number in the single digit of counter will display on the forth
segment.

signal(SIGALRM, timer);

This is a system-provided function, the prototype of code is:

sig_t signal(int signum,sig_t handler);

After executing the signal() , once the process receives the corresponding signum (in this case SIGALRM), it
immediately pauses the existing task and processes the set function (in this case timer(sig)).

alarm(1);

This is also a system-provided function. The code prototype is:

unsigned int alarm (unsigned int seconds);

It generates a SIGALRM signal after a certain number of seconds.

void timer(int timer1)
{

if (timer1 == SIGALRM)

(continues on next page)

7.2. Output 463

SunFounder raphael-kit

(continued from previous page)

{
counter++;
alarm(1);
printf("%d\n", counter);

}
}

We use the functions above to implement the timer function. After the alarm() generates the SIGALRM signal, the
timer function is called. Add 1 to counter, and the function, alarm(1) will be repeatedly called after 1 second.

Phenomenon Picture

464 Chapter 7. Play with C

SunFounder raphael-kit

1.1.6 LED Dot Matrix Module

Introduction

In this project, you will learn about LED Matrix Module. LED Matrix Module uses the MAX7219 driver to drive the
8 x 8 LED Matrix.

Components

• GPIO Extension Board

• Breadboard

• LED Matrix Module

7.2. Output 465

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
SPIMOSI Pin 19 12 MOSI
SPICE0 pin 24 10 CE0
SPISCLK Pin 23 14 SCLK

Experimental Procedures

Step 1: Build the circuit.

466 Chapter 7. Play with C

SunFounder raphael-kit

Note: Turn on the SPI before starting the experiment, refer to SPI Configuration for details. And the BCM2835
library is also needed.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.1.6/

Step 3: Compile the code.

make

Step 4:: Run the executable file.

sudo ./1.1.6_LedMatrix

After running the code, the LED Dot Matrix displays from 0 to 9 and A to Z in sequence.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <bcm2835.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

#define uchar unsigned char
#define uint unsigned int

#define Max7219_pinCS RPI_GPIO_P1_24

uchar disp1[36][8]={
{0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x3C},//0
{0x08,0x18,0x28,0x08,0x08,0x08,0x08,0x08},//1
{0x7E,0x2,0x2,0x7E,0x40,0x40,0x40,0x7E},//2
{0x3E,0x2,0x2,0x3E,0x2,0x2,0x3E,0x0},//3
{0x8,0x18,0x28,0x48,0xFE,0x8,0x8,0x8},//4
{0x3C,0x20,0x20,0x3C,0x4,0x4,0x3C,0x0},//5
{0x3C,0x20,0x20,0x3C,0x24,0x24,0x3C,0x0},//6
{0x3E,0x22,0x4,0x8,0x8,0x8,0x8,0x8},//7
{0x0,0x3E,0x22,0x22,0x3E,0x22,0x22,0x3E},//8
{0x3E,0x22,0x22,0x3E,0x2,0x2,0x2,0x3E},//9
{0x8,0x14,0x22,0x3E,0x22,0x22,0x22,0x22},//A
{0x3C,0x22,0x22,0x3E,0x22,0x22,0x3C,0x0},//B
{0x3C,0x40,0x40,0x40,0x40,0x40,0x3C,0x0},//C
{0x7C,0x42,0x42,0x42,0x42,0x42,0x7C,0x0},//D
{0x7C,0x40,0x40,0x7C,0x40,0x40,0x40,0x7C},//E
{0x7C,0x40,0x40,0x7C,0x40,0x40,0x40,0x40},//F
{0x3C,0x40,0x40,0x40,0x40,0x44,0x44,0x3C},//G
{0x44,0x44,0x44,0x7C,0x44,0x44,0x44,0x44},//H
{0x7C,0x10,0x10,0x10,0x10,0x10,0x10,0x7C},//I
{0x3C,0x8,0x8,0x8,0x8,0x8,0x48,0x30},//J
{0x0,0x24,0x28,0x30,0x20,0x30,0x28,0x24},//K

(continues on next page)

7.2. Output 467

SunFounder raphael-kit

(continued from previous page)

{0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x7C},//L
{0x81,0xC3,0xA5,0x99,0x81,0x81,0x81,0x81},//M
{0x0,0x42,0x62,0x52,0x4A,0x46,0x42,0x0},//N
{0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x3C},//O
{0x3C,0x22,0x22,0x22,0x3C,0x20,0x20,0x20},//P
{0x1C,0x22,0x22,0x22,0x22,0x26,0x22,0x1D},//Q
{0x3C,0x22,0x22,0x22,0x3C,0x24,0x22,0x21},//R
{0x0,0x1E,0x20,0x20,0x3E,0x2,0x2,0x3C},//S
{0x0,0x3E,0x8,0x8,0x8,0x8,0x8,0x8},//T
{0x42,0x42,0x42,0x42,0x42,0x42,0x22,0x1C},//U
{0x42,0x42,0x42,0x42,0x42,0x42,0x24,0x18},//V
{0x0,0x49,0x49,0x49,0x49,0x2A,0x1C,0x0},//W
{0x0,0x41,0x22,0x14,0x8,0x14,0x22,0x41},//X
{0x41,0x22,0x14,0x8,0x8,0x8,0x8,0x8},//Y
{0x0,0x7F,0x2,0x4,0x8,0x10,0x20,0x7F},//Z
};

void Delay_xms(uint x)
{

bcm2835_delay(x);
}
//------------------------

void Write_Max7219_byte(uchar DATA)
{

bcm2835_gpio_write(Max7219_pinCS,LOW);
bcm2835_spi_transfer(DATA);

}

void Write_Max7219(uchar address1,uchar dat1)
{

bcm2835_gpio_write(Max7219_pinCS,LOW);
Write_Max7219_byte(address1);
Write_Max7219_byte(dat1);
bcm2835_gpio_write(Max7219_pinCS,HIGH);

}

void Init_MAX7219()
{

Write_Max7219(0x09,0x00);
Write_Max7219(0x0a,0x03);
Write_Max7219(0x0b,0x07);
Write_Max7219(0x0c,0x01);
Write_Max7219(0x0f,0x00);

}

void Init_BCM2835()
{

bcm2835_spi_begin();
bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256);
bcm2835_gpio_fsel(Max7219_pinCS, BCM2835_GPIO_FSEL_OUTP);
bcm2835_gpio_write(disp1[0][0],HIGH);

}

int main(void)
(continues on next page)

468 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

{
uchar i,j;

if (!bcm2835_init())
{

printf("Unable to init bcm2835.\n");
return 1;

}
Init_BCM2835();
Delay_xms(50);
Init_MAX7219();
while(1)
{

for(j=0;j<36;j++)
{

for(i=1;i<9;i++)
{

Write_Max7219(i,disp1[j][i-1]);
}
Delay_xms(1000);

}
}
// bcm2835_spi_end();
// bcm2835_close();
return 0;

}

Code Explanation

#define Max7219_pinCS 24

The cs pin of the LED Dot Matrix is connected to pin24.

Note: When you have multiple devices that need spi communication, just connect the cs pins on different pins.

if (!bcm2835_init())
{

printf("Unable to init bcm2835.\n");
return 1;

}

Check if the bcm2835 library is successfully installed, if not, print the message “Unable to init bcm2835”.

Init_BCM2835();
Delay_xms(50);
Init_MAX7219();

Initialize libraries and module.

while(1)
{

for(j=0;j<36;j++)
{

for(i=1;i<9;i++)
{

(continues on next page)

7.2. Output 469

SunFounder raphael-kit

(continued from previous page)

Write_Max7219(i,disp1[j][i-1]);
}
Delay_xms(1000);

}
}

The Write_Max7219() function allows you to display the specified character on the LED Dot Matrix, where the
first parameter inputs the row in which it is displayed, and the second parameter inputs an 8-bit binary number or a
hexadecimal number that indicates the light on or off in that row (0 means off, 1 means lit).

The variable j represents the rows in the array disp1[] (35 rows) and the variable i represents the column (8
columns).

For example, when j=1 and i=2, the value disp1[1][1] (0x18) is displayed on the dot matrix. i loops 8 times to
display the full 1 on the dot matrix. After 35 cycles of j, 0-9 and A-Z are displayed on the dot matrix.

470 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

1.1.7 I2C LCD1602

Introduction

LCD1602 is a character type liquid crystal display, which can display 32 (16*2) characters at the same time.

7.2. Output 471

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• I2C LCD1602

472 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical
SDA1 Pin 3
SCL1 Pin 5

Experimental Procedures

Step 1: Build the circuit.

Step 2: Setup I2C (see I2C Configuration. If you have set I2C, skip this step.)

Step 3: Change directory.

cd /home/pi/raphael-kit/c/1.1.7/

Step 4: Compile.

7.2. Output 473

SunFounder raphael-kit

gcc 1.1.7_Lcd1602.c -lwiringPi

Step 5: Run.

sudo ./a.out

After the code runs, you can see Greetings!, From SunFounder displaying on the LCD.

Note:

• If there is an error prompt wiringPi.h: No such file or directory, please refer to C code is
not working?.

• If you get Unable to open I2C device: No such file or directory error, you need to re-
fer to I2C Configuration to enable I2C and check if the wiring is correct.

Code

• 1.1.7_Lcd1602.c

Code Explanation

void write_word(int data){......}
void send_command(int comm){......}
void send_data(int data){......}
void init(){......}
void clear(){......}
void write(int x, int y, char data[]){......}

These functions are used to control I2C LCD1602 open source code. They allow us to easily use I2C LCD1602.
Among these functions, init() is used for initialization, clear() is used to clear the screen, write() is used to
write what is displayed, and other functions support the above functions.

fd = wiringPiI2CSetup(LCDAddr);

This function initializes the I2C system with the specified device symbol. The prototype of the function:

int wiringPiI2CSetup(int devId);

Parameters devId is the address of the I2C device, it can be found through the i2cdetect command(see Appendix) and
the devId of I2C LCD1602 is generally 0x27.

void write(int x, int y, char data[]){}

In this function, data[] is the character to be printed on the LCD, and the parameters x and y determine the printing
position (line y+1, column x+1 is the starting position of the character to be printed).

474 Chapter 7. Play with C

https://github.com/sunfounder/raphael-kit/blob/master/c/1.1.7/1.1.7_Lcd1602.c

SunFounder raphael-kit

Phenomenon Picture

7.2.2 1.2 Sound

1.2.1 Active Buzzer

Introduction

In this project, we will learn how to drive an active buzzer to beep with a PNP transistor.

7.2. Output 475

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

476 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

In this experiment, an active buzzer, a PNP transistor and a 1k resistor are used between the base of the transistor
and GPIO to protect the transistor. When the GPIO17 of Raspberry Pi output is supplied with low level (0V) by
programming, the transistor will conduct because of current saturation and the buzzer will make sounds. But when
high level is supplied to the IO of Raspberry Pi, the transistor will be cut off and the buzzer will not make sounds.

Experimental Procedures

Step 1: Build the circuit. (The active buzzer has a white table sticker on the surface and a black back.)

7.2. Output 477

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/1.2.1/

Step 3: Compile the code.

gcc 1.2.1_ActiveBuzzer.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

The code run, the buzzer beeps.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0
int main(void){

if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(BeepPin, OUTPUT); //set GPIO0 output
while(1){

//beep on
printf("Buzzer on\n");
digitalWrite(BeepPin, LOW);
delay(100);
printf("Buzzer off\n");
//beep off
digitalWrite(BeepPin, HIGH);
delay(100);

(continues on next page)

478 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

}
return 0;

}

Code Explanation

digitalWrite(BeepPin, LOW);

We use an active buzzer in this experiment, so it will make sound automatically when connecting to the direct current.
This sketch is to set the I/O port as low level (0V), thus to manage the transistor and make the buzzer beep.

digitalWrite(BeepPin, HIGH);

To set the I/O port as high level(3.3V), thus the transistor is not energized and the buzzer doesn’t beep.

Phenomenon Picture

7.2. Output 479

SunFounder raphael-kit

1.2.2 Passive Buzzer

Introduction

In this project, we will learn how to make a passive buzzer play music.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

480 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

In this experiment, a passive buzzer, a PNP transistor and a 1k resistor are used between the base of the transistor and
GPIO to protect the transistor.

When GPIO17 is given different frequencies, the passive buzzer will emit different sounds; in this way, the buzzer
plays music.

7.2. Output 481

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit. (The Passive buzzer with green circuit board on the back.)

Step 2: Change directory.

cd /home/pi/raphael-kit/c/1.2.2/

Step 3: Compile.

gcc 1.2.2_PassiveBuzzer.c -lwiringPi

Step 4: Run.

sudo ./a.out

The code run, the buzzer plays a piece of music.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softTone.h>
#include <stdio.h>

#define BuzPin 0

#define CL1 131
#define CL2 147
#define CL3 165
#define CL4 175
#define CL5 196
#define CL6 221
#define CL7 248

#define CM1 262
#define CM2 294

(continues on next page)

482 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

#define CM3 330
#define CM4 350
#define CM5 393
#define CM6 441
#define CM7 495

#define CH1 525
#define CH2 589
#define CH3 661
#define CH4 700
#define CH5 786
#define CH6 882
#define CH7 990

int song_1[] = {CM3,CM5,CM6,CM3,CM2,CM3,CM5,CM6,CH1,CM6,CM5,CM1,CM3,CM2,
CM2,CM3,CM5,CM2,CM3,CM3,CL6,CL6,CL6,CM1,CM2,CM3,CM2,CL7,
CL6,CM1,CL5};

int beat_1[] = {1,1,3,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,2,1,1,
1,1,1,1,1,1,3};

int song_2[] = {CM1,CM1,CM1,CL5,CM3,CM3,CM3,CM1,CM1,CM3,CM5,CM5,CM4,CM3,CM2,
CM2,CM3,CM4,CM4,CM3,CM2,CM3,CM1,CM1,CM3,CM2,CL5,CL7,CM2,CM1
};

int beat_2[] = {1,1,1,3,1,1,1,3,1,1,1,1,1,1,3,1,1,1,2,1,1,1,3,1,1,1,3,3,2,3};

int main(void)
{

int i, j;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

printf("setup wiringPi failed !");
return 1;

}

if(softToneCreate(BuzPin) == -1){
printf("setup softTone failed !");
return 1;

}

while(1){
printf("music is being played...\n");

for(i=0;i<sizeof(song_1)/4;i++){
softToneWrite(BuzPin, song_1[i]);
delay(beat_1[i] * 500);

}

for(i=0;i<sizeof(song_2)/4;i++){
softToneWrite(BuzPin, song_2[i]);
delay(beat_2[i] * 500);

}
}

return 0;
}

7.2. Output 483

SunFounder raphael-kit

Code Explanation

#define CL1 131
#define CL2 147
#define CL3 165
#define CL4 175
#define CL5 196
#define CL6 221
#define CL7 248

#define CM1 262
#define CM2 294

These frequencies of each note are as shown. CL refers to low note, CM middle note, CH high note, 1-7 correspond
to the notes C, D, E, F, G, A, B.

int song_1[] = {CM3,CM5,CM6,CM3,CM2,CM3,CM5,CM6,CH1,CM6,CM5,CM1,CM3,CM2,
CM2,CM3,CM5,CM2,CM3,CM3,CL6,CL6,CL6,CM1,CM2,CM3,CM2,CL7,
CL6,CM1,CL5};

int beat_1[] = {1,1,3,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,2,1,1,
1,1,1,1,1,1,3};

The array, song_1[] stores a musical score of a song in which beat_1[] refers to the beat of each note in the song
(0.5s for each beat).

if(softToneCreate(BuzPin) == -1){
printf("setup softTone failed !");
return 1;

}

This creates a software controlled tone pin. You can use any GPIO pin and the pin numbering will be that of
the wiringPiSetup() function you used. The return value is 0 for success. Anything else and you should check
the global errnovariable to see what went wrong.

for(i=0;i<sizeof(song_1)/4;i++){
softToneWrite(BuzPin, song_1[i]);
delay(beat_1[i] * 500);

}

Employ a for statement to play song_1.

In the judgment condition, i<sizeof(song_1)/4“devide by 4” is used because the array song_1[] is an array of the
data type of integer, and each element takes up four bytes.

The number of elements in song_1 (the number of musical notes) is gotten by deviding sizeof(song_1) by 4.

To enable each note to play for beat * 500ms, the function delay(beat_1[i] * 500) is called.

The prototype of softToneWrite(BuzPin, song_1[i]) is

void softToneWrite (int pin, int freq);

This updates the tone frequency value on the given pin. The tone does not stop playing until you set the frequency to
0.

484 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

7.2.3 1.3 Drivers

1.3.1 Motor

Introduction

In this project, we will learn to how to use L293D to drive a DC motor and make it rotate clockwise and counterclock-
wise. Since the DC Motor needs a larger current, for safety purpose, here we use the Power Supply Module to supply
motors.

7.2. Output 485

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Power Supply Module

• L293D

• DC Motor

486 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to pin of 5V, then it will output voltage of 5V.
Connect pin 1 of L293D to GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to GPIO17, then set
one pin high, while the other low. Thus you can change the motor’s rotation direction.

Experimental Procedures

Step 1: Build the circuit.

7.2. Output 487

SunFounder raphael-kit

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit. Insert the jumper cap of the
power module into the 5V bus strips of the breadboard.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/c/1.3.1/

Step 3: Compile.

gcc 1.3.1_Motor.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

As the code runs, the motor first rotates clockwise for 5s then stops for 5s, after that, it rotates anticlockwise for 5s;
subsequently, the motor stops for 5s. This series of actions will be executed repeatedly.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please

488 Chapter 7. Play with C

SunFounder raphael-kit

refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define MotorPin1 0
#define MotorPin2 2
#define MotorEnable 3

int main(void){
int i;
if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen

printf("setup wiringPi failed !");
return 1;

}

pinMode(MotorPin1, OUTPUT);
pinMode(MotorPin2, OUTPUT);
pinMode(MotorEnable, OUTPUT);
while(1){

printf("Clockwise\n");
digitalWrite(MotorEnable, HIGH);
digitalWrite(MotorPin1, HIGH);
digitalWrite(MotorPin2, LOW);
for(i=0;i<3;i++){

delay(1000);
}

printf("Stop\n");
digitalWrite(MotorEnable, LOW);
for(i=0;i<3;i++){

delay(1000);
}

printf("Anti-clockwise\n");
digitalWrite(MotorEnable, HIGH);
digitalWrite(MotorPin1, LOW);
digitalWrite(MotorPin2, HIGH);
for(i=0;i<3;i++){

delay(1000);
}

printf("Stop\n");
digitalWrite(MotorEnable, LOW);
for(i=0;i<3;i++){

delay(1000);
}

}
return 0;

}

Code Explanation

digitalWrite(MotorEnable, HIGH);

Enable the L239D.

7.2. Output 489

SunFounder raphael-kit

digitalWrite(MotorPin1, HIGH);
digitalWrite(MotorPin2, LOW);

Set a high level for 2A(pin 7); since 1,2EN(pin 1) is in high level, 2Y will output high level.

Set a low level for 1A, then 1Y will output low level, and the motor will rotate.

for(i=0;i<3;i++){
delay(1000);

}

this loop is to delay for 3*1000ms.

digitalWrite(MotorEnable, LOW)

If 1,2EN (pin1) is in low level, L293D does not work. Motor stops rotating.

digitalWrite(MotorPin1, LOW)
digitalWrite(MotorPin2, HIGH)

Reverse the current flow of the motor, then the motor will rotate reversely.

Phenomenon Picture

490 Chapter 7. Play with C

SunFounder raphael-kit

1.3.2 Servo

Introduction

In this project, we will learn how to make the servo rotate.

Components

• GPIO Extension Board

• Breadboard

7.2. Output 491

SunFounder raphael-kit

• Servo

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

492 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.3.2

Step 3: Compile the code.

gcc 1.3.2_Servo.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0
degrees, circularly.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define ServoPin 1 //define the servo to GPIO1
long Map(long value,long fromLow,long fromHigh,long toLow,long toHigh){

return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;
}
void setAngle(int pin, int angle){ //Create a funtion to control the angle of the
→˓servo.

if(angle < 0)
angle = 0;

if(angle > 180)
angle = 180;

(continues on next page)

7.2. Output 493

SunFounder raphael-kit

(continued from previous page)

softPwmWrite(pin,Map(angle, 0, 180, 5, 25));
}

int main(void)
{

int i;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

printf("setup wiringPi failed !");
return 1;

}
softPwmCreate(ServoPin, 0, 200); //initialize PMW pin of servo
while(1){

for(i=0;i<181;i++){ // Let servo rotate from 0 to 180.
→˓setAngle(ServoPin,i);

delay(2);
}
delay(1000);
for(i=181;i>-1;i--){ // Let servo rotate from 180 to 0.

→˓setAngle(ServoPin,i);
delay(2);

}
delay(1000);

}
return 0;

}

Code Explanation

long Map(long value,long fromLow,long fromHigh,long toLow,long toHigh){
return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;

}

Create a Map() function to map value in the following code.

void setAngle(int pin, int angle){ //Create a funtion to control the angle of the
→˓servo.

if(angle < 0)
angle = 0;

if(angle > 180)
angle = 180;

softPwmWrite(pin,Map(angle, 0, 180, 5, 25));
}

Create a funtion, setAngle() to write angle to the servo.

softPwmWrite(pin,Map(angle,0,180,5,25));

This function can change the duty cycle of the PWM.

To make the servo rotate to 0 ~ 180 °, the pulse width should change within the range of 0.5ms ~ 2.5ms when the
period is 20ms; in the function, softPwmCreate() , we have set that the period is 200x100us=20ms, thus we need
to map 0 ~ 180 to 5x100us ~ 25x100us.

The prototype of this function is shown below.

int softPwmCreateint pinint initialValueint pwmRange;

• pin: Any GPIO pin of Raspberry Pi can be set as PWM pin.

494 Chapter 7. Play with C

SunFounder raphael-kit

• initialValue: The initial pulse width is that initialValue times 100us.

• pwmRange: the period of PWM is that pwmRange times 100us.

Phenomenon Picture

1.3.3 Relay

Introduction

In this project, we will learn to use a relay. It is one of the commonly used components in automatic control system.
When the voltage, current, temperature, pressure, etc., reaches, exceeds or is lower than the predetermined value, the
relay will connect or interrupt the circuit, to control and protect the equipment.

7.2. Output 495

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Transistor

• Relay

• Diode

496 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

7.2. Output 497

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/1.3.3

Step 3: Compile the code.

gcc 1.3.3_Relay.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, the LED will light up. In addition, you can hear a ticktock caused by breaking normally close
contact and closing normally open contact.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#define RelayPin 0

int main(void){
if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to

→˓screen
printf("setup wiringPi failed !");
return 1;

}
pinMode(RelayPin, OUTPUT); //set GPIO17(GPIO0) output
while(1){

// Tick
printf("Relay Open......\n");
digitalWrite(RelayPin, LOW);
delay(1000);
// Tock

(continues on next page)

498 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

printf("......Relay Close\n");
digitalWrite(RelayPin, HIGH);
delay(1000);

}

return 0;
}

Code Explanation

digitalWrite(RelayPin, LOW);

Set the I/O port as low level (0V), thus the transistor is not energized and the coil is not powered. There is no
electromagnetic force, so the relay opens, LED does not turn on.

digitalWrite(RelayPin, HIGH);

set the I/O port as high level (5V) to energize the transistor. The coil of the relay is powered and generate electromag-
netic force, and the relay closes, LED lights up.

Phenomenon Picture

7.2. Output 499

SunFounder raphael-kit

7.3 Input

7.3.1 2.1 Controllers

2.1.1 Button

Introduction

In this project, we will learn how to turn on or off the LED by using a button.

Components

• GPIO Extension Board

• Breadboard

500 Chapter 7. Play with C

SunFounder raphael-kit

• Resistor

• LED

• Button

Schematic Diagram

Use a normally open button as the input of Raspberry Pi, the connection is shown in the schematic diagram below.
When the button is pressed, the GPIO18 will turn into low level (0V). We can detect the state of the GPIO18 through
programming. That is, if the GPIO18 turns into low level, it means the button is pressed. You can run the corresponding
code when the button is pressed, and then the LED will light up.

Note: The longer pin of the LED is the anode and the shorter one is the cathode.

7.3. Input 501

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.1/

Note: Change directory to the path of the code in this experiment via cd.

Step 3: Compile the code.

gcc 2.1.1_Button.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, press the button, the LED lights up; otherwise, turns off.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0
#define ButtonPin 1

int main(void){
// When initialize wiring failed, print message to screen
if(wiringPiSetup() == -1){

printf("setup wiringPi failed !");
return 1;

(continues on next page)

502 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

}

pinMode(LedPin, OUTPUT);
pinMode(ButtonPin, INPUT);
digitalWrite(LedPin, HIGH);

while(1){
// Indicate that button has pressed down
if(digitalRead(ButtonPin) == 0){

// Led on
digitalWrite(LedPin, LOW);

// printf("...LED on\n");
}
else{

// Led off
digitalWrite(LedPin, HIGH);

// printf("LED off...\n");
}

}
return 0;

}

Code Explanation

#define LedPin 0

Pin GPIO17 in the T_Extension Board is equal to the GPIO0 in the wiringPi.

#define ButtonPin 1

ButtonPin is connected to GPIO1.

pinMode(LedPin, OUTPUT);

Set LedPin as output to assign value to it.

pinMode(ButtonPin, INPUT);

Set ButtonPin as input to read the value of ButtonPin.

while(1){
// Indicate that button has pressed down
if(digitalRead(ButtonPin) == 0){

// Led on
digitalWrite(LedPin, LOW);

// printf("...LED on\n");
}
else{

// Led off
digitalWrite(LedPin, HIGH);

// printf("LED off...\n");
}

}

if (digitalRead (ButtonPin) == 0) : check whether the button has been pressed. Execute
digitalWrite(LedPin, LOW) when button is pressed to light up LED.

7.3. Input 503

SunFounder raphael-kit

digitalRead() function is to read HIGH (high level) or LOW (low level) of the input parameter word pin, it
returns 1 when pin is HIGH and returns 0 when pin is LOW.

digitalWrite() function is to write HIGH (high level) or LOW (low level) to the input parameter word pin.

Phenomenon Picture

2.1.2 Micro Switch

Introduction

In this project, we will learn how to use Micro Switch. A Micro Switch is a small, very sensitive switch which requires
minimum compression to activate. Because they are reliable and sensitive, micro switches are often used as a safety
device.

They are used to prevent doors from closing if something or someone is in the way and other applications similar.

504 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Micro Switch

• Capacitor

7.3. Input 505

SunFounder raphael-kit

Schematic Diagram

Connect the left pin of the Micro Switch to GPIO17, and two LEDs to pin GPIO22 and GPIO27 respectively. Then
when you press and release the move arm of the Micro Switch, you can see the two LEDs light up alternately.

506 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.1.2

Step 3: Compile.

gcc 2.1.2_MicroSwitch.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

While the code is running, press the Micro Switch, then the yellow LED lights up; release the moving arm, the red
LED turns on.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define microPin 0
#define led1 3
#define led2 2

int main(void)
{

// When initialize wiring failed, print message to screen
if(wiringPiSetup() == -1){

(continues on next page)

7.3. Input 507

SunFounder raphael-kit

(continued from previous page)

printf("setup wiringPi failed !");
return 1;

}

pinMode(microPin, INPUT);
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);

while(1){
// micro switch high, led1 on
if(digitalRead(microPin) == 1){

digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
printf("LED1 on\n");

}
// micro switch low, led2 on
if(digitalRead(microPin) == 0){

digitalWrite(led2, LOW);
digitalWrite(led1, HIGH);
printf(".....LED2 on\n");

}
delay(500);

}

return 0;
}

Code Explanation

if(digitalRead(slidePin) == 1){
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
printf("LED1 on\n");

}

When the moving arm of the micro switch is released, the left pin is connected to the right pin; at this time, a high
level will be read on GPIO17, and then LED1 will be on and LED2 will be off.

if(digitalRead(slidePin) == 0){
digitalWrite(led2, LOW);
digitalWrite(led1, HIGH);
printf(".....LED2 on\n");

}

When the move arm is pressed, the left pin and the middle pin are connected. At this point a low level will be read on
GPIO17, then turns LED2 on and LED1 off.

508 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

2.1.3 Touch Switch Module

Introduction

In this project, you will learn about touch switch module. It can replace the traditional kinds of switch with these
advantages: convenient operation, fine touch sense, precise control and least mechanical wear.

7.3. Input 509

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Touch Switch Module

510 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.1.3/

Step 3: Compile.

gcc 2.1.3_TouchSwitch.c -lwiringPi

7.3. Input 511

SunFounder raphael-kit

Step 4: Run.

sudo ./a.out

While the code is running, the red LED lights up; when you tap on the touch switch module, the yellow LED turns on.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define touchPin 0
#define led1 3
#define led2 2

int main(void)
{

// When initialize wiring failed, print message to screen
if(wiringPiSetup() == -1){

printf(etup w"siringPi failed !");
return 1;

}

pinMode(touchPin, INPUT);
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);

while(1){
// touch switch high, led1 on
if(digitalRead(touchPin) == 1){

digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
printf("You touch it! \r\n");

}
// touch switch low, led2 on
if(digitalRead(touchPin) == 0){

digitalWrite(led2, LOW);
digitalWrite(led1, HIGH);

}
}

return 0;
}

Code Explanation

#define touchPin 0
#define led1 3
#define led2 2

Pin GPIO17, GPIO22 and GPIO27 of the T_Extension Board is corresponding to the GPIO0, GPIO3 and GPIO2 in
wiringPi. Assign GPIO0, GPIO3 and GPIO2 to touchPin, led1 and led2.

512 Chapter 7. Play with C

SunFounder raphael-kit

pinMode(touchPin, INPUT);
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);

Set led1, led2 as output to write value to them and set touchPin as input to read value from it.

while(1){
// touch switch high, led1 on

if(digitalRead(touchPin) == 1){
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
printf("You touch it! \r\n");

}
// touch switch low, led2 on
if(digitalRead(touchPin) == 0){

digitalWrite(led2, LOW);
digitalWrite(led1, HIGH);

}
}

Set an infinite loop, when you tap on the touch switch module, touchPin is high, led1 will light up and print “You
touch it!” . When touchPin is low, led2 will light up.

Phenomenon Picture

7.3. Input 513

SunFounder raphael-kit

2.1.4 Slide Switch

Introduction

In this project, we will learn how to use a slide switch. Usually,the slide switch is soldered on PCB as a power switch,
but here we need to insert it into the breadboard, thus it may not be tightened. And we use it on the breadboard to
show its function.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Slide Switch

514 Chapter 7. Play with C

SunFounder raphael-kit

• Capacitor

Schematic Diagram

Connect the middle pin of the Slide Switch to GPIO17, and two LEDs to pin GPIO22 and GPIO27 respectively. Then
when you pull the slide, you can see the two LEDs light up alternately.

7.3. Input 515

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.1.4

Step 3: Compile.

gcc 2.1.4_Slider.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

While the code is running, get the switch connected to the left, then the yellow LED lights up; to the right, the red
light turns on.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#define slidePin 0
#define led1 3
#define led2 2

int main(void)
{

// When initialize wiring failed, print message to screen
if(wiringPiSetup() == -1){

printf("setup wiringPi failed !");
return 1;

}
pinMode(slidePin, INPUT);

(continues on next page)

516 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
while(1){

// slide switch high, led1 on
if(digitalRead(slidePin) == 1){

digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
printf("LED1 on\n");

}
// slide switch low, led2 on
if(digitalRead(slidePin) == 0){

digitalWrite(led2, LOW);
digitalWrite(led1, HIGH);
printf(".....LED2 on\n");

}
}
return 0;

}

Code Explanation

if(digitalRead(slidePin) == 1){
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
printf("LED1 on\n");

}

When the slide is pulled to the right, the middle pin and right one are connected; the Raspberry Pi reads a high level at
the middle pin, so the LED1 is on and LED2 off

if(digitalRead(slidePin) == 0){
digitalWrite(led2, LOW);
digitalWrite(led1, HIGH);
printf(".....LED2 on\n");

}

When the slide is pulled to the left, the middle pin and left one are connected; the Raspberry Pi reads a low, so the
LED2 is on and LED1 off

7.3. Input 517

SunFounder raphael-kit

Phenomenon Picture

2.1.5 Tilt Switch

Introduction

This is a ball tilt-switch with a metal ball inside. It is used to detect inclinations of a small angle.

518 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Tilt Switch

7.3. Input 519

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

520 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.1.5/

Step 3: Compile.

gcc 2.1.5_Tilt.c -lwiringPi

Step 4: Run.

sudo ./a.out

Place the tilt vertically, and the green LED will turns on. If you tilt it, “Tilt!” will be printed on the screen and the red
LED will lights on. Place it vertically again, and the green LED will turns on again.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define TiltPin 0
#define Gpin 2
#define Rpin 3

void LED(char* color)
{

pinMode(Gpin, OUTPUT);
pinMode(Rpin, OUTPUT);
if (color == "RED")
{

digitalWrite(Rpin, HIGH);

(continues on next page)

7.3. Input 521

SunFounder raphael-kit

(continued from previous page)

digitalWrite(Gpin, LOW);
}
else if (color == "GREEN")
{

digitalWrite(Rpin, LOW);
digitalWrite(Gpin, HIGH);

}
else

printf("LED Error");
}

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(TiltPin, INPUT);
LED("GREEN");

while(1){
if(0 == digitalRead(TiltPin)){

delay(10);
if(0 == digitalRead(TiltPin)){

LED("RED");
printf("Tilt!\n");

}
}
else if(1 == digitalRead(TiltPin)){

delay(10);
if(1 == digitalRead(TiltPin)){

LED("GREEN");
}

}
}
return 0;

}

Code Explanation

void LED(char* color)
{

pinMode(Gpin, OUTPUT);
pinMode(Rpin, OUTPUT);
if (color == "RED")
{

digitalWrite(Rpin, HIGH);
digitalWrite(Gpin, LOW);

}
else if (color == "GREEN")
{

digitalWrite(Rpin, LOW);
digitalWrite(Gpin, HIGH);

}
else

printf("LED Error");
(continues on next page)

522 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

}

Define a function LED() to turn the two LEDs on or off. If the parameter color is RED, the red LED lights up;
similarly, if the parameter color is GREEN, the green LED will turns on.

while(1){
if(0 == digitalRead(TiltPin)){

delay(10);
if(0 == digitalRead(TiltPin)){

LED("RED");
printf("Tilt!\n");

}
}
else if(1 == digitalRead(TiltPin)){

delay(10);
if(1 == digitalRead(TiltPin)){

LED("GREEN");
}

}
}

If the read value of tilt switch is 0, it means that the tilt switch is tilted then you write the parameter ”RED” into
function LED to get the red LED lighten up; otherwise, the green LED will lit.

Phenomenon Picture

7.3. Input 523

SunFounder raphael-kit

2.1.6 Rotary Encoder Module

Introduction

In this project, you will learn about Rotary Encoder. A rotary encoder is an electronic switch with a set of regular
pulses in strictly timing sequence. When used with IC, it can achieve increment, decrement, page turning and other
operations such as mouse scrolling, menu selection, and so on.

Components

• GPIO Extension Board

• Breadboard

• Rotary Encoder Module

524 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

7.3. Input 525

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.6/

Step 3: Compile the code.

gcc 2.1.6_RotaryEncoder.c -lwiringPi

Step 4: Run.

sudo ./a.out

You will see the count on the shell. When you turn the rotary encoder clockwise, the count is increased; when turn

526 Chapter 7. Play with C

SunFounder raphael-kit

it counterclockwise, the count is decreased. If you press the switch on the rotary encoder, the readings will return to
zero.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define clkPin 0
#define dtPin 1
#define swPin 2

static volatile int globalCounter = 0 ;

unsigned char flag;
unsigned char Last_dtPin_Status;
unsigned char Current_dtPin_Status;

void btnISR(void)
{

globalCounter = 0;
}

void rotaryDeal(void)
{

Last_dtPin_Status = digitalRead(dtPin);

while(!digitalRead(clkPin)){
Current_dtPin_Status = digitalRead(dtPin);
flag = 1;

}

if(flag == 1){
flag = 0;
if((Last_dtPin_Status == 0)&&(Current_dtPin_Status == 1)){

globalCounter --;
}
if((Last_dtPin_Status == 1)&&(Current_dtPin_Status == 0)){

globalCounter ++;
}

}
}

int main(void)
{

if(wiringPiSetup() < 0){
fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));
return 1;

}

(continues on next page)

7.3. Input 527

SunFounder raphael-kit

(continued from previous page)

pinMode(swPin, INPUT);
pinMode(clkPin, INPUT);
pinMode(dtPin, INPUT);

pullUpDnControl(swPin, PUD_UP);

if(wiringPiISR(swPin, INT_EDGE_FALLING, &btnISR) < 0){
fprintf(stderr, "Unable to init ISR\n",strerror(errno));
return 1;

}

int tmp = 0;

while(1){
rotaryDeal();
if (tmp != globalCounter){

printf("%d\n", globalCounter);
tmp = globalCounter;

}
}

return 0;
}

Code Analysis

• Read dtPin value when clkPin is low.

• When clkPin is high, if dtPin goes from low to high, the count decreases, otherwise the count increases.

• swPin will output low when the shaft is pressed.

From this, the program flow is shown below:

528 Chapter 7. Play with C

SunFounder raphael-kit

7.3. Input 529

SunFounder raphael-kit

Phenomenon Picture

2.1.7 Potentiometer

Introduction

The ADC function can be used to convert analog signals to digital signals, and in this experiment, ADC0834 is used
to get the function involving ADC. Here, we implement this process by using potentiometer. Potentiometer changes
the physical quantity – voltage, which is converted by the ADC function.

530 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Potentiometer

• ADC0834

7.3. Input 531

SunFounder raphael-kit

Schematic Diagram

532 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Note: Please place the chip by referring to the corresponding position depicted in the picture. Note that the grooves
on the chip should be on the left when it is placed.

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.7/

Step 3: Compile the code.

gcc 2.1.7_Potentiometer.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, rotate the knob on the potentiometer, the intensity of LED will change accordingly.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2

(continues on next page)

7.3. Input 533

SunFounder raphael-kit

(continued from previous page)

#define LedPin 3

uchar get_ADC_Result(uint channel)
{

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;
int odd = channel & 1;

pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);

for(i=0;i<8;i++)
{

digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}

for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

}

int main(void)
{

uchar analogVal;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

(continues on next page)

534 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

printf("setup wiringPi failed !");
return 1;

}
softPwmCreate(LedPin, 0, 100);
pinMode(ADC_CS, OUTPUT);
pinMode(ADC_CLK, OUTPUT);

while(1){
analogVal = get_ADC_Result(0);
printf("Current analogVal : %d\n", analogVal);
softPwmWrite(LedPin, analogVal);
delay(100);

}
return 0;

}

Code Explanation

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define LedPin 3

Define CS, CLK, DIO of ADC0834, and connect them to GPIO0, GPIO1 and GPIO2 respectively. Then attach LED
to GPIO3.

uchar get_ADC_Result(uint channel)
{

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;
int odd = channel & 1;

pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
for(i=0;i<8;i++)

(continues on next page)

7.3. Input 535

SunFounder raphael-kit

(continued from previous page)

{
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}

for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

}

There is a function of ADC0834 to get Analog to Digital Conversion. The specific workflow is as follows:

digitalWrite(ADC_CS, 0);

Set CS to low level and start enabling AD conversion.

// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

When the low-to-high transition of the clock input occurs at the first time, set DIO to 1 as Start bit. In the following
three steps, there are 3 assignment words.

//Single End mode
digitalWrite(ADC_CLK,0);
igitalWrite(ADC_DIO,1); delayMicroseconds(2);
gitalWrite(ADC_CLK,1); delayMicroseconds(2);

As soon as the low-to-high transition of the clock input occurs for the second time, set DIO to 1 and choose SGL
mode.

// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

Once occurs for the third time, the value of DIO is controlled by the variable odd.

//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

The pulse of CLK converted from low level to high level for the forth time, the value of DIO is controlled by the
variable sel.

536 Chapter 7. Play with C

SunFounder raphael-kit

Under the condition that channel=0, sel=0, odd=0, the operational formulas concerning sel and odd are as follows:

int sel = channel > 1 & 1;
int odd = channel & 1;

When the condition that channel=1, sel=0, odd=1 is met, please refer to the following address control logic table. Here
CH1 is chosen, and the start bit is shifted into the start location of the multiplexer register and conversion starts.

digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);

Here, set DIO to 1 twice, please ignore it.

for(i=0;i<8;i++)
{

digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}

In the first for() statement, as soon as the fifth pulse of CLK is converted from high level to low level, set DIO to input
mode. Then the conversion starts and the converted value is stored in the variable dat1. After eight clock periods, the
conversion is complete.

for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}

In the second for() statement, output the converted values via DO after other eight clock periods and store them in the
variable dat2.

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

7.3. Input 537

SunFounder raphael-kit

return(dat1==dat2) ? dat1 : 0 is used to compare the value gotten during the conversion and the output value. If they
are equal to each other, output the converting value dat1; otherwise, output 0. Here, the workflow of ADC0834 is
complete.

softPwmCreate(LedPin, 0, 100);

The function is to use software to create a PWM pin, LedPin, then the initial pulse width is set to 0, and the period of
PWM is 100 x 100us.

while(1){
analogVal = get_ADC_Result(0);
printf("Current analogVal : %d\n", analogVal);
softPwmWrite(LedPin, analogVal);
delay(100);

}

In the main program, read the value of channel 0 that has been connected with a potentiometer. And store the value in
the variable analogVal then write it in LedPin. Now you can see the brightness of LED changing with the value of the
potentiometer.

Phenomenon Picture

538 Chapter 7. Play with C

SunFounder raphael-kit

2.1.8 Keypad

Introduction

A keypad is a rectangular array of buttons. In this project, We will use it input characters.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Keypad

7.3. Input 539

SunFounder raphael-kit

Schematic Diagram

540 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

7.3. Input 541

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.8/

Step 3: Compile the code.

gcc 2.1.8_Keypad.cpp -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, the values of pressed buttons on keypad (button Value) will be printed on the screen.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

(continues on next page)

542 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

#define ROWS 4
#define COLS 4
#define BUTTON_NUM (ROWS * COLS)

unsigned char KEYS[BUTTON_NUM] {
'1','2','3','A',
'4','5','6','B',
'7','8','9','C',
'*','0','#','D'};

unsigned char rowPins[ROWS] = {1, 4, 5, 6};
unsigned char colPins[COLS] = {12, 3, 2, 0};

void keyRead(unsigned char* result);
bool keyCompare(unsigned char* a, unsigned char* b);
void keyCopy(unsigned char* a, unsigned char* b);
void keyPrint(unsigned char* a);
void keyClear(unsigned char* a);
int keyIndexOf(const char value);

void init(void) {
for(int i=0 ; i<4 ; i++) {

pinMode(rowPins[i], OUTPUT);
pinMode(colPins[i], INPUT);

}
}

int main(void){
unsigned char pressed_keys[BUTTON_NUM];
unsigned char last_key_pressed[BUTTON_NUM];

if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
printf("setup wiringPi failed !");
return 1;

}
init();
while(1){

keyRead(pressed_keys);
bool comp = keyCompare(pressed_keys, last_key_pressed);
if (!comp){

keyPrint(pressed_keys);
keyCopy(last_key_pressed, pressed_keys);

}
delay(100);

}
return 0;

}

void keyRead(unsigned char* result){
int index;
int count = 0;
keyClear(result);
for(int i=0 ; i<ROWS ; i++){

digitalWrite(rowPins[i], HIGH);
for(int j =0 ; j < COLS ; j++){

index = i * ROWS + j;
(continues on next page)

7.3. Input 543

SunFounder raphael-kit

(continued from previous page)

if(digitalRead(colPins[j]) == 1){
result[count]=KEYS[index];
count += 1;

}
}
delay(1);
digitalWrite(rowPins[i], LOW);

}
}

bool keyCompare(unsigned char* a, unsigned char* b){
for (int i=0; i<BUTTON_NUM; i++){

if (a[i] != b[i]){
return false;

}
}
return true;

}

void keyCopy(unsigned char* a, unsigned char* b){
for (int i=0; i<BUTTON_NUM; i++){

a[i] = b[i];
}

}

void keyPrint(unsigned char* a){
if (a[0] != 0){

printf("%c",a[0]);
}
for (int i=1; i<BUTTON_NUM; i++){

if (a[i] != 0){
printf(", %c",a[i]);

}
}
printf("\n");

}

void keyClear(unsigned char* a){
for (int i=0; i<BUTTON_NUM; i++){

a[i] = 0;
}

}

int keyIndexOf(const char value){
for (int i=0; i<BUTTON_NUM; i++){

if ((const char)KEYS[i] == value){
return i;

}
}
return -1;

}

Code Explanation

unsigned char KEYS[BUTTON_NUM] {
'1','2','3','A',
'4','5','6','B',

(continues on next page)

544 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

'7','8','9','C',
'*','0','#','D'};

unsigned char rowPins[ROWS] = {1, 4, 5, 6};
unsigned char colPins[COLS] = {12, 3, 2, 0};

Declare each key of the matrix keyboard to the array keys[] and define the pins on each row and column.

while(1){
keyRead(pressed_keys);
bool comp = keyCompare(pressed_keys, last_key_pressed);
if (!comp){

keyPrint(pressed_keys);
keyCopy(last_key_pressed, pressed_keys);

}
delay(100);

}

This is the part of the main function that reads and prints the button value.

The function keyRead() will read the state of every button.

KeyCompare() and keyCopy() are used to judge whether the state of a button has changed (that is, a button has
been pressed or released).

keyPrint() will print the button value of the button whose current level is high level (the button is pressed).

void keyRead(unsigned char* result){
int index;
int count = 0;
keyClear(result);
for(int i=0 ; i<ROWS ; i++){

digitalWrite(rowPins[i], HIGH);
for(int j =0 ; j < COLS ; j++){

index = i * ROWS + j;
if(digitalRead(colPins[j]) == 1){

result[count]=KEYS[index];
count += 1;

}
}
delay(1);
digitalWrite(rowPins[i], LOW);

}
}

This function assigns a high level to each row in turn, and when the key in the column is pressed, the column in which
the key is located gets a high level. After the two-layer loop judgment, the key state compilation will generate an array
(reasult[]).

When pressing button 3:

7.3. Input 545

SunFounder raphael-kit

RowPin [0] writes in the high level, and colPin[2] gets the high level. ColPin [0], colPin[1], colPin[3] get the
low level.

This gives us 0,0,1,0. When rowPin[1], rowPin[2] and rowPin[3] are written in high level, colPin[0]~colPin[4] will
get low level.

After the loop judgment is completed, an array will be generated:

result[BUTTON_NUM] {
0, 0, 1, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};

bool keyCompare(unsigned char* a, unsigned char* b){
for (int i=0; i<BUTTON_NUM; i++){

if (a[i] != b[i]){
return false;

}
}
return true;

}

void keyCopy(unsigned char* a, unsigned char* b){
for (int i=0; i<BUTTON_NUM; i++){

a[i] = b[i];
}

}

These two functions are used to judge whether the key state has changed, for example when you release your hand

546 Chapter 7. Play with C

SunFounder raphael-kit

when pressing ‘3’ or pressing ‘2’, keyCompare() returns false.

KeyCopy() is used to re-write the current button value for the a array (last_key_pressed[BUTTON_NUM]) after each
comparison. So we can compare them next time.

void keyPrint(unsigned char* a){
//printf("{");

if (a[0] != 0){
printf("%c",a[0]);

}
for (int i=1; i<BUTTON_NUM; i++){

if (a[i] != 0){
printf(", %c",a[i]);

}
}
printf("\n");

}

This function is used to print the value of the button currently pressed. If the button ‘1’ is pressed, the ‘1’ will be
printed. If the button ‘1’ is pressed and the button ‘3’ is pressed, the ‘1, 3’ will be printed.

Phenomenon Picture

7.3. Input 547

SunFounder raphael-kit

2.1.9 Joystick

Introduction

In this project, We’re going to learn how joystick works. We manipulate the Joystick and display the results on the
screen.

Components

• GPIO Extension Board

• Breadboard

548 Chapter 7. Play with C

SunFounder raphael-kit

• Resistor

• Joystick Module

• ADC0834

Schematic Diagram

When the data of joystick is read, there are some differents between axis: data of X and Y axis is analog, which need
to use ADC0834 to convert the analog value to digital value. Data of Z axis is digital, so you can directly use the GPIO
to read, or you can also use ADC to read.

7.3. Input 549

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.1.9/

Step 3: Compile the code.

gcc 2.1.9_Joystick.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, turn the Joystick, then the corresponding values of x, y, Btn are displayed on screen.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1

(continues on next page)

550 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

#define ADC_DIO 2
#define BtnPin 3

uchar get_ADC_Result(uint channel)
{

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;

int odd = channel & 1;
pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);

digitalWrite(ADC_CLK,1);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
for(i=0;i<8;i++)
{

digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);
pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}
for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}
digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

}
int main(void)
{

uchar x_val;
uchar y_val;
uchar btn_val;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

printf("setup wiringPi failed !");
return 1;

}
pinMode(BtnPin, INPUT);

(continues on next page)

7.3. Input 551

SunFounder raphael-kit

(continued from previous page)

pullUpDnControl(BtnPin, PUD_UP);
pinMode(ADC_CS, OUTPUT);
pinMode(ADC_CLK, OUTPUT);

while(1){
x_val = get_ADC_Result(0);
y_val = get_ADC_Result(1);
btn_val = digitalRead(BtnPin);
printf("x = %d, y = %d, btn = %d\n", x_val, y_val, btn_val);
delay(100);

}
return 0;

}

Code Explanation

uchar get_ADC_Result(uint channel)
{

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;
int odd = channel & 1;
pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
......

The working process of the function is detailed in 2.1.4 Potentiometer.

while(1){
x_val = get_ADC_Result(0);
y_val = get_ADC_Result(1);
btn_val = digitalRead(BtnPin);
printf("x = %d, y = %d, btn = %d\n", x_val, y_val, btn_val);
delay(100);

}

VRX and VRY of Joystick are connected to CH0, CH1 of ADC0834 respectively. So the function getResult() is called
to read the values of CH0 and CH1. Then the read values should be stored in the variables x_val and y_val. In addition,
read the value of SW of joystick and store it into the variable Btn_val. Finally, the values of x_val, y_val and Btn_val
shall be printed with print() function.

552 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

7.3.2 2.2 Sensors

2.2.1 Photoresistor

Introduction

Photoresistor is a commonly used component of ambient light intensity in life. It helps the controller to recognize day
and night and realize light control functions such as night lamp. This project is very similar to potentiometer, and you
might think it changing the voltage to sensing light.

7.3. Input 553

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• ADC0834

• Photoresistor

554 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

7.3. Input 555

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.1/

Step 3: Compile the code.

gcc 2.2.1_Photoresistor.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

When the code is running, the brightness of the LED will change according to the light intensity sensed by the
photoresistor.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define LedPin 3

uchar get_ADC_Result(uint channel)
{

(continues on next page)

556 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;
int odd = channel & 1;

pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);

for(i=0;i<8;i++)
{

digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}

for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

}

int main(void)
{

uchar analogVal;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

printf("setup wiringPi failed !");
return 1;

}
softPwmCreate(LedPin, 0, 100);

(continues on next page)

7.3. Input 557

SunFounder raphael-kit

(continued from previous page)

pinMode(ADC_CS, OUTPUT);
pinMode(ADC_CLK, OUTPUT);

while(1){
analogVal = get_ADC_Result(0);
printf("Current analogVal : %d\n", analogVal);
softPwmWrite(LedPin, analogVal);
delay(100);

}
return 0;

}

Code Explanation

The codes here are the same as that in 2.1.4 Potentiometer. If you have any other questions, please check the code
explanation of 2.1.7 Potentiometer for details.

Phenomenon Picture

558 Chapter 7. Play with C

SunFounder raphael-kit

2.2.2 Thermistor

Introduction

Just like photoresistor can sense light, thermistor is a temperature sensitive electronic device that can be used for
realizing functions of temperature control, such as making a heat alarm.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Thermistor

• ADC0834

7.3. Input 559

SunFounder raphael-kit

Schematic Diagram

560 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.2/

Step 3: Compile the code.

gcc 2.2.2_Thermistor.c -lwiringPi -lm

Note: -lm is to load the library math. Do not omit, or you will make an error.

Step 4: Run the executable file.

sudo ./a.out

With the code run, the thermistor detects ambient temperature which will be printed on the screen once it finishes the
program calculation.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <math.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2

(continues on next page)

7.3. Input 561

SunFounder raphael-kit

(continued from previous page)

uchar get_ADC_Result(uint channel)
{

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;
int odd = channel & 1;

pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);

for(i=0;i<8;i++)
{

digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}

for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

}

int main(void)
{

unsigned char analogVal;
double Vr, Rt, temp, cel, Fah;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
(continues on next page)

562 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

printf("setup wiringPi failed !");
return 1;

}
pinMode(ADC_CS, OUTPUT);
pinMode(ADC_CLK, OUTPUT);

while(1){
analogVal = get_ADC_Result(0);
Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
cel = temp - 273.15;
Fah = cel * 1.8 +32;
printf("Celsius: %.2f C Fahrenheit: %.2f F\n", cel, Fah);
delay(100);

}
return 0;

}

Code Explanation

#include <math.h>

There is a C numerics library which declares a set of functions to compute common mathematical operations and
transformations.

analogVal = get_ADC_Result(0);

This function is used to read the value of the thermistor.

Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
cel = temp - 273.15;
Fah = cel * 1.8 +32;
printf("Celsius: %.2f C Fahrenheit: %.2f F\n", cel, Fah);

These calculations convert the thermistor values into Celsius values.

Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));

These two lines of codes are calculating the voltage distribution with the read value analog so as to get Rt (resistance
of thermistor).

temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));

This code refers to plugging Rt into the formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature.

temp = temp - 273.15;

Convert Kelvin temperature into degree Celsius.

Fah = cel * 1.8 +32;

Convert degree Celsius into Fahrenheit.

7.3. Input 563

SunFounder raphael-kit

printf("Celsius: %.2f C Fahrenheit: %.2f F\n", cel, Fah);

Print centigrade degree, Fahrenheit degree and their units on the display.

Phenomenon Picture

2.2.3 DHT-11

Introduction

The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal
output of temperature and humidity. The technology of a dedicated digital modules collection and the technology of
the temperature and humidity sensing are applied to ensure that the product has high reliability and excellent stability.

The sensors include a wet element resistive sensor and a NTC temperature sensor and they are connected to a high
performance 8-bit microcontroller.

564 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Humiture Sensor Module

7.3. Input 565

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

566 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.3/

Step 3: Compile the code.

gcc 2.2.3_DHT.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, the program will print the temperature and humidity detected by DHT11 on the computer screen.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#define maxTim 85
#define dhtPin 0

int dht11_dat[5] = {0,0,0,0,0};

void readDht11() {
uint8_t laststate = HIGH;
uint8_t counter = 0;
uint8_t j = 0, i;
float Fah; // fahrenheit
dht11_dat[0] = dht11_dat[1] = dht11_dat[2] = dht11_dat[3] = dht11_dat[4] = 0;
// pull pin down for 18 milliseconds
pinMode(dhtPin, OUTPUT);
digitalWrite(dhtPin, LOW);
delay(18);
// then pull it up for 40 microseconds

(continues on next page)

7.3. Input 567

SunFounder raphael-kit

(continued from previous page)

digitalWrite(dhtPin, HIGH);
delayMicroseconds(40);
// prepare to read the pin
pinMode(dhtPin, INPUT);

// detect change and read data
for (i=0; i< maxTim; i++) {

counter = 0;
while (digitalRead(dhtPin) == laststate) {

counter++;
delayMicroseconds(1);
if (counter == 255) {

break;
}

}
laststate = digitalRead(dhtPin);

if (counter == 255) break;
// ignore first 3 transitions
if ((i >= 4) && (i%2 == 0)) {

// shove each bit into the storage bytes
dht11_dat[j/8] <<= 1;
if (counter > 50)

dht11_dat[j/8] |= 1;
j++;

}
}
// check we read 40 bits (8bit x 5) + verify checksum in the last byte
// print it out if data is good
if ((j >= 40) &&

(dht11_dat[4] == ((dht11_dat[0] + dht11_dat[1] + dht11_dat[2] + dht11_
→˓dat[3]) & 0xFF))) {

Fah = dht11_dat[2] * 9. / 5. + 32;
printf("Humidity = %d.%d %% Temperature = %d.%d *C (%.1f *F)\n",

dht11_dat[0], dht11_dat[1], dht11_dat[2], dht11_dat[3], Fah);
}

}

int main (void) {
if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen

printf("setup wiringPi failed !");
return 1;

}
while (1) {

readDht11();
delay(500); // wait 1sec to refresh

}
return 0 ;

}

Code Explanation

void readDht11() {
uint8_t laststate = HIGH;
uint8_t counter = 0;
uint8_t j = 0, i;
float Fah; // fahrenheit

(continues on next page)

568 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

dht11_dat[0] = dht11_dat[1] = dht11_dat[2] = dht11_dat[3] = dht11_dat[4] = 0;
// ...

}

This function is used to realize the function of DHT11.

It generally can be divided into 3 parts:

1. prepare to read the pin:

// pull pin down for 18 milliseconds
pinMode(dhtPin, OUTPUT);
digitalWrite(dhtPin, LOW);
delay(18);
// then pull it up for 40 microseconds
digitalWrite(dhtPin, HIGH);
delayMicroseconds(40);
// prepare to read the pin
pinMode(dhtPin, INPUT);

Its communication flow is determined by work timing.

When DHT11 starts up, MCU will send a low level signal and then keep the signal at high level for 40us. After that,
the detection of the condition of external environment will start.

2. read data:

// detect change and read data
for (i=0; i< maxTim; i++) {

counter = 0;
while (digitalRead(dhtPin) == laststate) {

counter++;
delayMicroseconds(1);
if (counter == 255) {

break;
}

}
laststate = digitalRead(dhtPin);
if (counter == 255) break;
// ignore first 3 transitions

(continues on next page)

7.3. Input 569

SunFounder raphael-kit

(continued from previous page)

if ((i >= 4) && (i%2 == 0)) {
// shove each bit into the storage bytes
dht11_dat[j/8] <<= 1;
if (counter > 50)

dht11_dat[j/8] |= 1;
j++;

}
}

The loop stores the detected data in the dht11_dat[] array. DHT11 transmits data of 40 bits at a time. The first 16 bits
are related to humidity, the middle 16 bits are related to temperature, and the last eight bits are used for verification.
The data format is:

8bit humidity integer data + 8bit humidity decimal data + 8bit temperature integer data + 8bit temperature
decimal data + 8bit check bit.

3. Print Humidity & Temperature.

// check we read 40 bits (8bit x 5) + verify checksum in the last byte
// print it out if data is good
if ((j >= 40) &&

(dht11_dat[4] == ((dht11_dat[0] + dht11_dat[1] + dht11_dat[2] + dht11_dat[3])
→˓& 0xFF))) {

Fah = dht11_dat[2] * 9. / 5. + 32;
printf("Humidity = %d.%d %% Temperature = %d.%d *C (%.1f *F)\n",

dht11_dat[0], dht11_dat[1], dht11_dat[2], dht11_dat[3], Fah);
}

When the data storage is up to 40 bits, check the validity of the data through the check bit (dht11_dat[4]), and then
print the temperature and humidity.

For example, if the received data is 00101011(8-bit value of humidity integer) 00000000 (8-bit value of humidity
decimal) 00111100 (8-bit value of temperature integer) 00000000 (8-bit value of temperature decimal) 01100111
(check bit)

Calculation:

00101011+00000000+00111100+00000000=01100111.

The final result is equal to the check bit data, then the received data is correct:

Humidity =43%Temperature =60*C.

If it is not equal to the check bit data, the data transmission is not normal and the data is received again.

570 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

2.2.4 Reed Switch Module

Introduction

In this project, we will learn about the reed switch, which is an electrical switch that operates by means of an applied
magnetic field.

7.3. Input 571

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Reed Switch Module

572 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit.

7.3. Input 573

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.2.4/

Step 3: Compile.

gcc 2.2.4_ReedSwitch.c -lwiringPi

Step 4: Run.

sudo ./a.out

The green LED will light up when the code is run. If a magnet is placed close to the reed switch module, the red LED
lights up; take away the magnet and the green LED lights up again.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define ReedPin 0
#define Gpin 2
#define Rpin 3

void LED(char* color)
{

pinMode(Gpin, OUTPUT);

(continues on next page)

574 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

pinMode(Rpin, OUTPUT);
if (color == "RED")
{

digitalWrite(Rpin, HIGH);
digitalWrite(Gpin, LOW);

}
else if (color == "GREEN")
{

digitalWrite(Rpin, LOW);
digitalWrite(Gpin, HIGH);

}
else

printf("LED Error");
}

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(ReedPin, INPUT);
LED("GREEN");

while(1){
if(0 == digitalRead(ReedPin)){

delay(10);
if(0 == digitalRead(ReedPin)){

LED("RED");
printf("Detected Magnetic Material!\n");

}
}
else if(1 == digitalRead(ReedPin)){

delay(10);
if(1 == digitalRead(ReedPin)){

while(!digitalRead(ReedPin));
LED("GREEN");

}
}

}
return 0;

}

Code Explanation

#define ReedPin 0
#define Gpin 2
#define Rpin 3

Pin GPIO17, GPIO27 and GPIO22 of the T_Extension Board is corresponding to the GPIO0, GPIO2 and GPIO3 in
wiringPi. Assign GPIO0, GPIO2 and GPIO3 to ReedPin, Gpin and Rpin.

void LED(char* color)
{

pinMode(Gpin, OUTPUT);

(continues on next page)

7.3. Input 575

SunFounder raphael-kit

(continued from previous page)

pinMode(Rpin, OUTPUT);
if (color == "RED")
{

digitalWrite(Rpin, HIGH);
digitalWrite(Gpin, LOW);

}
else if (color == "GREEN")
{

digitalWrite(Rpin, LOW);
digitalWrite(Gpin, HIGH);

}
else

printf("LED Error");
}

Set a LED() function to control the 2 LEDs, the parameter of this function is color.

When color is "RED", set Rpin to HIGH (light up the red LED) and Gpin to LOW (turn off the green LED); when
color is "GREEN", then light up the green LED and turn off the red LED.

while(1){
if(0 == digitalRead(ReedPin)){

delay(10);
if(0 == digitalRead(ReedPin)){

LED("RED");
printf("Detected Magnetic Material!\n");

}
}
else if(1 == digitalRead(ReedPin)){

delay(10);
if(1 == digitalRead(ReedPin)){

while(!digitalRead(ReedPin));
LED("GREEN");

}
}

}

Read the value of the reed switch module, if the value read 2 times is 0, call LED("RED") to light up the red LED
and print "Magnetic material detected!".

If the value is 1, the green LED is lit.

576 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

2.2.5 IR Obstacle Avoidance Module

Introduction

In this project, we will learn IR obstacle avoidance module, which is a sensor module that can be used to detect
obstacles at short distances, with small interference, easy to assemble, easy to use, etc. It can be widely used in robot
obstacle avoidance, obstacle avoidance trolley, assembly line counting, etc.

7.3. Input 577

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Obstacle Avoidance Module

578 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

7.3. Input 579

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.2.5/

Step 3: Compile.

gcc 2.2.5_IrObstacle.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, when you put your hand in front of the module’s probe, the output indicator on the module lights
up and the “Detected Barrier!” will be repeatedly printed on the screen.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define ObstaclePin 0

void myISR(void)
{

printf("Detected Barrier !\n");
}

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !\n");
return 1;

}

if(wiringPiISR(ObstaclePin, INT_EDGE_FALLING, &myISR) < 0){
printf("Unable to setup ISR !!!\n");
return 1;

}

while(1){
;

}

return 0;
}

Code Explanation

void myISR(void)
{

printf("Detected Barrier !\n");
}

Define a function myISR() to print obstacle detected , indicating that an obstacle is detected.

580 Chapter 7. Play with C

SunFounder raphael-kit

if(wiringPiISR(ObstaclePin, INT_EDGE_FALLING, &myISR) < 0){
printf("Unable to setup ISR !!!\n");
return 1;

}

This wiringPiISR() function registers a myISR() function to received interrupts on the specified
ObstaclePin.

When ObstaclePin changes from high to low, it means that an obstacle is detected. At this time, call the myISR()
function to print “Detected Barrier !”

The prototype of this wiringPiISR() function is shown below.

int wiringPiISR (int pin, int edgeType, void (*function)(void)) ;

The edgeType parameter is either INT_EDGE_FALLING , INT_EDGE_RISING , INT_EDGE_BOTH or
INT_EDGE_SETUP . If it is INT_EDGE_SETUP then no initialisation of the pin will happen – it’s assumed that
you have already setup the pin elsewhere (e.g. with the gpio program), but if you specify one of the other types, then
the pin will be exported and initialised as specified.

For more information, please refer to: wiringPi-Functions (API).

Phenomenon Picture

7.3. Input 581

https://projects.drogon.net/raspberry-pi/wiringpi/functions/

SunFounder raphael-kit

2.2.6 Speed Sensor Module

Introduction

In this project, we will learn the use of the speed sensor module. A Speed Sensor Module is a type of tachometer that
is used to measure the speed of a rotating object like a motor.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Speed Sensor Module

582 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

7.3. Input 583

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.2.6/

Step 3: Compile.

gcc 2.2.6_speed_sensor_module.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, the green LED will light up. If you place an obstacle in the gap of the speed sensor module, the
“light blocked” will be printed on the screen and the red LED will be lit. Remove the obstacle and the green LED will
light up again.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define speedPin 0
#define Gpin 2
#define Rpin 3

void LED(int color)
{

pinMode(Gpin, OUTPUT);
pinMode(Rpin, OUTPUT);
if (color == 0){

digitalWrite(Rpin, HIGH);
digitalWrite(Gpin, LOW);

}
else if (color == 1){

digitalWrite(Rpin, LOW);
digitalWrite(Gpin, HIGH);

}
}

void Print(int x){
if (x == 0){

printf("Light was blocked\n");
}

}

int main(void){

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(speedPin, INPUT);

(continues on next page)

584 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

int temp;
while(1){

//Reverse the input of speedPin
if (digitalRead(speedPin) == 0){

temp = 1;
}
if (digitalRead(speedPin) == 1){

temp = 0;
}

LED(temp);
Print(temp);

}
return 0;

}

Code Explanation

void LED(int color)
{

pinMode(Gpin, OUTPUT);
pinMode(Rpin, OUTPUT);
if (color == 0){

digitalWrite(Rpin, HIGH);
digitalWrite(Gpin, LOW);

}
else if (color == 1){

digitalWrite(Rpin, LOW);
digitalWrite(Gpin, HIGH);

}
}

Set a LED() function to control the 2 LEDs, the parameter of this function is color.

When color is 0, set Rpin to HIGH (light up the red LED) and Gpin to LOW (turn off the green LED); when color
is 1, then light up the green LED and turn off the red LED.

while(1){
//Reverse the input of speedPin
if (digitalRead(speedPin) == 0){

temp = 1;
}
if (digitalRead(speedPin) == 1){

temp = 0;
}

LED(temp);
Print(temp);

}

When you place an obstacle in the gap of the speed sensor module, speedPin is low level (0), then call LED(1)
function to light up the green LED and “Light was blocked!” is printed.

7.3. Input 585

SunFounder raphael-kit

Phenomenon Picture

2.2.7 PIR

Introduction

In this project, we will make a device by using the human body infrared pyroelectric sensors. When someone gets
closer to the LED, the LED will turn on automatically. If not, the light will turn off. This infrared motion sensor is a
kind of sensor that can detect the infrared emitted by human and animals.

586 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

• PIR Motion Sensor Module

7.3. Input 587

SunFounder raphael-kit

Schematic Diagram

588 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.7/

Step 3: Compile the code.

gcc 2.2.7_PIR.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, PIR detects surroundings and let RGB LED glow yellow if it senses someone walking by.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

7.3. Input 589

SunFounder raphael-kit

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>
#define uchar unsigned char

#define pirPin 0 //the pir connect to GPIO0
#define redPin 1
#define greenPin 2
#define bluePin 3

void ledInit(void){
softPwmCreate(redPin, 0, 100);
softPwmCreate(greenPin,0, 100);
softPwmCreate(bluePin, 0, 100);

}
void ledColorSet(uchar r_val, uchar g_val, uchar b_val){

softPwmWrite(redPin, r_val);
softPwmWrite(greenPin, g_val);
softPwmWrite(bluePin, b_val);

}
int main(void)
{

int pir_val;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

printf("setup wiringPi failed !");
return 1;

}
ledInit();
pinMode(pirPin, INPUT);
while(1){

(continues on next page)

590 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

pir_val = digitalRead(pirPin);
if(pir_val== 1){ //if read pir is HIGH level

ledColorSet(0xff,0xff,0x00);
}
else {
ledColorSet(0x00,0x00,0xff);
}

}
return 0;

}

Code Explanation

void ledInit(void);
void ledColorSet(uchar r_val, uchar g_val, uchar b_val);

These codes are used to set the color of the RGB LED, and please refer to 1.1.2 RGB LED for more details.

int main(void)
{

int pir_val;
//......
pinMode(pirPin, INPUT);
while(1){
pir_val = digitalRead(pirPin);

if(pir_val== 1){ //if read pir is HIGH level
ledColorSet(0xff,0xff,0x00);

}
else {
ledColorSet(0x00,0x00,0xff);
}

}
return 0;

}

When PIR detects the human infrared spectrum, RGB LED emits the yellow light; if not, emits the blue light.

7.3. Input 591

SunFounder raphael-kit

Phenomenon Picture

2.2.8 Ultrasonic Sensor Module

Introduction

The ultrasonic sensor uses ultrasonic to accurately detect objects and measure distances. It sends out ultrasonic waves
and converts them into electronic signals.

592 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Ultrasonic Module

7.3. Input 593

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

594 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.8/

Step 3: Compile the code.

gcc 2.2.8_Ultrasonic.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

With the code run, the ultrasonic sensor module detects the distance between the obstacle ahead and the module itself,
then the distance value will be printed on the screen.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <sys/time.h>

#define Trig 4
#define Echo 5

void ultraInit(void)
{

pinMode(Echo, INPUT);
pinMode(Trig, OUTPUT);

}

(continues on next page)

7.3. Input 595

SunFounder raphael-kit

(continued from previous page)

float disMeasure(void)
{

struct timeval tv1;
struct timeval tv2;
long time1, time2;

float dis;

digitalWrite(Trig, LOW);
delayMicroseconds(2);

digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);

while(!(digitalRead(Echo) == 1));
gettimeofday(&tv1, NULL);

while(!(digitalRead(Echo) == 0));
gettimeofday(&tv2, NULL);

time1 = tv1.tv_sec * 1000000 + tv1.tv_usec;
time2 = tv2.tv_sec * 1000000 + tv2.tv_usec;

dis = (float)(time2 - time1) / 1000000 * 34000 / 2;

return dis;
}

int main(void)
{

float dis;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

printf("setup wiringPi failed !");
return 1;

}

ultraInit();

while(1){
dis = disMeasure();
printf("%0.2f cm\n\n",dis);
delay(300);

}

return 0;
}

Code Explanation

void ultraInit(void)
{

pinMode(Echo, INPUT);
pinMode(Trig, OUTPUT);

}

Initialize the ultrasonic pin; meanwhile, set Echo to input, Trig to output.

596 Chapter 7. Play with C

SunFounder raphael-kit

float disMeasure(void){};

This function is used to realize the function of ultrasonic sensor by calculating the return detection distance.

struct timeval tv1;
struct timeval tv2;

Struct timeval is a structure used to store the current time. The complete structure is as follows:

struct timeval
{
__time_t tv_sec; /* Seconds. */
__suseconds_t tv_usec; /* Microseconds. */
};

Here, tv_sec represents the seconds that Epoch spent when creating struct timeval. Tv_usec stands for microseconds
or a fraction of seconds.

digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);

A 10us ultrasonic pulse is being sent out.

while(!(digitalRead(Echo) == 1));
gettimeofday(&tv1, NULL);

This empty loop is used to ensure that when the trigger signal is sent, there is no interfering echo signal and then get
the current time.

while(!(digitalRead(Echo) == 0));
gettimeofday(&tv2, NULL);

This empty loop is used to ensure that the next step is not performed until the echo signal is received and then get the
current time.

time1 = tv1.tv_sec * 1000000 + tv1.tv_usec;
time2 = tv2.tv_sec * 1000000 + tv2.tv_usec;

Convert the time stored by struct timeval into a full microsecond time.

dis = (float)(time2 - time1) / 1000000 * 34000 / 2;

The distance is calculated by the time interval and the speed of sound propagation. The speed of sound in the air:
34000cm/s.

7.3. Input 597

SunFounder raphael-kit

Phenomenon Picture

2.2.9 MPU6050 Module

Introduction

The MPU-6050 is the world’s first and only 6-axis motion tracking devices (3-axis Gyroscope and 3-axis Accelerom-
eter) designed for smartphones, tablets and wearable sensors that have these features, including the low power, low
cost, and high performance requirements.

In this experiment, use I2C to obtain the values of the three-axis acceleration sensor and three-axis gyroscope for
MPU6050 and display them on the screen.

598 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• MPU6050 Module

7.3. Input 599

SunFounder raphael-kit

Schematic Diagram

MPU6050 communicates with the microcontroller through the I2C bus interface. The SDA1 and SCL1 need to be
connected to the corresponding pin.

600 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.9/

Step 4: Compile the code.

gcc 2.2.9_mpu6050.c -lwiringPi -lm

Step 5: Run the executable file.

sudo ./a.out

With the code run, deflection angle of x axis, y axis and the acceleration, angular velocity on each axis read by
MPU6050 will be printed on the screen after being calculating.

Note:

• If there is an error prompt wiringPi.h: No such file or directory, please refer to C code is
not working?.

• If you get Unable to open I2C device: No such file or directory error, you need to re-
fer to I2C Configuration to enable I2C and check if the wiring is correct.

Code

#include <wiringPiI2C.h>
#include <wiringPi.h>
#include <stdio.h>
#include <math.h>
int fd;
int acclX, acclY, acclZ;
int gyroX, gyroY, gyroZ;
double acclX_scaled, acclY_scaled, acclZ_scaled;

(continues on next page)

7.3. Input 601

SunFounder raphael-kit

(continued from previous page)

double gyroX_scaled, gyroY_scaled, gyroZ_scaled;

int read_word_2c(int addr)
{
int val;
val = wiringPiI2CReadReg8(fd, addr);
val = val << 8;
val += wiringPiI2CReadReg8(fd, addr+1);
if (val >= 0x8000)

val = -(65536 - val);
return val;
}

double dist(double a, double b)
{
return sqrt((a*a) + (b*b));
}

double get_y_rotation(double x, double y, double z)
{
double radians;
radians = atan2(x, dist(y, z));
return -(radians * (180.0 / M_PI));
}

double get_x_rotation(double x, double y, double z)
{
double radians;
radians = atan2(y, dist(x, z));
return (radians * (180.0 / M_PI));
}

int main()
{
fd = wiringPiI2CSetup (0x68);
wiringPiI2CWriteReg8 (fd,0x6B,0x00);//disable sleep mode
printf("set 0x6B=%X\n",wiringPiI2CReadReg8 (fd,0x6B));

while(1) {

gyroX = read_word_2c(0x43);
gyroY = read_word_2c(0x45);
gyroZ = read_word_2c(0x47);

gyroX_scaled = gyroX / 131.0;
gyroY_scaled = gyroY / 131.0;
gyroZ_scaled = gyroZ / 131.0;

//Print values for the X, Y, and Z axes of the gyroscope sensor.
printf("My gyroX_scaled: %f\n", gyroY X_scaled);
printf("My gyroY_scaled: %f\n", gyroY Y_scaled);
printf("My gyroZ_scaled: %f\n", gyroY Z_scaled);

acclX = read_word_2c(0x3B);
acclY = read_word_2c(0x3D);
acclZ = read_word_2c(0x3F);

(continues on next page)

602 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

acclX_scaled = acclX / 16384.0;
acclY_scaled = acclY / 16384.0;
acclZ_scaled = acclZ / 16384.0;

//Print the X, Y, and Z values of the acceleration sensor.
printf("My acclX_scaled: %f\n", acclX_scaled);
printf("My acclY_scaled: %f\n", acclY_scaled);
printf("My acclZ_scaled: %f\n", acclZ_scaled);

printf("My X rotation: %f\n", get_x_rotation(acclX_scaled, acclY_scaled, acclZ_
→˓scaled));

printf("My Y rotation: %f\n", get_y_rotation(acclX_scaled, acclY_scaled, acclZ_
→˓scaled));

delay(100);
}
return 0;
}

Code Explanation

int read_word_2c(int addr)
{
int val;
val = wiringPiI2CReadReg8(fd, addr);
val = val << 8;
val += wiringPiI2CReadReg8(fd, addr+1);
if (val >= 0x8000)

val = -(65536 - val);
return val;
}

Read sensor data sent from MPU6050.

double get_y_rotation(double x, double y, double z)
{
double radians;
radians = atan2(x, dist(y, z));
return -(radians * (180.0 / M_PI));
}

We get the deflection angle on the Y-axis.

double get_x_rotation(double x, double y, double z)
{
double radians;
radians = atan2(y, dist(x, z));
return (radians * (180.0 / M_PI));
}

Calculate the deflection angle of the X-axis.

gyroX = read_word_2c(0x43);
gyroY = read_word_2c(0x45);
gyroZ = read_word_2c(0x47);

(continues on next page)

7.3. Input 603

SunFounder raphael-kit

(continued from previous page)

gyroX_scaled = gyroX / 131.0;
gyroY_scaled = gyroY / 131.0;
gyroZ_scaled = gyroZ / 131.0;

//Print values for the X, Y, and Z axes of the gyroscope sensor.
printf("My gyroX_scaled: %f\n", gyroY X_scaled);
printf("My gyroY_scaled: %f\n", gyroY Y_scaled);
printf("My gyroZ_scaled: %f\n", gyroY Z_scaled);

Read the values of the x axis, y axis and z axis on the gyroscope sensor, convert the metadata to angular velocity
values, and then print them.

acclX = read_word_2c(0x3B);
acclY = read_word_2c(0x3D);
acclZ = read_word_2c(0x3F);

acclX_scaled = acclX / 16384.0;
acclY_scaled = acclY / 16384.0;
acclZ_scaled = acclZ / 16384.0;

//Print the X, Y, and Z values of the acceleration sensor.
printf("My acclX_scaled: %f\n", acclX_scaled);
printf("My acclY_scaled: %f\n", acclY_scaled);
printf("My acclZ_scaled: %f\n", acclZ_scaled);

Read the values of the x axis, y axis and z axis on the acceleration sensor, convert the metadata to accelerated speed
values (gravity unit), and then print them.

printf("My X rotation: %f\n", get_x_rotation(acclX_scaled, acclY_scaled, acclZ_
→˓scaled));
printf("My Y rotation: %f\n", get_y_rotation(acclX_scaled, acclY_scaled, acclZ_
→˓scaled));

Print the deflection angles of the x-axis and y-axis.

Phenomenon Picture

604 Chapter 7. Play with C

SunFounder raphael-kit

2.2.10 MFRC522 RFID Module

Introduction

Radio Frequency Identification (RFID) refers to technologies that use wireless communication between an object (or
tag) and interrogating device (or reader) to automatically track and identify such objects.

Some of the most common applications for this technology include retail supply chains, military supply chains, auto-
mated payment methods, baggage tracking and management, document tracking and pharmaceutical management, to
name a few.

In this project, we will use RFID for reading and writing.

Components

• GPIO Extension Board

• Breadboard

7.3. Input 605

SunFounder raphael-kit

• MFRC522 Module

Schematic Diagram

606 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Set up SPI (refer to SPI Configuration for more details. If you have set SPI, skip this step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.10/

Step 4: Compile the code.

make read
make write

Step 5: After running ./write, enter the information, such as the name of the person, and then put the tag or card
on the MRC522 module and wait for the writing to be completed.

sudo ./write

Step 6: Now run ./read to read the information of the tag or card you have written.

sudo ./read

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please

7.3. Input 607

SunFounder raphael-kit

refer to C code is not working?.

Code Explanation

InitRc522();

This function is used to initialize the RFID RC522 module.

uint8_t read_card_data();

This function is used to read the data of the card, and if the read is successful, it will return “1”.

uint8_t write_card_data(uint8_t *data);

This function is used to write the data of card and returns “1” if the write is successful. *data is the information that
will be written to the card.

Phenomenon Picture

608 Chapter 7. Play with C

SunFounder raphael-kit

7.4 Extension

7.4.1 3.1.1 Counting Device

Introduction

Here we will make a number-displaying counter system, consisting of a PIR sensor and a 4-digit segment display.
When the PIR detects that someone is passing by, the number on the 4-digit segment display will add 1. You can use
this counter to count the number of people walking through the passageway.

Components

7.4. Extension 609

SunFounder raphael-kit

• GPIO Extension Board

• Breadboard

• Resistor

• 4-Digit 7-Segment Display

• 74HC595

• PIR Motion Sensor Module

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO26 Pin 37 25 26

610 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.1/

Step 3: Compile the code.

gcc 3.1.1_CountingDevice.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, when the PIR detects that someone is passing by, the number on the 4-digit segment display will
add 1.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

7.4. Extension 611

SunFounder raphael-kit

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

void display()
{

clearDisplay();
pickDigit(0);
hc595_shift(number[counter % 10]);

clearDisplay();
pickDigit(1);
hc595_shift(number[counter % 100 / 10]);

clearDisplay();
pickDigit(2);
hc595_shift(number[counter % 1000 / 100]);

clearDisplay();
pickDigit(3);
hc595_shift(number[counter % 10000 / 1000]);

}

First, start the fourth segment display, write the single-digit number. Then start the third segment display, and type
in the tens digit; after that, start the second and the first segment display respectively, and write the hundreds and
thousands digits respectively. Because the refreshing speed is very fast, we see a complete four-digit display.

void loop(){
int currentState =0;
int lastState=0;
while(1){

display();
currentState=digitalRead(sensorPin);
if((currentState==0)&&(lastState==1)){

(continues on next page)

612 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

counter +=1;
}
lastState=currentState;

}
}

This is the main function: display the number on the 4-digit segment display and read the PIR value. When the PIR
detects that someone is passing by, the number on the 4-digit segment display will add 1.

Phenomenon Picture

7.4.2 3.1.2 Welcome

Introduction

In this project, we will use PIR to sense the movement of pedestrians, and use servos, LED, buzzer to simulate the
work of the sensor door of the convenience store. When the pedestrian appears within the sensing range of the PIR,
the indicator light will be on, the door will be opened, and the buzzer will play the opening bell.

7.4. Extension 613

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• PIR Motion Sensor Module

• Servo

614 Chapter 7. Play with C

SunFounder raphael-kit

• Buzzer

• Transistor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO18 Pin 12 1 18
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit.

7.4. Extension 615

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.2/

Step 3: Compile.

gcc 3.1.2_Welcome.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, if the PIR sensor detects someone passing by, the door will automatically open (simulated by the
servo), turn on the indicator and play the doorbell music. After the doorbell music plays, the system will automatically
close the door and turn off the indicator light, waiting for the next time someone passes by.

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

616 Chapter 7. Play with C

SunFounder raphael-kit

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

void setAngle(int pin, int angle){ //Create a funtion to control the angle of the
→˓servo.

if(angle < 0)
angle = 0;

if(angle > 180)
angle = 180;

softPwmWrite(pin,Map(angle, 0, 180, 5, 25));
}

Create a function, setAngle to write the angle in the servo that is 0-180.

void doorbell(){
for(int i=0;i<sizeof(song)/4;i++){

softToneWrite(BuzPin, song[i]);
delay(beat[i] * 250);

}

Create a function, doorbell to enable the buzzer to play music.

void closedoor(){
digitalWrite(ledPin, LOW); //led off
for(int i=180;i>-1;i--){ //make servo rotate from maximum angle to minimum angle

setAngle(servoPin,i);
delay(1);
}

}

Create a closedoor function to simulate closing the door, turn off the LED and let the servo turn from 180 degrees to 0
degree.

7.4. Extension 617

SunFounder raphael-kit

void opendoor(){
digitalWrite(ledPin, HIGH); //led on
for(int i=0;i<181;i++){ //make servo rotate from minimum angle to maximum angle

setAngle(servoPin,i);
delay(1);

}
doorbell();
closedoor();

}

The function opendoor() includes several parts: turn on the indicator light, turn the servo (simulate the action of
opening the door), play the doorbell music of the convenience store, and call the function closedoor() after playing
music.

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
printf("setup wiringPi failed !");
return 1;

}
if(softToneCreate(BuzPin) == -1){

printf("setup softTone failed !");
return 1;

......

In the function main(), initialize library wiringPi and setup softTone, then set ledPin to output state and pirPin to input
state. If the PIR sensor detects someone passing by, the function opendoor will be called to simulate opening the door.

618 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

7.4.3 3.1.3 Reversing Alarm

Introduction

In this project, we will use LCD, buzzer and ultrasonic sensors to make a reverse assist system. We can put it on the
remote control vehicle to simulate the actual process of reversing the car into the garage.

7.4. Extension 619

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

• Ultrasonic Module

• I2C LCD1602

620 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

Ultrasonic sensor detects the distance between itself and the obstacle that will be displayed on the LCD in the form
of code. At the same time, the ultrasonic sensor let the buzzer issue prompt sound of different frequency according to
different distance value.

T-Board Name physical wiringPi BCM
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO17 Pin 11 0 17
SDA1 Pin 3
SCL1 Pin 5

Experimental Procedures

Step 1: Build the circuit.

7.4. Extension 621

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.3/

Step 3: Compile.

gcc 3.1.3_ReversingAlarm.c -lwiringPi

Step 4: Run.

sudo ./a.out

As the code runs, ultrasonic sensor module detects the distance to the obstacle and then displays the information about
the distance on LCD1602; besides, buzzer emits warning tone whose frequency changes with the distance.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

Note: The following codes are incomplete. If you want to check the complete codes, you are suggested to use
command nano 3.1.1_ReversingAlarm.c.

622 Chapter 7. Play with C

SunFounder raphael-kit

#include <wiringPi.h>
#include <stdio.h>
#include <sys/time.h>
#include <wiringPi.h>
#include <wiringPiI2C.h>
#include <string.h>

#define Trig 4
#define Echo 5
#define Buzzer 0

int LCDAddr = 0x27;
int BLEN = 1;
int fd;

//here is the function of LCD
void write_word(int data){...}

void send_command(int comm){...}

void send_data(int data){...}

void lcdInit(){...}

void clear(){...}

void write(int x, int y, char data[]){...}

//here is the function of Ultrasonic
void ultraInit(void){...}

float disMeasure(void){...}

//here is the main function
int main(void)
{

float dis;
char result[10];
if(wiringPiSetup() == -1){

printf("setup wiringPi failed !");
return 1;

}

pinMode(Buzzer,OUTPUT);
fd = wiringPiI2CSetup(LCDAddr);
lcdInit();
ultraInit();

clear();
write(0, 0, "Ultrasonic Starting");
write(1, 1, "By Sunfounder");

while(1){
dis = disMeasure();
printf("%.2f cm \n",dis);
digitalWrite(Buzzer,LOW);
if (dis > 400){

(continues on next page)

7.4. Extension 623

SunFounder raphael-kit

(continued from previous page)

clear();
write(0, 0, "Error");
write(3, 1, "Out of range");
delay(500);

}
else
{

clear();
write(0, 0, "Distance is");
sprintf(result,"%.2f cm",dis);
write(5, 1, result);

if(dis>=50)
{delay(500);}
else if(dis<50 & dis>20) {

for(int i=0;i<2;i++){
digitalWrite(Buzzer,HIGH);
delay(50);
digitalWrite(Buzzer,LOW);
delay(200);
}

}
else if(dis<=20){

for(int i=0;i<5;i++){
digitalWrite(Buzzer,HIGH);
delay(50);
digitalWrite(Buzzer,LOW);
delay(50);
}

}
}

}

return 0;
}

Code Explanation

pinMode(Buzzer,OUTPUT);
fd = wiringPiI2CSetup(LCDAddr);
lcdInit();
ultraInit();

In this program, we apply previous components synthetically. Here we use buzzers, LCD and ultrasonic. We can
initialize them the same way as we did before.

dis = disMeasure();
printf("%.2f cm \n",dis);

digitalWrite(Buzzer,LOW);
if (dis > 400){

write(0, 0, "Error");
write(3, 1, "Out of range");

}
else
{

write(0, 0, "Distance is");

(continues on next page)

624 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

sprintf(result,"%.2f cm",dis);
write(5, 1, result);
}

Here we get the value of the ultrasonic sensor and get the distance through calculation.

If the value of distance is greater than the range value to be detected, an error message is printed on the LCD. And if
the distance value is within the range, the corresponding results will be output.

sprintf(result,"%.2f cm",dis);

Since the output mode of LCD only supports character type, and the variable dis stores the value of float type, we need
to use sprintf(). The function converts the float type value to a character and stores it on the string variable result[].
%.2f means to keep two decimal places.

if(dis>=50)
{delay(500);}
else if(dis<50 & dis>20) {

for(int i=0;i<2;i++){
digitalWrite(Buzzer,HIGH);
delay(50);
digitalWrite(Buzzer,LOW);
delay(200);
}

}
else if(dis<=20){

for(int i=0;i<5;i++){
digitalWrite(Buzzer,HIGH);
delay(50);
digitalWrite(Buzzer,LOW);
delay(50);
}

}

This judgment condition is used to control the sound of the buzzer. According to the difference in distance, it can be
divided into three cases, in which there will be different sound frequencies. Since the total value of delay is 500, all of
the cases can provide a 500ms interval for the ultrasonic sensor.

Phenomenon Picture

7.4. Extension 625

SunFounder raphael-kit

7.4.4 3.1.4 Smart Fan

Introduction

In this project, we will use motors, buttons and thermistors to make a manual + automatic smart fan whose wind speed
is adjustable.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Power Supply Module

626 Chapter 7. Play with C

SunFounder raphael-kit

• Thermistor

• L293D

• ADC0834

• Button

• DC Motor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
GPIO5 Pin 29 21 5
GPIO6 Pin 31 22 6
GPIO13 Pin 33 23 13

7.4. Extension 627

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

628 Chapter 7. Play with C

SunFounder raphael-kit

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit. Insert the jumper cap of the
power module into the 5V bus strips of the breadboard.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/c/3.1.4/

Step 3: Compile.

gcc 3.1.4_SmartFan.c -lwiringPi -lm

Step 4: Run the executable file above.

sudo ./a.out

As the code runs, start the fan by pressing the button. Every time you press, 1 speed grade is adjusted up or down.
There are 5 kinds of speed grades: 0~4. When set to the 4th speed grade and you press the button, the fan stops working
with a 0 wind speed.

Once the temperature goes up or down for more than 2°C, the speed automatically gets 1-grade faster or slower.

7.4. Extension 629

SunFounder raphael-kit

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#include <math.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define MotorPin1 21
#define MotorPin2 22
#define MotorEnable 23
#define BtnPin 3

uchar get_ADC_Result(uint channel)
{

uchar i;
uchar dat1=0, dat2=0;
int sel = channel > 1 & 1;
int odd = channel & 1;

pinMode(ADC_DIO, OUTPUT);
digitalWrite(ADC_CS, 0);
// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

//Single End mode
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);

for(i=0;i<8;i++)
{

digitalWrite(ADC_CLK,1); delayMicroseconds(2);

(continues on next page)

630 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

digitalWrite(ADC_CLK,0); delayMicroseconds(2);

pinMode(ADC_DIO, INPUT);
dat1=dat1<<1 | digitalRead(ADC_DIO);

}

for(i=0;i<8;i++)
{

dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0); delayMicroseconds(2);

}

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

}

int temperture(){
unsigned char analogVal;
double Vr, Rt, temp, cel, Fah;
analogVal = get_ADC_Result(0);
Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
cel = temp - 273.15;
Fah = cel * 1.8 +32;
int t=cel;
return t;

}

int motor(int level){
if(level==0){

digitalWrite(MotorEnable,LOW);
return 0;

}
if (level>=4){

level =4;
}
digitalWrite(MotorEnable,HIGH);
softPwmWrite(MotorPin1, level*25);
return level;

}
void setup(){

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return;

}
softPwmCreate(MotorPin1, 0, 100);
softPwmCreate(MotorPin2, 0, 100);
pinMode(MotorEnable,OUTPUT);
pinMode(BtnPin,INPUT);
pinMode(ADC_CS, OUTPUT);
pinMode(ADC_CLK, OUTPUT);

}

int main(void)
(continues on next page)

7.4. Extension 631

SunFounder raphael-kit

(continued from previous page)

{
setup();
int currentState,lastState=0;
int level = 0;
int currentTemp,markTemp=0;
while(1){

currentState=digitalRead(BtnPin);
currentTemp=temperture();
if (currentTemp<=0){continue;}
if (currentState==1&&lastState==0){

level=(level+1)%5;
markTemp=currentTemp;
delay(500);

}
lastState=currentState;
if (level!=0){

if (currentTemp-markTemp<=-2){
level=level-1;
markTemp=currentTemp;

}
if (currentTemp-markTemp>=2){

level=level+1;
markTemp=currentTemp;

}
}
level=motor(level);

}
return 0;

}

Code Explanation

int temperture(){
unsigned char analogVal;
double Vr, Rt, temp, cel, Fah;
analogVal = get_ADC_Result(0);
Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
cel = temp - 273.15;
Fah = cel * 1.8 +32;
int t=cel;
return t;

}

Temperture() works by converting thermistor values read by ADC0834 into temperature values. Refer to 2.2.2 Ther-
mistor for more details.

int motor(int level){
if(level==0){

digitalWrite(MotorEnable,LOW);
return 0;

}
if (level>=4){

level =4;
(continues on next page)

632 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

}
digitalWrite(MotorEnable,HIGH);
softPwmWrite(MotorPin1, level*25);
return level;

}

This function controls the rotating speed of the motor. The range of the Level: 0-4 (level 0 stops the working motor).
One level adjustment stands for a 25% change of the wind speed.

int main(void)
{

setup();
int currentState,lastState=0;
int level = 0;
int currentTemp,markTemp=0;
while(1){

currentState=digitalRead(BtnPin);
currentTemp=temperture();
if (currentTemp<=0){continue;}
if (currentState==1&&lastState==0){

level=(level+1)%5;
markTemp=currentTemp;
delay(500);

}
lastState=currentState;
if (level!=0){

if (currentTemp-markTemp<=-2){
level=level-1;
markTemp=currentTemp;

}
if (currentTemp-markTemp>=2){

level=level+1;
markTemp=currentTemp;

}
}
level=motor(level);

}
return 0;

}

The function main() contains the whole program process as shown:

1) Constantly read the button state and the current temperature.

2) Every press makes level+1 and at the same time, the temperature is updated. The Level ranges 1~4.

3) As the fan works (the level is not 0), the temperature is under detection. A 2°C+ change causes the up and
down of the level.

4) The motor changes the rotating speed with the Level.

7.4. Extension 633

SunFounder raphael-kit

7.4.5 3.1.5 Battery Indicator

Introduction

In this project, we will make a battery indicator device that can visually display the battery level on the LED Bargraph.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Bar Graph

• ADC0834

634 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO25 Pin 22 6 25
GPIO12 Pin 32 26 12
GPIO16 Pin 36 27 16
GPIO20 Pin 38 28 20
GPIO21 Pin 40 29 21
GPIO5 Pin 29 21 5
GPIO6 Pin 31 22 6
GPIO13 Pin 33 23 13
GPIO19 Pin 35 24 19
GPIO26 Pin 37 25 26

7.4. Extension 635

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.5/

Step 3: Compile the code.

gcc 3.1.5_BatteryIndicator.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the program runs, give the 3rd pin of ADC0834 and the GND a lead-out wire separately and then lead them to
the two poles of a battery separately. You can see the corresponding LED on the LED Bargraph is lit up to display the
power level (measuring range: 0-5V).

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

void LedBarGraph(int value){
for(int i=0;i<10;i++){

digitalWrite(pins[i],HIGH);
}
for(int i=0;i<value;i++){

digitalWrite(pins[i],LOW);
}

}

636 Chapter 7. Play with C

SunFounder raphael-kit

This function works for controlling the turning on or off of the 10 LEDs on the LED Bargraph. We give these 10 LEDs
high levels to let they are off at first, then decide how many LEDs are lit up by changing the received analog value.

int main(void)
{

uchar analogVal;
if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

printf("setup wiringPi failed !");
return 1;

}
pinMode(ADC_CS, OUTPUT);
pinMode(ADC_CLK, OUTPUT);
for(int i=0;i<10;i++){ //make led pins' mode is output

pinMode(pins[i], OUTPUT);
digitalWrite(pins[i],HIGH);

}
while(1){

analogVal = get_ADC_Result(0);
LedBarGraph(analogVal/25);
delay(100);

}
return 0;

}

analogVal produces values (0-255) with varying voltage values (0-5V), ex., if a 3V is detected on a battery, the
corresponding value 152 is displayed on the voltmeter.

The 10 LEDs on the LED Bargraph are used to display the analogVal readings. 255/10=25, so every 25 the analog
value increases, one more LED turns on, ex., if “analogVal=150 (about 3V), there are 6 LEDs turning on.”

Phenomenon Picture

7.4. Extension 637

SunFounder raphael-kit

7.4.6 3.1.6 Traffic Light

Introduction

In this project, we will use LED lights of three colors to realize the change of traffic lights and a four-digit 7-segment
display will be used to display the timing of each traffic state.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• 4-Digit 7-Segment Display

• 74HC595

638 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
SPICE0 Pin 24 10 8
SPICE1 Pin 26 11 7

7.4. Extension 639

SunFounder raphael-kit

640 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.6/

Step 3: Compile.

gcc 3.1.6_TrafficLight.c -lwiringPi

Step 4: Run.

sudo ./a.out

As the code runs, LEDs will simulate the color changing of traffic lights. Firstly, the red LED lights up for 60s, then
the green LED lights up for 30s; next, the yellow LED lights up for 5s. After that, the red LED lights up for 60s once
again. In this way, this series of actions will be executed repeatedly.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

7.4. Extension 641

SunFounder raphael-kit

Code

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>
#define SDI 5
#define RCLK 4
#define SRCLK 1

const int ledPin[]={6,10,11};
const int placePin[] = {12, 3, 2, 0};
unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

int greenLight = 30;
int yellowLight = 5;
int redLight = 60;
int colorState = 0;
char *lightColor[]={"Red","Green","Yellow"};
int counter = 60;

void lightup()
{

for(int i=0;i<3;i++){
digitalWrite(ledPin[i],HIGH);

}
digitalWrite(ledPin[colorState],LOW);

}

void pickDigit(int digit)
{

for (int i = 0; i < 4; i++)
{

digitalWrite(placePin[i], 0);
}
digitalWrite(placePin[digit], 1);

}

void hc595_shift(int8_t data)
{

int i;
for (i = 0; i < 8; i++)
{

digitalWrite(SDI, 0x80 & (data << i));
digitalWrite(SRCLK, 1);
delayMicroseconds(1);
digitalWrite(SRCLK, 0);

}
digitalWrite(RCLK, 1);
delayMicroseconds(1);
digitalWrite(RCLK, 0);

}

void clearDisplay()
{

int i;

(continues on next page)

642 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

for (i = 0; i < 8; i++)
{

digitalWrite(SDI, 1);
digitalWrite(SRCLK, 1);
delayMicroseconds(1);
digitalWrite(SRCLK, 0);

}
digitalWrite(RCLK, 1);
delayMicroseconds(1);
digitalWrite(RCLK, 0);

}

void display()
{

int a,b,c;

a = counter % 10000 / 1000 + counter % 1000 / 100;
b = counter % 10000 / 1000 + counter % 1000 / 100 + counter % 100 / 10;
c = counter % 10000 / 1000 + counter % 1000 / 100 + counter % 100 / 10 + counter

→˓% 10;

if (counter % 10000 / 1000 == 0){
clearDisplay();

}
else{

clearDisplay();
pickDigit(3);
hc595_shift(number[counter % 10000 / 1000]);

}
if (a == 0){

clearDisplay();
}
else{

clearDisplay();
pickDigit(2);
hc595_shift(number[counter % 1000 / 100]);

}
if (b == 0){

clearDisplay();
}
else{

clearDisplay();
pickDigit(1);
hc595_shift(number[counter % 100 / 10]);

}
if(c == 0){

clearDisplay();
}

else{
clearDisplay();
pickDigit(0);
hc595_shift(number[counter % 10]);

}
}

void loop()
(continues on next page)

7.4. Extension 643

SunFounder raphael-kit

(continued from previous page)

{
while(1){
display();
lightup();
}

}

void timer(int timer1){ //Timer function
if(timer1 == SIGALRM){

counter --;
alarm(1);
if(counter == 0){

if(colorState == 0) counter = greenLight;
if(colorState == 1) counter = yellowLight;
if(colorState == 2) counter = redLight;
colorState = (colorState+1)%3;

}
printf("counter : %d \t light color: %s \n",counter,lightColor[colorState]);

}
}

int main(void)
{

int i;
if(wiringPiSetup() == -1){

printf("setup wiringPi failed !");
return 1;

}
pinMode(SDI,OUTPUT);
pinMode(RCLK,OUTPUT);
pinMode(SRCLK,OUTPUT);
for(i=0;i<4;i++){

pinMode(placePin[i],OUTPUT);
digitalWrite(placePin[i],HIGH);

}
for(i=0;i<3;i++){

pinMode(ledPin[i],OUTPUT);
digitalWrite(ledPin[i],HIGH);

}
signal(SIGALRM,timer);
alarm(1);
loop();
return 0;

}

644 Chapter 7. Play with C

SunFounder raphael-kit

Code Explanation

#define SDI 5
#define RCLK 4
#define SRCLK 1

const int placePin[] = {12, 3, 2, 0};
unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

void pickDigit(int digit);
void hc595_shift(int8_t data);
void clearDisplay();
void display();

These codes are used to realize the function of number display of 4-Digit 7-Segment Displays. Refer to chapter 1.1.5
of the document for more details. Here, we use the codes to display countdown of traffic light time.

const int ledPin[]={6,10,11};

int colorState = 0;

void lightup()
{

for(int i=0;i<3;i++){
digitalWrite(ledPin[i],HIGH);

}
digitalWrite(ledPin[colorState],LOW);

}

The codes are used to switch the LED on and off.

int greenLight = 30;
int yellowLight = 5;
int redLight = 60;
int colorState = 0;
char *lightColor[]={"Red","Green","Yellow"};
int counter = 60;

void timer(int timer1){ //Timer function
if(timer1 == SIGALRM){

counter --;
alarm(1);
if(counter == 0){

if(colorState == 0) counter = greenLight;
if(colorState == 1) counter = yellowLight;
if(colorState == 2) counter = redLight;
colorState = (colorState+1)%3;

}
printf("counter : %d \t light color: %s \n",counter,lightColor[colorState]);

}
}

The codes are used to switch the timer on and off. Refer to chapter 1.1.5 for more details. Here, when the timer returns
to zero, colorState will be switched so as to switch LED, and the timer will be assigned to a new value.

void loop()
{

(continues on next page)

7.4. Extension 645

SunFounder raphael-kit

(continued from previous page)

while(1){
display();
lightup();
}

}

int main(void)
{

//...
signal(SIGALRM,timer);
alarm(1);
loop();
return 0;

}

The timer is started in the main() function. In loop() function, use while(1) loop and call the functions of 4-Digit
7-Segment and LED.

Phenomenon Picture

646 Chapter 7. Play with C

SunFounder raphael-kit

7.4.7 3.1.7 Overheat Monitor

Introduction

You may want to make an overheat monitoring device that applies to various situations, ex., in the factory, if we
want to have an alarm and the timely automatic turning off of the machine when there is a circuit overheating. In
this project, we will use thermistor, joystick, buzzer, LED and LCD to make an smart temperature monitoring device
whose threshold is adjustable.

7.4. Extension 647

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Joystick Module

• Thermistor

648 Chapter 7. Play with C

SunFounder raphael-kit

• ADC0834

• Transistor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin15 3 22
GPIO23 Pin16 4 23
GPIO24 Pin18 5 24
SDA1 Pin 3
SCL1 Pin 5

7.4. Extension 649

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.7/

Step 3: Compile the code.

gcc 3.1.7_OverheatMonitor.c -lm -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

As the code runs, the current temperature and the high-temperature threshold 40 are displayed on I2C LCD1602. If
the current temperature is larger than the threshold, the buzzer and LED are started to alarm you.

Joystick here is for your pressing to adjust the high-temperature threshold. Toggling the Joystick in the direction of
X-axis and Y-axis can adjust (turn up or down) the current high-temperature threshold. Press the Joystick once again
to reset the threshold to initial value.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please

650 Chapter 7. Play with C

SunFounder raphael-kit

refer to C code is not working?.

Code Explanation

int get_joystick_value(){
uchar x_val;
uchar y_val;
x_val = get_ADC_Result(1);
y_val = get_ADC_Result(2);
if (x_val > 200){

return 1;
}
else if(x_val < 50){

return -1;
}
else if(y_val > 200){

return -10;
}
else if(y_val < 50){

return 10;
}
else{

return 0;
}

}

This function reads values of X and Y. If X>200, there will return 1; X<50, return -1; y>200, return -10, and
y<50, return 10.

void upper_tem_setting(){
write(0, 0, "Upper Adjust:");
int change = get_joystick_value();
upperTem = upperTem + change;
char str[6];
snprintf(str,3,"%d",upperTem);

write(0,1,str);
int len;
len = strlen(str);
write(len,1," ");
delay(100);

}

This function is for adjusting the threshold and displaying it on the I2C LCD1602.

double temperature(){
unsigned char temp_value;
double Vr, Rt, temp, cel, Fah;
temp_value = get_ADC_Result(0);
Vr = 5 * (double)(temp_value) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
cel = temp - 273.15;
Fah = cel * 1.8 +32;
return cel;

}

Read the analog value of the CH0 (thermistor) of ADC0834 and then convert it to temperature value.

7.4. Extension 651

SunFounder raphael-kit

void monitoring_temp(){
char str[6];
double cel = temperature();
snprintf(str,6,"%.2f",cel);
write(0, 0, "Temp: ");
write(6, 0, str);
snprintf(str,3,"%d",upperTem);
write(0, 1, "Upper: ");
write(7, 1, str);
delay(100);
if(cel >= upperTem){

digitalWrite(buzzPin, HIGH);
digitalWrite(LedPin, HIGH);

}
else if(cel < upperTem){

digitalWrite(buzzPin, LOW);
digitalWrite(LedPin, LOW);

}
}

As the code runs, the current temperature and the high-temperature threshold 40 are displayed on I2C LCD1602. If
the current temperature is larger than the threshold, the buzzer and LED are started to alarm you.

int main(void)
{

setup();
int lastState =1;
int stage=0;
while (1)
{

int currentState = digitalRead(Joy_BtnPin);
if(currentState==1 && lastState == 0){

stage=(stage+1)%2;
delay(100);
lcd_clear();

}
lastState=currentState;
if (stage==1){

upper_tem_setting();
}
else{

monitoring_temp();
}

}
return 0;

}

The function main() contains the whole program process as shown:

1) When the program starts, the initial value of stage is 0, and the current temperature and the high-temperature
threshold 40 are displayed on I2C LCD1602. If the current temperature is larger than the threshold, the buzzer
and the LED are started to alarm you.

2) Press the Joystick, and stage will be 1 and you can adjust the high-temperature threshold. Toggling the Joystick
in the direction of X-axis and Y-axis can adjust (turn up or down) the current threshold. Press the Joystick once
again to reset the threshold to initial value.

652 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

7.4.8 3.1.8 Password Lock

Introduction

In this project, we will use a keypad and a LCD to make a combination lock. The LCD will display a corresponding
prompt for you to type your password on the Keypad. If the password is input correctly, “Correct” will be displayed.

On the basis of this project, we can add additional electronic components, such as buzzer, LED and so on, to add
different experimental phenomena for password input.

7.4. Extension 653

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• I2C LCD1602

• Keypad

654 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
SDA1 Pin 3
SCL1 Pin 5

7.4. Extension 655

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

656 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.8/

Step 3: Compile.

gcc 3.1.8_PasswordLock.cpp -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, use the keypad to enter the correct password: 1984. If the “CORRECT” appears on LCD1602,
there is no wrong with the password; otherwise, “WRONG KEY” will appear.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

7.4. Extension 657

SunFounder raphael-kit

Code Explanation

#define ROWS 4
#define COLS 4
#define BUTTON_NUM (ROWS * COLS)
#define LENS 4

unsigned char KEYS[BUTTON_NUM] {
'1','2','3','A',
'4','5','6','B',
'7','8','9','C',
'*','0','#','D'};

char password[LENS]={'1','9','8','4'};

Here, we define the length of the password LENS, storage matrix keyboard key value array KEYS and the array that
stores the correct password.

void keyRead(unsigned char* result);
bool keyCompare(unsigned char* a, unsigned char* b);
void keyCopy(unsigned char* a, unsigned char* b);
void keyPrint(unsigned char* a);
void keyClear(unsigned char* a);
int keyIndexOf(const char value);

There is a declaration of the subfunctions of the matrix keyboard code, refer to 2.1.8 Keypad of this document for
more details.

void write_word(int data);
void send_command(int comm);
void send_data(int data);
void lcdInit();
void clear();
void write(int x, int y, char const data[]);

There is a declaration of the subfunctions of LCD1062 code, refer to 1.1.7 I2C LCD1602 of this document for more
details.

while(1){
keyRead(pressed_keys);
bool comp = keyCompare(pressed_keys, last_key_pressed);
...

testword[keyIndex]=pressed_keys[0];
keyIndex++;
if(keyIndex==LENS){

if(check()==0){
clear();
write(3, 0, "WRONG KEY!");
write(0, 1, "please try again");
}

...

Read the key value and store it in the test array testword. If the number of stored key values is more than 4, the
correctness of the password is automatically verified, and the verification results are displayed on the LCD interface.

int check(){
for(int i=0;i<LENS;i++){

if(password[i]!=testword[i])
(continues on next page)

658 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

{return 0;}
}
return 1;

}

Verify the correctness of the password. Return 1 if the password is entered correctly, and 0 if not.

Phenomenon Picture

7.4. Extension 659

SunFounder raphael-kit

7.4.9 3.1.9 Alarm Bell

Introduction

In this project, we will make a manual alarm device. You can replace the toggle switch with a thermistor or a photo-
sensitive sensor to make a temperature alarm or a light alarm.

Components

• GPIO Extension Board

660 Chapter 7. Play with C

SunFounder raphael-kit

• Breadboard

• Resistor

• LED

• Buzzer

• Slide Switch

• Transistor

• Capacitor

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO18 Pin 12 1 18
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

7.4. Extension 661

SunFounder raphael-kit

662 Chapter 7. Play with C

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.9/

Step 3: Compile.

gcc 3.1.9_AlarmBell.c -lwiringPi -lpthread

Step 4: Run.

sudo ./a.out

After the program starts, put the slide switch to the right, and the buzzer will give out alarm sounds. At the same time,
the red and green LEDs will flash at a certain frequency.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

#include <pthread.h>

In this code, you’ll use a new library, pthread.h, which is a set of common thread libraries and can realize mul-
tithreading. We add the -lpthread parameter at compile time for the independent working of the LED and the
buzzer.

void *ledWork(void *arg){
while(1)
{

if(flag==0){
pthread_exit(NULL);

(continues on next page)

7.4. Extension 663

SunFounder raphael-kit

(continued from previous page)

}
digitalWrite(ALedPin,HIGH);
delay(500);
digitalWrite(ALedPin,LOW);
digitalWrite(BLedPin,HIGH);
delay(500);
digitalWrite(BLedPin,LOW);

}
}

The function ledWork() helps to set the working state of these 2 LEDs: it keeps the green LED lighting up for 0.5s
and then turns off; similarly, keeps the red LED lighting up for 0.5s and then turns off.

void *buzzWork(void *arg){
while(1)
{

if(flag==0){
pthread_exit(NULL);

}
if((note>=800)||(note<=130)){

pitch = -pitch;
}
note=note+pitch;
softToneWrite(BeepPin,note);
delay(10);

}
}

The function buzzWork() is used to set the working state of the buzzer. Here we set the frequency as between 130
and 800, to accumulate or decay at an interval of 20.

void on(){
flag = 1;
if(softToneCreate(BeepPin) == -1){

printf("setup softTone failed !");
return;

}
pthread_t tLed;
pthread_create(&tLed,NULL,ledWork,NULL);
pthread_t tBuzz;
pthread_create(&tBuzz,NULL,buzzWork,NULL);

}

In the function on():

1) Define the mark flag=1, indicating the ending of the control thread.

2) Create a software-controlled tone pin BeepPin.

3) Create two separate threads so that the LED and the buzzer can work at the same time.

• pthread_t tLed: Declare a thread tLed.

• pthread_create(&tLed,NULL,ledWork,NULL): Create the thread and its prototype is as follows:

int pthread_create(pthread_t *restrict tidp,const pthread_attr_t*restrict_attr,
→˓void**start_rtn)(void*),void *restrict arg);

If successful, return 0 otherwise, return the fall number -1.

664 Chapter 7. Play with C

SunFounder raphael-kit

• The first parameter is a pointer to the thread identifier.

• The second one is used to set the thread attribute.

• The third one is the starting address of the thread running function.

• The last one is the one that runs the function.

void off(){
flag = 0;
softToneStop(BeepPin);
digitalWrite(ALedPin,LOW);
digitalWrite(BLedPin,LOW);

}

The function Off() defines “flag=0” so as to exit the threads ledWork and BuzzWork and then turn off the buzzer
and the LED.

int main(){
setup();
int lastState = 0;
while(1){

int currentState = digitalRead(switchPin);
if ((currentState == 1)&&(lastState==0)){

on();
}
else if((currentState == 0)&&(lastState==1)){

off();
}
lastState=currentState;

}
return 0;

}

Main() contains the whole process of the program: firstly read the value of the slide switch; if the toggle switch is
toggled to the right (the reading is 1), the function on() is called, the buzzer is driven to emit sounds and the the red
and the green LEDs blink. Otherwise, the buzzer and the LED don’t work.

7.4. Extension 665

SunFounder raphael-kit

Phenomenon Picture

7.4.10 3.1.10 Morse Code Generator

Introduction

In this project, we’ll make a Morse code generator, where you type in a series of English letters in the Raspberry Pi to
make it appear as Morse code.

666 Chapter 7. Play with C

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Buzzer

• Transistor

7.4. Extension 667

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit. (Pay attention to poles of the buzzer: The one with + label is the positive pole and the other
is the negative.)

668 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/3.1.10/

Step 3: Compile the code.

gcc 3.1.10_MorseCodeGenerator.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

After the program runs, type a series of characters, and the buzzer and the LED will send the corresponding Morse
code signals.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

struct MORSE{
char word;
unsigned char *code;

};

struct MORSE morseDict[]=
{

{'A',"01"}, {'B',"1000"}, {'C',"1010"}, {'D',"100"}, {'E',"0"},
{'F',"0010"}, {'G',"110"}, {'H',"0000"}, {'I',"00"}, {'J',"0111"},
{'K',"101"}, {'L',"0100"}, {'M',"11"}, {'N',"10"}, {'O',"111"},
{'P',"0110"}, {'Q',"1101"}, {'R',"010"}, {'S',"000"}, {'T',"1"},
{'U',"001"}, {'V',"0001"}, {'W',"011"}, {'X',"1001"}, {'Y',"1011"},
{'Z',"1100"},{'1',"01111"}, {'2',"00111"}, {'3',"00011"}, {'4',"00001"},
{'5',"00000"},{'6',"10000"}, {'7',"11000"}, {'8',"11100"}, {'9',"11110"},
{'0',"11111"},{'?',"001100"}, {'/',"10010"}, {',',"110011"}, {'.',"010101"},
{';',"101010"},{'!',"101011"}, {'@',"011010"}, {':',"111000"}

};

This structure MORSE is the dictionary of the Morse code, containing characters A-Z, numbers 0-9 and marks “?” “/”
“:” “,” “.” “;” “!” “@” .

char *lookup(char key,struct MORSE *dict,int length)
{

for (int i=0;i<length;i++)
{

if(dict[i].word==key){
return dict[i].code;

}
}

}

The function lookup() works by “checking the dictionary”. Define a key search the same words as key in the
structure morseDict and return the corresponding information— code of the certain word.

void on(){
digitalWrite(ALedPin,HIGH);

(continues on next page)

7.4. Extension 669

SunFounder raphael-kit

(continued from previous page)

digitalWrite(BeepPin,HIGH);
}

Create a function on() to start the buzzer and the LED.

void off(){
digitalWrite(ALedPin,LOW);
digitalWrite(BeepPin,LOW);

}

The function off() turns off the buzzer and the LED.

void beep(int dt){
on();
delay(dt);
off();
delay(dt);

}

Define a function beep() to make the buzzer and the LED emit sounds and blink in a certain interval of dt.

void morsecode(char *code){
int pause = 250;
char *point = NULL;
int length = sizeof(morseDict)/sizeof(morseDict[0]);
for (int i=0;i<strlen(code);i++)
{

point=lookup(code[i],morseDict,length);
for (int j=0;j<strlen(point);j++){

if (point[j]=='0')
{

beep(pause/2);
}else if(point[j]=='1')
{

beep(pause);
}
delay(pause);

}
}

}

The function morsecode() is used to process the Morse code of input characters by making the “1” of the code
keep emitting sounds or lights and the “0”shortly emit sounds or lights, ex., input “SOS”, and there will be a signal
containing three short three long and then three short segments “ · · · - - - · · · ”.

int toupper(int c)
{

if ((c >= 'a') && (c <= 'z'))
return c + ('A' - 'a');

return c;
}
char *strupr(char *str)
{

char *orign=str;
for (; *str!='\0'; str++)

*str = toupper(*str);

(continues on next page)

670 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

return orign;
}

Before coding, you need to unify the letters into capital letters.

void main(){
setup();
char *code;
int length=8;
code = (char*)malloc(sizeof(char)*length);
while (1){

printf("Please input the messenger:");
scanf("%s",code);
code=strupr(code);
printf("%s\n",code);
morsecode(code);

}
}

When you type the relevant characters with the keyboard, code=strupr(code) will convert the input letters to
their capital form.

Printf() then prints the clear text on the computer screen, and the morsecod() function causes the buzzer and
the LED to emit Morse code.

Note that the length of the input character mustn’t exceed the length (can be revised).

Phenomenon Picture

7.4. Extension 671

SunFounder raphael-kit

7.4.11 3.1.11 GAME– Guess Number

Introduction

Guessing Numbers is a fun party game where you and your friends take turns inputting a number (0~99). The range
will be smaller with the inputting of the number till a player answers the riddle correctly. Then the player is defeated
and punished. For example, if the lucky number is 51 which the players cannot see, and the player inputs 50, the
prompt of number range changes to 50~99; if the player inputs 70, the range of number can be 50~70; if the player
inputs 51, this player is the unlucky one. Here, we use keypad to input numbers and use LCD to output outcomes.

Components

• GPIO Extension Board

• Breadboard

672 Chapter 7. Play with C

SunFounder raphael-kit

• Resistor

• Keypad

• I2C LCD1602

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO25 Pin 22 6 25
SPIMOSI Pin 19 12 10
GPIO22 Pin 15 3 22
GPIO27 Pin 13 2 27
GPIO17 Pin 11 0 17
SDA1 Pin 3 SDA1(8) SDA1(2)
SCL1 Pin 5 SCL1(9) SDA1(3)

7.4. Extension 673

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

674 Chapter 7. Play with C

SunFounder raphael-kit

Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this step.)

Step 3: Change directory.

cd /home/pi/raphael-kit/c/3.1.11/

Step 4: Compile.

gcc 3.1.11_GAME_GuessNumber.c -lwiringPi

Step 5: Run.

sudo ./a.out

After the program runs, there displays the initial page on the LCD:

Note:

7.4. Extension 675

SunFounder raphael-kit

• If there is an error prompt wiringPi.h: No such file or directory, please refer to C code is
not working?.

• If you get Unable to open I2C device: No such file or directory error, you need to re-
fer to I2C Configuration to enable I2C and check if the wiring is correct.

Welcome!
Press A to go!

Press ‘A’, and the game will start and the game page will appear on the LCD.

Enter number:
0 ‹point‹ 99

A random number ‘point’ is produced but not displayed on the LCD when the game starts, and what you need to do
is to guess it. The number you have typed appears at the end of the first line till the final calculation is finished. (Press
‘D’ to start the comparation, and if the input number is larger than 10, the automatic comparation will start.)

The number range of ‘point’ is displayed on the second line. And you must type the number within the range.
When you type a number, the range narrows; if you got the lucky number luckily or unluckily, there will appear
“You’ve got it!”

Code Explanation

At the beginning part of the code are the functional functions of keypad and I2C LCD1602. You can learning more
details about them in 1.1.7 I2C LCD1602 and 2.1.8 Keypad.

Here, what we need to know is as follows:

/**/
//Start from here
/**/
void init(void){

fd = wiringPiI2CSetup(LCDAddr);
lcd_init();
lcd_clear();
for(int i=0 ; i<4 ; i++) {

pinMode(rowPins[i], OUTPUT);
pinMode(colPins[i], INPUT);

}
lcd_clear();
write(0, 0, "Welcome!");
write(0, 1, "Press A to go!");

}

This function is used to initially define I2C LCD1602 and Keypad and to display “Welcome!” and “Press A to go!”.

void init_new_value(void){
srand(time(0));
pointValue = rand()%100;
upper = 99;
lower = 0;
count = 0;
printf("point is %d\n",pointValue);

}

The function produces the random number ‘point’ and resets the range hint of the point.

676 Chapter 7. Play with C

SunFounder raphael-kit

bool detect_point(void){
if(count > pointValue){

if(count < upper){
upper = count;

}
}
else if(count < pointValue){

if(count > lower){
lower = count;

}
}
else if(count = pointValue){

count = 0;
return 1;

}
count = 0;
return 0;

}

detect_point() compares the input number with the produced “point”. If the comparing outcome is that they are not
same, count will assign values to upper and lower and return ‘0’; otherwise, if the outcome indicates they are same,
there returns ‘1’.

void lcd_show_input(bool result){
char *str=NULL;
str =(char*)malloc(sizeof(char)*3);
lcd_clear();
if (result == 1){

write(0,1,"You've got it!");
delay(5000);
init_new_value();
lcd_show_input(0);
return;

}
write(0,0,"Enter number:");
Int2Str(str,count);
write(13,0,str);
Int2Str(str,lower);
write(0,1,str);
write(3,1,"<Point<");
Int2Str(str,upper);
write(12,1,str);

}

This function works for displaying the game page. Pay attention to the function Int2Str(str,count), it converts these
variables count, lower, and upper from integer to character string for the correct display of lcd.

int main(){
unsigned char pressed_keys[BUTTON_NUM];
unsigned char last_key_pressed[BUTTON_NUM];
if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

printf("setup wiringPi failed !");
return 1;

}
init();
init_new_value();
while(1){

(continues on next page)

7.4. Extension 677

SunFounder raphael-kit

(continued from previous page)

keyRead(pressed_keys);
bool comp = keyCompare(pressed_keys, last_key_pressed);
if (!comp){

if(pressed_keys[0] != 0){
bool result = 0;
if(pressed_keys[0] == 'A'){

init_new_value();
lcd_show_input(0);

}
else if(pressed_keys[0] == 'D'){

result = detect_point();
lcd_show_input(result);

}
else if(pressed_keys[0] >='0' && pressed_keys[0] <= '9'){

count = count * 10;
count = count + (pressed_keys[0] - 48);
if (count>=10){

result = detect_point();
}
lcd_show_input(result);

}
}
keyCopy(last_key_pressed, pressed_keys);

}
delay(100);

}
return 0;

}

Main() contains the whole process of the program, as show below:

1) Initialize I2C LCD1602 and Keypad.

2) Use init_new_value() to create a random number 0-99.

3) Judge whether the button is pressed and get the button reading.

4) If the button ‘A’ is pressed, a random number 0-99 will appear then the game starts.

5) If the button ‘D’ is detected to have been pressed, the program will enter into the outcome judgement and will
display the outcome on the LCD. This step helps that you can also judge the outcome when you press only one
number and then the button ‘D’.

6) If the button 0-9 is pressed, the value of count will be changed; if the count is larger than 10, then the judgement
starts.

7) The changes of the game and its values are displayed on LCD1602.

678 Chapter 7. Play with C

SunFounder raphael-kit

Phenomenon Picture

7.4.12 3.1.12 GAME - 10 Second

Introduction

Next, follow me to make a game device to challenge your concentration. Tie the tilt switch to a stick to make a magic
wand. Shake the wand, the 4-digit segment display will start counting, shake again will let it stop counting. If you
succeed in keeping the displayed count at 10.00, then you win. You can play the game with your friends to see who is
the time wizard.

7.4. Extension 679

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 4-Digit 7-Segment Display

• 74HC595

• Tilt Switch

680 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22
SPIMOSI Pin 19 12 10
GPIO18 Pin 12 1 18
GPIO23 Pin 16 4 23
GPIO24 Pin 18 5 24
GPIO26 Pin 37 25 26

7.4. Extension 681

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.12/

Step 3: Compile the code.

gcc 3.1.12_GAME_10Second.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

Shake the wand, the 4-digit segment display will start counting, shake again will let it stop counting. If you succeed
in keeping the displayed count at 10.00, then you win. Shake it one more time to start the next round of the game.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

void stateChange(){
if (gameState == 0){

counter = 0;
delay(1000);
ualarm(10000,10000);

}else{
alarm(0);
delay(1000);

}

(continues on next page)

682 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

gameState = (gameState + 1)%2;
}

The game is divided into two modes:

gameState=0 is the “start” mode, in which the time is timed and displayed on the segment display, and the tilting
switch is shaken to enter the “show” mode.

GameState =1 is the “show” mode, which stops the timing and displays the time on the segment display. Shaking the
tilt switch again will reset the timer and restart the game.

void loop(){
int currentState =0;
int lastState=0;
while(1){

display();
currentState=digitalRead(sensorPin);
if((currentState==0)&&(lastState==1)){

stateChange();
}
lastState=currentState;

}
}

Loop() is the main function. First, the time is displayed on the 4-bit segment display and the value of the tilt switch is
read. If the state of the tilt switch has changed, stateChange() is called.

Phenomenon Picture

7.4. Extension 683

SunFounder raphael-kit

7.4.13 3.1.13 GAME– NotNot

Introduction

In this project, we will make an interesting game device, and we call it “Not Not”.

During the game, the dot matrix will refresh an arrow randomly. What you need to do is to press the button in the
opposite direction of the arrow within a limited time. If the time is up, or if the button in the same direction as the
arrow is pressed, you are out.

This game can really practice your reverse thinking, and now shall we have a try?

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Matrix Module

• Button

684 Chapter 7. Play with C

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO22 Pin 15 3 22
GPIO23 Pin 16 4 23
SPIMOSI Pin 19 12 MOSI
SPICE0 pin 24 10 CE0
SPISCLK Pin 23 14 SCLK

Experimental Procedures

Step 1: Build the circuit.

7.4. Extension 685

SunFounder raphael-kit

Note: Turn on the SPI before starting the experiment, refer to SPI Configuration for details. And the BCM2835
library is also needed.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.13/

Step 3: Compile the code.

make

Step 4: Run the executable file.

sudo ./3.1.13_GAME_NotNot

After the program starts, a left or right arrow will be refreshed at random on the dot matrix. What you need to do is
to press the button in the opposite direction of the arrow, then “” appears on the dot matrix. If the button in the same
direction as the arrow is pressed, you are out and the dot matrix displays “x”. You can also add 2 new buttons or
replace them with Joystick keys for up, down, left and right— 4 directions to increase the difficulty of the game.

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code Explanation

Based on 1.1.6 LED Dot Matrix Module, this project adds 2 buttons to make an amusing game device.

The whole program process is as below:

686 Chapter 7. Play with C

SunFounder raphael-kit

1. Use system time to generate a random 0 or 1.

2. Display a random left or right arrow pattern.

3. Press the key and determine the result.

4. Display the right or wrong pattern.

7.4. Extension 687

SunFounder raphael-kit

int get_index()
{

srand((unsigned)time(NULL));
return rand()%2;

(continues on next page)

688 Chapter 7. Play with C

SunFounder raphael-kit

(continued from previous page)

}

The seed of the system is changed by the system time, i.e. srand((unsigned)time(NULL)), so that each time
the rand function is called the value obtained is completely random, and finally the result obtained is divided by 2, so
that the values obtained are 0 and 1.

int get_key(uint num)
{

while (1)
{

if (1 == bcm2835_gpio_lev(AButtonPin) && num == 0){
return 1;

}
else if (1 == bcm2835_gpio_lev(BButtonPin) && num == 1){

return 1;
}
else if (1 == bcm2835_gpio_lev(AButtonPin) && num == 1){

return 0;
}
else if (1 == bcm2835_gpio_lev(BButtonPin) && num == 0){

return 0;
}

}
}

Determines which button was pressed and compares it to the direction of the arrow on the dot matrix and gives the
final result of 0 or 1.

7.4. Extension 689

SunFounder raphael-kit

void display(uint index){
uchar i;
if (stage == 0){

for(i=1;i<9;i++)
{

Write_Max7219(i,arrow[index][i-1]);
}

}
else if(stage == 1){

for(i=1;i<9;i++)
{

Write_Max7219(i,check[index][i-1]);
}

}
}

690 Chapter 7. Play with C

SunFounder raphael-kit

Depending on the value of the stage and index to display the left or right arrow or the right or wrong
pattern.

7.4. Extension 691

SunFounder raphael-kit

692 Chapter 7. Play with C

CHAPTER

EIGHT

PLAY WITH PROCESSING

8.1 What is Processing

Processing is a simple programming environment that was created to make it easier to develop visually oriented appli-
cations with an emphasis on animation and providing users with instant feedback through interaction. The developers
wanted a means to “sketch” ideas in code. As its capabilities have expanded over the past decade, Processing has come
to be used for more advanced production-level work in addition to its sketching role. Originally built as a domain-
specific extension to Java targeted towards artists and designers, Processing has evolved into a full-blown design and
prototyping tool used for large-scale installation work, motion graphics, and complex data visualization.

Processing is based on Java, but because program elements in Processing are fairly simple, you can learn to use it even
if you don’t know any Java. If you’re familiar with Java, it’s best to forget that Processing has anything to do with Java
for a while, until you get the hang of how the API works.

This text is from the tutorial, Processing Overview.

8.2 Install the Processing

Note: Before you can use Processing, you need to access the Raspberry Pi desktop remotely (Remote Desktop) or
connect a display for the Raspberry Pi.

1. First visit https://processing.org/download and select the LinuxRaspberry Pi 32-bit or
LinuxRaspberry Pi 64-bit version. Using this method, you can always download the latest
version.

Or you can use the following command to download the Processing from the Terminal.

git clone https://github.com/processing/processing4/releases/download/
→˓processing-1286-4.0.1/processing-4.0.1-linux-arm32.tgz

git clone https://github.com/processing/processing4/releases/download/
→˓processing-1286-4.0.1/processing-4.0.1-linux-arm64.tgz

2. A .tar.gz file will be downloaded, which most Linux users should be familiar with. Extract the file you just
downloaded from its location.

tar xvfz processing-xxxx.tgz

Replace xxxx with the rest of the file’s name, which is the version number. This will create a folder
named processing-xxxx or something similar.

693

https://processing.org/tutorials/overview/
https://processing.org/download

SunFounder raphael-kit

3. Then go to that directory:

cd processing-xxxx

4. And run it:

./processing

1. With any luck, the main Processing window will now be visible.

8.3 Install Hardware I/O

In order to use the Raspberry Pi’s GPIO, you need to manually add a Hardware I/O library.

Click Sketch -> Import Library -> Add Library...

694 Chapter 8. Play with Processing

https://processing.org/reference/libraries/io/index.html

SunFounder raphael-kit

Find Hardware I/O , select it, and then click Install. When done, a checkmark icon will appear.

8.3. Install Hardware I/O 695

SunFounder raphael-kit

8.4 Projects

8.4.1 Draw a Matchmaker

You’re now running the Processing Development Environment (or PDE). There’s not much to it; the large area is the
Text Editor, and there’s a row of buttons across the top; this is the toolbar. Below the editor is the Message Area, and
below that is the Console. The Message Area is used for one line messages, and the Console is used for more technical
details.

Let’s get familiar with the usage of Processing and draw a matchmaker.

Sketch

Copy the sketch below into Processing and run it. A new display window will appear and a cheering matchmaker will
be drawn.

size(200,200);
background(92, 168, 0);
rectMode(CENTER);
rect(100,120,20,60);
ellipse(100,80,45,45);
line(90,150,80,170);
line(110,150,120,170);

(continues on next page)

696 Chapter 8. Play with Processing

SunFounder raphael-kit

(continued from previous page)

line(90,110,70,100);
line(110,110,130,100);

Note: If you run it and the message area turns red and reports some errors, then there is something wrong with the
sketch. Make sure you copy the sample sketch exactly: numbers should be enclosed in parentheses, with commas
between each number, and lines should end with semicolons.

How it works?

The key here is to realize that the display window can be treated as a square of paper.

Each pixel of the display window is a coordinate (x,y) that determines the position of a point in space. The origin (0,0)
of the coordinates is in the upper left corner, the positive direction of the X-axis is horizontally to the right, and the
positive direction of the Y-axis is vertically down.

What we have to do is to specify what shape and color should appear at these pixel coordinates.

For example, draw a rectangle of width 20 and height 60 with coordinates (100,120) as the midpoint.

rectMode(CENTER);
rect(100,120,20,60);

8.4. Projects 697

SunFounder raphael-kit

Once we understand the relationship between the display window and the axes, this sketch is not difficult for us, we
just need to understand some simple graphic drawing statements.

• size(width, height): Defines the dimension of the display window width and height in units of pixels.

• background(red, green, blue): Set the background color of the display window.

• rectMode(mode): Modifies the location from which rectangles are drawn by changing the way in which
parameters given to rect() are intepreted.

• rect(x, y, width, height): Draws a rectangle to the screen.

• ellipse(x, y, width, height): Draws an ellipse (oval) to the screen.

• line(x1, y1, x2, y2): Draws a line (a direct path between two points) to the screen.

For more please refer to Processing Reference.

8.4.2 Hello Mouse

In this project, your mouse will keep shooting lines towards a point; move the mouse and you will draw a unique line
of stars. Press the mouse to restart the drawing.

698 Chapter 8. Play with Processing

https://processing.org/reference/

SunFounder raphael-kit

Sketch

int pointX = 172;
int pointY = 88;

void setup() {
size(400, 400);
stroke(255);
background(192, 16, 18);

}

void draw() {
line(pointX, pointY, mouseX, mouseY);

}

void mousePressed() {
pointX=mouseX;
pointY=mouseY;
background(192, 16, 18);

}

How it works?

The previous project was drawing a single image without any animation or interaction.

If we want to make an interactive sketch, we need to add the setup() and draw() functions (these are built-in
functions that are called automatically) to build the frame.

• setup(): Executed only once at the start of the sketch.

• draw(): Executed repeatedly, where we usually add the sketch for drawing the animation.

8.4. Projects 699

SunFounder raphael-kit

int pointX = 172;
int pointY = 88;

void setup() {
size(400, 400);
stroke(255);
background(192, 16, 18);

}

void draw() {
line(pointX, pointY, mouseX, mouseY);

}

This sketch above already works smoothly as an interactive sketch.

Next you can add a mouse click event. This event can be implemented with the mousePressed() function, where
we add statements to refresh the target point and clear the screen.

int pointX = 172;
int pointY = 88;

void setup() {
size(400, 400);
stroke(255);
background(192, 16, 18);

}

void draw() {
line(pointX, pointY, mouseX, mouseY);

}

void mousePressed() {
pointX=mouseX;
pointY=mouseY;
background(192, 16, 18);

}

For more please refer to Processing Reference.

8.4.3 Blinking Dot

In this project, we will draw a dot on Processing, which blinks synchronously with the LED. Please build the circuit
as shown in the diagram and run the sketch.

700 Chapter 8. Play with Processing

https://processing.org/reference/

SunFounder raphael-kit

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• LED

Sketch

import processing.io.*;
int ledPin = 17;
boolean state = true;

void setup() {
size(100, 100);
frameRate(2); //set frame rate
GPIO.pinMode(ledPin, GPIO.OUTPUT); //set the ledPin to output mode

}

void draw() {
state = !state;
if (state==true) {

GPIO.digitalWrite(ledPin, GPIO.LOW); //led on
fill(255, 0, 0); //set the fill color of led on

} else {
GPIO.digitalWrite(ledPin, GPIO.HIGH); //led off
fill(155); //set the fill color of led off

}

(continues on next page)

8.4. Projects 701

SunFounder raphael-kit

(continued from previous page)

ellipse(width/2, height/2, width*0.75, height*0.75);
}

How it works?

At the beginning of the sketch, you need to embed Processing’s GPIO function library by import processing.
io.*;, which is indispensable for circuit experiments.

Frame rate is the frequency of bitmaps appearing on the board, expressed in hertz (Hz). In other words, it is also the
frequency at which the draw() function is called. In setup(), setting the frame rate to 2 will call draw() every
0.5s.

Each call of the draw() function takes the inverse of state and subsequently determines it. If the value is true,
the LED is lit and the brush is filled with red; if not, the LED is turned off and the brush is filled with gray.

After completing the judgment, use the ellipse() function to draw a circle. It should be noted that width and
height are system variables used to store the width and height of the display window.

There are two other points to note. When using GPIOs, you need to use the GPIO.pinMode() function to set the IN-
PUT/OUTPUT state of the pin, and then use the GPIO.digitalWrite() function to assign a value (HIGH/LOW)
to the pin .

Note: Please try to avoid using delay() in draw() because it will affect the display window refresh.

8.4.4 Clickable Dot

We’ve tried drawing motion graphic, responding to mouse event, and controlling LED. So, we might as well combine
these functions, draw a clickable dot, to control the LED!

• GPIO Extension Board

• Breadboard

• Resistor

• LED

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

702 Chapter 8. Play with Processing

SunFounder raphael-kit

Sketch

import processing.io.*;
boolean state = false;
int ledPin = 17;

void setup() {
GPIO.pinMode(ledPin, GPIO.OUTPUT);
background(255);

}

void draw() {
if (state == true) {

GPIO.digitalWrite(ledPin, GPIO.LOW);
fill(255, 0, 0);

}else {
GPIO.digitalWrite(ledPin, GPIO.HIGH);
fill(155);

}
ellipse(width/2, height/2, width*0.75, height*0.75);

}

void mouseClicked() {
// toggles state:
if (2*dist(mouseX,mouseY,width/2, height/2)<=width*0.75)

{state = !state;}
}

How it works?

This project has a lot in common with Blinking Dot, the difference is that it puts the toggle state in the mouse event.
This causes the LED to not blink automatically, but to light up and go off with a mouse click.

And in the mouseClicked() event, the dist() function is used to determine the position of the mouse at the time
of the click, and the dot is considered clicked only if the distance between the mouse and the center of the dot is less
than the radius.

8.4. Projects 703

SunFounder raphael-kit

8.4.5 Clickable Color Blocks

We’ve already tried drawing a clickable dot to control the LED, so let’s take it a step further and draw 3 colored squares
to adjust the RGB colors!

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

Sketch

import processing.io.*; // use the GPIO library

int[] pins = { 17, 18, 27 };

void setup() {
for (int i = 0; i < pins.length; i++) {

GPIO.pinMode(pins[i], GPIO.OUTPUT);
}
size(300, 100);
background(255);

}

(continues on next page)

704 Chapter 8. Play with Processing

SunFounder raphael-kit

(continued from previous page)

void draw() {
fill(255, 0, 0);
rect(0, 0, width/3, height);

fill(0,255,0);
rect(width/3, 0, 2*width/3, height);

fill(0,0,255);
rect(2*width/3, 0, width, height);

}

void mouseClicked() {
for (int i = 0; i < pins.length; i++) {

GPIO.digitalWrite(pins[i],GPIO.LOW);
}
if (mouseX<width/3){

GPIO.digitalWrite(pins[0],GPIO.HIGH);
}else if (mouseX>width/3&&mouseX<2*width/3){

GPIO.digitalWrite(pins[1],GPIO.HIGH);
}else if (mouseX>2*width/3){

GPIO.digitalWrite(pins[2],GPIO.HIGH);
}

}

How it works?

This project has a lot in common with Clickable Dot, except that it refines the conditions for determining mouse click
event.

First draw three color blocks in draw(), then get which color block was clicked based on the value of mouseX (the
X-axis coordinate of the mouse), and finally make RGB light up the corresponding color.

What more?

Based on the addition of light, we can make RGB LED display seven colors - adding red to green produces yellow;
adding all three primary colors together produces white. Now you can try it out for yourself.

8.4.6 Inflating the Dot

Next, let’s build a circuit that allows the button to control the size of the dot. When we press the button, the dot will
quickly get bigger; when we release the button, the dot will gradually get smaller, which makes the dot look like a
balloon being inflated.

8.4. Projects 705

SunFounder raphael-kit

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• Button

Sketch

import processing.io.*;
int buttonPin = 18;

(continues on next page)

706 Chapter 8. Play with Processing

SunFounder raphael-kit

(continued from previous page)

float diameter;

void setup() {
size(200, 200);
frameRate(64); //set frame rate
GPIO.pinMode(buttonPin, GPIO.INPUT_PULLUP);
diameter = width*0.5;

}

void draw() {
if (GPIO.digitalRead(buttonPin)==GPIO.LOW) {

if(diameter<width*0.8) {diameter=diameter+5;}
} else {

if(diameter>=width*0.2) {diameter--;}
}
background(192, 16, 18);
ellipse(width/2, height/2,diameter, diameter);

}

How it works?

This project uses the input function compared to the previous 2 projects that used the output function of the GPIO.

The GPIO.pinMode() function is used to set buttonPin to pull-up input mode, which makes the pin get high
automatically in the default state.

Then use the GPIO.digitalRead() function to read the value of buttonPin. When the value is LOW, it means
the button is pressed, at which point let the diameter of the dot increase by 5; if the button is released, then the diameter
of the dot will decrease by 1.

8.4.7 Dot on the Swing

In this project, 3 buttons are connected, one to change the size of the dot, one to change the position and the last one
to change the color. If you press all 3 buttons at the same time, you will get a dot that is swinging and has a variable
color.

8.4. Projects 707

SunFounder raphael-kit

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• Button

708 Chapter 8. Play with Processing

SunFounder raphael-kit

Sketch

import processing.io.*;

// Define an instance of the Dot object
Dot myDot;

// Define the pins that will be reading button presses
int[] pins = { 18, 23, 24 };

void setup() {
size(400, 400);
// Change the color mode of the sketch to HSB
colorMode(HSB, 360, 100, 100);
noStroke();

for (int i = 0; i < pins.length; i++) {
GPIO.pinMode(pins[i], GPIO.INPUT_PULLUP);

}

// Create a Dot in the middle of the screen
myDot = new Dot(width / 2, height / 2, 100, 255);

}

void draw() {
background(0);

// Modify attributes of the Dot depending on which buttons are pressed
if (GPIO.digitalRead(pins[0]) == GPIO.LOW) {myDot.setSize();}
if (GPIO.digitalRead(pins[1]) == GPIO.LOW) {myDot.setPosition();}
if (GPIO.digitalRead(pins[2]) == GPIO.LOW) {myDot.setColor();}

// Update the Dot state
myDot.update();
// And draw it to the screen
myDot.show();

(continues on next page)

8.4. Projects 709

SunFounder raphael-kit

(continued from previous page)

}

class Dot {

float initX;
float initY;
float currentX;
float currentY;
int positionRange = 60;

float initSize;
float currentSize;
int sizeRange = 50;

int initColor;
int currentColor;
int ColorRange = 80;

float timer = 0.0;
float speed = 0.06;

Dot(float x, float y, float s, int c) {
initX = x;
initY = y;
currentX = x;
currentY = y;

initSize = s;
currentSize = s;

initColor = c;
currentColor = c;

}

void setSize() {
currentSize = initSize + sizeRange * sin(timer);

}

void setPosition() {
currentY = initY + positionRange * cos(timer *2);

}

void setColor() {
currentColor = int(initColor + ColorRange * sin(timer));

}

void update() {
timer += speed;

}

void show() {
fill(currentColor, 100, 100);
ellipse(currentX, currentY, currentSize, currentSize);

}
}

How it works?

710 Chapter 8. Play with Processing

SunFounder raphael-kit

Instead of drawing dot directly, we create a Dot class here. Then, declare the object (in this case myDot).

This is a simple way to draw dots with multiple identical properties. For example, if we add three functions to the dot
in this project - change size, change position and change color - then each dot we declare will have the same function.
We can use the same button to make them do the same thing, or we can use different buttons to control each dot
separately.

Using classes makes your sketch beautiful, powerful and flexible.

Class (computer programming) - Wikipedia

Next, let’s take a closer look at the Dot class.

Dot(float x, float y, float s, int c)

In the declaration, it needs to pass in four parameters, which are the X and Y coordinate value of the position, the size,
and the color (here it is set to the HSB color mode).

Each parameter will be assigned to 2 sets of values (initial value and current value).

float initX;
float initY;
float currentX;
float currentY;
int positionRange = 60;

float initSize;
float currentSize;
int sizeRange = 50;

int initColor;
int currentColor;
int ColorRange = 80;

In addition to the initial value and the current value, there is also a set of range values. It is not difficult to understand
that the initial value is used to determine the initial state of the dot (determined by the incoming parameters), while
the current value will change within the range to make the dot move.

Therefore, except for the X coordinate value, the current values of the other three parameters are calculated as follows:

void setSize() {
currentSize = initSize + sizeRange * sin(timer);

}

void setPosition() {
currentY = initY + positionRange * cos(timer *2);

}

void setColor() {
currentColor = int(initColor + ColorRange * sin(timer));

}

If you are familiar with trigonometric functions, it should not be difficult to understand sine and cosine, which gives a
smooth periodic change (from -1 to 1) of the current value of the dot.

We also need to add a seed, timer, for the periodic variation. It adds the fixed value in the method update() and
is called in draw().

8.4. Projects 711

https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/Sine

SunFounder raphael-kit

void update() {
timer += speed;

}

Finally, the dot is displayed according to the current value using the method show(), which is also called in draw().

void show() {
fill(currentColor, 100, 100);
ellipse(currentX, currentY, currentSize, currentSize);

}

What more?

Having mastered the use of classes, you can already draw multiple dots with the same properties, so why not try to do
something cooler. For example, how about drawing a stable binary star system, or making a ‘DUET’ game?

8.4.8 Metronome

Here we will make a metronome, the metronome is divided into 5 levels, the higher the level, the more urgent the
buzzer call.

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

712 Chapter 8. Play with Processing

SunFounder raphael-kit

Note: An active buzzer is used here, and it has a white sticker on it.

Sketch

import processing.io.*;

int level = 0;
int buzzerPin = 17;
int levelRange=5;
Slider mySlider;

void setup() {
size(400, 200);
frameRate(50);
mySlider = new Slider(width * 0.2,height * 0.4,width * 0.8,height * 0.6,0,

→˓levelRange,level);
GPIO.pinMode(buzzerPin, GPIO.OUTPUT);

}

void draw() {

background(255);
mySlider.show();
if(level==0){

GPIO.digitalWrite(buzzerPin, GPIO.HIGH);
}else if((frameCount/5) % (levelRange-level+1) ==0){

GPIO.digitalWrite(buzzerPin, GPIO.LOW);
}else{

GPIO.digitalWrite(buzzerPin, GPIO.HIGH);
}

}

void mouseDragged(){
level = mySlider.dragPoint(mouseX,mouseY);

}

class Slider{
float slotPointAX;
float slotPointBX;
float slotPointAY;

(continues on next page)

8.4. Projects 713

SunFounder raphael-kit

(continued from previous page)

float slotPointBY;
float linePoint;
float depth;
int maxRange;
int minRange;
int value;

Slider(float ax, float ay, float bx, float by, int min, int max, int v){
slotPointAX = ax;
slotPointAY = ay;
slotPointBX = bx;
slotPointBY = by;
maxRange = max;
minRange = min;
value = v;
linePoint = slotPointAX;// + map(value, minRange, maxRange, slotPointAX,

→˓slotPointBX);
depth = (slotPointBY - slotPointAY)*0.75;

}

void show(){
rectMode(CORNERS);
fill(200);
stroke(255,0,0);
rect(slotPointAX, slotPointAY, slotPointBX, slotPointBY);
fill(255,0,0);
rect(slotPointAX, slotPointAY, linePoint, slotPointBY);
fill(200);
textSize(depth);
text(minRange, slotPointAX, slotPointBY+depth);
text(maxRange, slotPointBX, slotPointBY+depth);
text(value, linePoint, slotPointAY);

}

int dragPoint(float mx, float my){
if(mx>=slotPointAX && mx<=slotPointBX && my>=slotPointAY && my<=slotPointBY){

value = int(map(mx,slotPointAX,slotPointBX,minRange,maxRange));
linePoint = map(value,minRange,maxRange,slotPointAX,slotPointBX);

}
return value;

}
}

How it works?

Here, we created a Slider class and made it act as WIDGET.

Slider(ax, ay, bx, by, min, max, v)

In the declaration, it needs to be passed in 7 parameters.

The first four parameters determine the size of the widget, followed by the coordinates (x1, y1) of the starting point in
the upper left corner and (x2, y2) in the lower right corner.

The last three parameters determine its numerical range (min to max) and initial value.

It has two methods, the effect of dragPoint() is to make the slider draggable and return the slider’s current position
value.

714 Chapter 8. Play with Processing

SunFounder raphael-kit

int dragPoint(float mx, float my){
if(mx>=slotPointAX && mx<=slotPointBX && my>=slotPointAY && my<=slotPointBY){

value = int(map(mx,slotPointAX,slotPointBX,minRange,maxRange));
linePoint = map(value,minRange,maxRange,slotPointAX,slotPointBX);

}
return value;

}

Another method show() is to show the Slider. At the same time, the range value and current value are displayed in
the corresponding position.

void show(){
rectMode(CORNERS);
fill(200);
stroke(255,0,0);
rect(slotPointAX, slotPointAY, slotPointBX, slotPointBY);
fill(255,0,0);
rect(slotPointAX, slotPointAY, linePoint, slotPointBY);
fill(200);
textSize(depth);
text(minRange, slotPointAX, slotPointBY+depth);
text(maxRange, slotPointBX, slotPointBY+depth);
text(value, linePoint, slotPointAY);

}

8.4.9 Show Number

In this project, we use processing to drive a 7-segment display to show a figure from 0 to 9 and A to F.

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• 7-segment Display

• 74HC595

8.4. Projects 715

SunFounder raphael-kit

Sketch

import processing.io.*;

int SDI=17; //serial data input
int RCLK=18; //memory clock input(STCP)
int SRCLK =27; //shift register clock input(SHCP)

int[] SegCode= {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,
→˓0x79,0x71};

void hc595_shift(int dat){
int i;

for(i=0;i<8;i++){
int n=(0x80 & (dat << i));
if (n==0){
GPIO.digitalWrite(SDI, 0);

} else {
GPIO.digitalWrite(SDI, 1);

}
GPIO.digitalWrite(SRCLK, 1);
delay(1);
GPIO.digitalWrite(SRCLK, 0);

}

GPIO.digitalWrite(RCLK, 1);
delay(1);
GPIO.digitalWrite(RCLK, 0);

}

void setup() {
size(400, 200);
frameRate(10);

(continues on next page)

716 Chapter 8. Play with Processing

SunFounder raphael-kit

(continued from previous page)

GPIO.pinMode(SDI, GPIO.OUTPUT);
GPIO.pinMode(RCLK, GPIO.OUTPUT);
GPIO.pinMode(SRCLK, GPIO.OUTPUT);

GPIO.digitalWrite(SDI, 0);
GPIO.digitalWrite(RCLK, 0);
GPIO.digitalWrite(SRCLK, 0);

fill(0,25,88);
textAlign(CENTER,CENTER);
textSize(height*0.8);

}

void draw() {

background(255);
int number = (frameCount%100)/10;
text(number, width/2, height/2);
hc595_shift(SegCode[number]);

}

How it works?

Import processing.io.* and use the GPIO function library to control the digital tube pins.

Define array SegCode = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,
0x7c,0x39,0x5e,0x79,0x71} which represents a segment code array from 0 to F in Hexadecimal (Common
cathode).

setup() function sets the three pins SDI,RCLK and SRCLK as output, and the initial data as 0.

hc595_shift(int dat) function is used to shift the SegCode to 74HC595.

void hc595_shift(int dat){
int i;

for(i=0;i<8;i++){
int n=(0x80 & (dat << i));
if (n==0){
GPIO.digitalWrite(SDI, 0);

} else {
GPIO.digitalWrite(SDI, 1);

}
GPIO.digitalWrite(SRCLK, 1);
delay(1);
GPIO.digitalWrite(SRCLK, 0);

}

GPIO.digitalWrite(RCLK, 1);
delay(1);
GPIO.digitalWrite(RCLK, 0);

}

n=(0x80 & (dat << i)) means to shift dat to the left by i bits and then do the & operation with 0x80.

The rule of & operation is that when both sides of & are 1, the result is 1, otherwise the result is 0.

For example, we assume dat=0x3f,i=2(0011 1111 << 2 shift to 1111 1100), then 1111 1100 & 1000 0000 (0x80)) =
1000 0000.

8.4. Projects 717

SunFounder raphael-kit

At last assign the dat data to SDI(DS) by bits.

digitalWrite(SRCLK, 1) when SRCLK generates a rising edge pulse from 0 to 1, the data will be transferred
from the DS register to the shift register;

digitalWrite(RCLK, 1) when RCLK generates a rising edge pulse from 0 to 1, the data will be transferred
from the shift register to the storage register.

fill(0,25,88);
textAlign(CENTER,CENTER);
textSize(height*0.8);

The fill() function used in setup() can fill the text color, textAlign(CENTER,CENTER) is used to center
the text, textSize(height*0.8) change the text height to 0.8 times the original. These functions can customize
the text style displayed on the processing

void draw() {

background(255);
int number = (frameCount%100)/10;
text(number, width/2, height/2);
hc595_shift(SegCode[number]);

}

The frameCount is a seed, which is related to frameRate. By default frameRate is 60, which means that
frameCount will accumulate 60 times per second.

Then we can let processing and 7-segment display to show the figure from 0 to 9 and A to F simultaneously.

8.4.10 Drag Number

Let’s draw a slider bar to control the 7-segment Display.

Wiring

• GPIO Extension Board

• Breadboard

• Resistor

• 7-segment Display

• 74HC595

718 Chapter 8. Play with Processing

SunFounder raphael-kit

Sketch

import processing.io.*;

int number = 0;
int levelRange=9;
Slider mySlider;

int SDI=17; //serial data input
int RCLK=18; //memory clock input(STCP)
int SRCLK =27; //shift register clock input(SHCP)

int[] SegCode= {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,
→˓0x79,0x71};

void hc595_shift(int dat){
int i;

for(i=0;i<8;i++){
int n=(0x80 & (dat << i));
if (n==0){
GPIO.digitalWrite(SDI, 0);
} else {
GPIO.digitalWrite(SDI, 1);
}
GPIO.digitalWrite(SRCLK, 1);
delay(1);
GPIO.digitalWrite(SRCLK, 0);

}

GPIO.digitalWrite(RCLK, 1);
delay(1);
GPIO.digitalWrite(RCLK, 0);

}

(continues on next page)

8.4. Projects 719

SunFounder raphael-kit

(continued from previous page)

void setup() {
size(400, 200);
frameRate(50);
mySlider = new Slider(width * 0.2,height * 0.4,width * 0.8,height * 0.6,0,

→˓levelRange,number);
GPIO.pinMode(SDI, GPIO.OUTPUT);
GPIO.pinMode(RCLK, GPIO.OUTPUT);
GPIO.pinMode(SRCLK, GPIO.OUTPUT);

GPIO.digitalWrite(SDI, 0);
GPIO.digitalWrite(RCLK, 0);
GPIO.digitalWrite(SRCLK, 0);

}

void draw() {

background(255);
mySlider.show();
hc595_shift(SegCode[number]);

}

void mouseDragged(){
number = mySlider.dragPoint(mouseX,mouseY);

}

class Slider{
float slotPointAX;
float slotPointBX;
float slotPointAY;
float slotPointBY;
float linePoint;
float depth;
int maxRange;
int minRange;
int value;

Slider(float ax, float ay, float bx, float by, int min, int max, int v){
slotPointAX = ax;
slotPointAY = ay;
slotPointBX = bx;
slotPointBY = by;
maxRange = max;
minRange = min;
value = v;
linePoint = slotPointAX;// + map(value, minRange, maxRange, slotPointAX,

→˓slotPointBX);
depth = (slotPointBY - slotPointAY)*0.75;

}

void show(){
rectMode(CORNERS);
fill(200);
stroke(255,0,0);
rect(slotPointAX, slotPointAY, slotPointBX, slotPointBY);
fill(255,0,0);

(continues on next page)

720 Chapter 8. Play with Processing

SunFounder raphael-kit

(continued from previous page)

rect(slotPointAX, slotPointAY, linePoint, slotPointBY);
fill(200);
textSize(depth);
text(minRange, slotPointAX, slotPointBY+depth);
text(maxRange, slotPointBX, slotPointBY+depth);
text(value, linePoint, slotPointAY);

}

int dragPoint(float mx, float my){
if(mx>=slotPointAX && mx<=slotPointBX && my>=slotPointAY && my<=slotPointBY){

value = int(map(mx,slotPointAX,slotPointBX,minRange,maxRange));
linePoint = map(value,minRange,maxRange,slotPointAX,slotPointBX);

}
return value;

}
}

How it works?

This project integrates the Slider and 7-segment Display of the previous project. For specific knowledge points, please
refer to Show Number and Metronome.

8.4. Projects 721

SunFounder raphael-kit

722 Chapter 8. Play with Processing

CHAPTER

NINE

PLAY WITH NODEJS

9.1 What is Nodejs

Node.js was released in May 2009 and developed by Ryan Dahl. It is a JavaScript runtime environment based on
the Chrome V8 engine. It uses an event-driven, non-blocking I/O model to allow JavaScript to run on the server-side
development platform.

Simply put, Node.js is JavaScript running on the server. If you are familiar with Javascript, then you will easily learn
Node.js.

Nodejs usually uses the command npm install xxx to install third-party packages, which requires us to install
the npm tool, similar to the pip tool in python.

9.2 Install or update nodejs and npm

Run the following commands to install and update nodejs and npm.

sudo apt-get update
sudo apt-get install nodejs
sudo apt-get install npm
sudo npm install npm -g

Then check the current Node version with the following command.

node -v

The following command checks the current npm version.

npm -v

9.3 Check the pigpio

pigpio is a module used to control Raspberry Pi GPIO channels. This package provides some methods to control GPIO
on Raspberry Pi. For examples and documentation, please visit: https://www.npmjs.com/package/pigpio.

Enter the following command to install the pigpio library.

npm install pigpio

Check if the library is installed successfully, change the directory and enter nodejs:

723

https://www.npmjs.com/package/pigpio

SunFounder raphael-kit

cd /home/pi/raphael-kit/nodejs
nodejs

Then enter require(‘pigpio’):

require('pigpio')

724 Chapter 9. Play with Nodejs

SunFounder raphael-kit

If the above screen appears, the library installation is successful.

If you want to exit node CLI, please press Ctrl+C twice.

9.3. Check the pigpio 725

SunFounder raphael-kit

9.4 Output

9.4.1 1.1 Displays

1.1.1 Blinking LED

Introduction

In this project, we will learn how to make a blinking LED by programming. Through your settings, your LED can
produce a series of interesting phenomena. Now, go for it.

Components

• GPIO Extension Board

• Breadboard

• Resistor

726 Chapter 9. Play with Nodejs

SunFounder raphael-kit

• LED

Schematic Diagram

In this experiment, connect a 220 resistor to the anode (the long pin of the LED), then the resistor to 3.3 V, and connect
the cathode (the short pin) of the LED to GPIO17 of Raspberry Pi. Therefore, to turn on an LED, we need to make
GPIO17 low (0V) level. We can get this phenomenon by programming.

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

9.4. Output 727

SunFounder raphael-kit

Note: Change directory to the path of the code in this experiment via cd.

Step 3: Run the code

sudo node blink.js

Note: Here sudo - superuser do, and python means to run the file by Python.

After the code runs, you will see the LED flashing.

Step 4: If you want to edit the code file blink.js, press Ctrl + C to stop running the code. Then type the following
command to open blink.js:

nano blink.js

Note: nano is a text editor tool. The command is used to open the code file blink.js by this tool.

Press Ctrl+X to exit. If you have modified the code, there will be a prompt asking whether to save the changes or
not. Type in Y (save) or N (don’t save).

Then press Enter to exit. Type in nano blink.js again to see the effect after the change.

Code

The following is the program code:

const Gpio = require('pigpio').Gpio;
const led = new Gpio(17,{mode: Gpio.OUTPUT});

var led_state = 0;

function blink_led(){
led.digitalWrite(led_state);
led_state = !led_state;

}

setInterval(blink_led,300);

Alternatively, write the code as a more js-specific arrow function:

const Gpio = require('pigpio').Gpio;
const led = new Gpio(17,{mode: Gpio.OUTPUT});

var led_state = 0;

setInterval(() => {
led.digitalWrite(led_state);
led_state = !led_state;

}, 300);

Code Explanation

const Gpio = require('pigpio').Gpio;

728 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Import the Gpio constructor in the pigpio package in this way, and then define a constant Gpio to represent this
constructor.

With a variety of constructor, we can use js to control electronic devices. pigpio can be used to implement fast
GPIO, PWM, servo control, state change notification and interrupt handling.

• pigpio - github

const led = new Gpio(17,{mode: Gpio.OUTPUT});

The new keyword is used to construct instantiated objects of the class.

Connect the LED to the GPIO17 of the T-shaped expansion board, set the LedPin mode to output and assign it to the
constant led, that is, construct a GPIO17 object led, and its mode is the output mode.

There are two ways to number the IO pins on the Raspberry Pi: BOARD number and BCM number. In our project,
we use the BCM number. You need to set each channel used as input or output.

function blink_led(){
led.digitalWrite(led_state);
led_state = !led_state;

}

setInterval(blink_led,300);

The setInterval() method can call functions or compute expressions with a specified period (in milliseconds).
Here we change the operating state of the LED with a period of 300ms.

• setInerval

The gpio.digitalWrite(level) method sets the gpio level to 1 or 0.

var led_state = 0;

setInterval(() => {
led.digitalWrite(led_state);
led_state = !led_state;

}, 300);

Rewrite the code as an arrow function to make the code shorter.

• Arrow Functions

9.4. Output 729

https://github.com/fivdi/pigpio
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

SunFounder raphael-kit

Phenomenon Picture

1.1.2 RGB LED

Introduction

In this project, we will control an RGB LED to flash various colors.

730 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

9.4. Output 731

SunFounder raphael-kit

Schematic Diagram

After connecting the pins of R, G, and B to a current limiting resistor, connect them to the GPIO17, GPIO18, and
GPIO27 respectively. The longest pin (GND) of the LED connects to the GND of the Raspberry Pi. When the three
pins are given different PWM values, the RGB LED will display different colors.

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node rgb_led.js

After the code runs, you will see that RGB displays red, green, blue, yellow, pink, and cyan.

Code

732 Chapter 9. Play with Nodejs

SunFounder raphael-kit

const Gpio = require('pigpio').Gpio;
const ledred = new Gpio(17, { mode: Gpio.OUTPUT });
const ledgreen = new Gpio(18, { mode: Gpio.OUTPUT });
const ledblue = new Gpio(27, { mode: Gpio.OUTPUT });

function colorset(r, g, b) {
ledred.pwmWrite(r);
ledgreen.pwmWrite(g);
ledblue.pwmWrite(b);

}

var color_index = -1;

setInterval(() => {
color_index += 1;
switch (color_index) {

case 0:
colorset(0xff, 0x00, 0xFF);
break;

case 1:
colorset(0x00, 0xff, 0x00);
break;

case 2:
colorset(0x00, 0x00, 0xff);
break;

case 3:
colorset(0xff, 0xff, 0x00);
break;

case 4:
colorset(0xff, 0x00, 0xff);
break;

case 5:
colorset(0xc0, 0xff, 0x3e);
break;

default:
color_index=-1;

}
}, 500);

Code Explanation

const ledred = new Gpio(17,{mode: Gpio.OUTPUT});
const ledgreen = new Gpio(18,{mode: Gpio.OUTPUT});
const ledblue = new Gpio(27,{mode: Gpio.OUTPUT});

Initialize pins 17, 18, and 27 to output mode, and assign them to the constants ledred, ledgreen, and ledblue
respectively.

function colorset(r,g,b){
ledred.pwmWrite(r);
ledgreen.pwmWrite(g);
ledblue.pwmWrite(b);

}

Implement a colorset(r,g,b) function, which is used to write pulse values to pins 17, 18, 27. The Gpio library
encapsulates the function pwmWrite() to write to pins Pulse value, the value is 0x00 to 0xff. Then you can write
RGB values to the RGB LED through the colorset(r,g,b) function, so that it can display a variety of colors.

9.4. Output 733

SunFounder raphael-kit

Note: For questions about RGB, please refer to the website: https://www.rapidtables.com/web/color/RGB_Color.
html

var color_index = -1;

setInterval(() => {
color_index += 1;
switch (color_index) {

case 0:
colorset(0xff, 0x00, 0xFF);
break;

case 1:
colorset(0x00, 0xff, 0x00);
break;

case 2:
colorset(0x00, 0x00, 0xff);
break;

case 3:
colorset(0xff, 0xff, 0x00);
break;

case 4:
colorset(0xff, 0x00, 0xff);
break;

case 5:
colorset(0xc0, 0xff, 0x3e);
break;

default:
color_index=-1;

}
}, 500);

The RGB LED is controlled by colorset() executed every 500ms. A switch case is used here to select the color
emitted by the RGB LEDs. Since color_index is changed by one every cycle, the color of this one RGB LED will
change in order.

734 Chapter 9. Play with Nodejs

https://www.rapidtables.com/web/color/RGB_Color.html
https://www.rapidtables.com/web/color/RGB_Color.html

SunFounder raphael-kit

Phenomenon Picture

1.1.3 LED Bar Graph

Introduction

In this project, we sequentially illuminate the lights on the LED Bar Graph.

9.4. Output 735

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Bar Graph

736 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

Note: Pay attention to the direction when connecting. If you connect it backwards, it will not light up.

Step 2: Go to the folder of the code.

9.4. Output 737

SunFounder raphael-kit

cd /home/pi/raphael-kit/nodejs/

Step 3: Compile the code.

sudo node led_bar_graph.js

After the code runs, you will see the LEDs on the LED bar turn on and off regularly.

Code

const Gpio = require('pigpio').Gpio;

var pins = [17, 18, 27, 22, 23, 24, 25, 2, 3, 8];
var leds = [];
for (let i = 0; i < pins.length; i++) {

leds[i] = new Gpio(pins[i], { mode: Gpio.OUTPUT });
}

function oddLedBarGraph() {
for (let i = 0; i < leds.length; i++) {

if (i % 2 == 1) {
leds[i].digitalWrite(1);

} else {
leds[i].digitalWrite(0);

}
}

}

function evenLedBarGraph() {
for (let i = 0; i < leds.length; i++) {

if (i % 2 == 0) {
leds[i].digitalWrite(1);

} else {
leds[i].digitalWrite(0);

}
};

}

var odd_even = 0;

setInterval(() => {
odd_even = (odd_even + 1) % 2;
if (odd_even == 1) {

oddLedBarGraph();
} else {

evenLedBarGraph();
}

}, 500);

Code Explanation

var pins = [17,18,27,22,23,24,25,2,3,8];

Because the led bar graph will use multiple pins, we create a constant array pins to store them in batches.

var leds = [];
for (let i = 0; i < pins.length; i++) {

(continues on next page)

738 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

leds[i] = new Gpio(pins[i], { mode: Gpio.OUTPUT });
}

Instantiate these pins as leds objects with a for loop.

function oddLedBarGraph() {
for (let i = 0; i < leds.length; i++) {

if (i % 2 == 1) {
leds[i].digitalWrite(1);

} else {
leds[i].digitalWrite(0);

}
}

}

Implement an oddLedBarGraph() function to make the LEDs on the odd digits of the LED bar graph light up.

function evenLedBarGraph() {
for (let i = 0; i < leds.length; i++) {

if (i % 2 == 0) {
leds[i].digitalWrite(1);

} else {
leds[i].digitalWrite(0);

}
};

}

Implement an evenLedBarGraph() function to make the LEDs on the even digits of the LED bar graph light up.

var odd_even = 0;

setInterval(() => {
odd_even = (odd_even + 1) % 2;
if (odd_even == 1) {

oddLedBarGraph();
} else {

evenLedBarGraph();
}

}, 500);

The working state of the LED is switched every 500ms.

9.4. Output 739

SunFounder raphael-kit

Phenomenon Picture

1.1.4 7-segment Display

Introduction

Let’s try to drive a 7-segment display to show a figure from 0 to 9 and A to F.

740 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 7-segment Display

• 74HC595

9.4. Output 741

SunFounder raphael-kit

Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS to GPIO17, parallel output ports
to 8 segments of the LED segment display. Input data in DS pin to shift register when SH_CP (the clock input of the
shift register) is at the rising edge, and to the memory register when ST_CP (the clock input of the memory) is at the
rising edge. Then you can control the states of SH_CP and ST_CP via the Raspberry Pi GPIOs to transform serial data
input into parallel data output so as to save Raspberry Pi GPIOs and drive the display.

Experimental Procedures

Step 1: Build the circuit.

742 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node 7-segment_display.js

After the code runs, you’ll see the 7-segment display display 0-9, A-F.

Code

const Gpio = require('pigpio').Gpio;

const segCode = [0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77,
→˓0x7c, 0x39, 0x5e, 0x79, 0x71];

const SDI = new Gpio(17, { mode: Gpio.OUTPUT });
const RCLK = new Gpio(18, { mode: Gpio.OUTPUT });
const SRCLK = new Gpio(27, { mode: Gpio.OUTPUT });

function hc595_shift(dat) {
for (let j = 0; j < 8; j++) {

let code = 0x80 & (dat << j);
if (code != 0) {

code = 1;
}
SDI.digitalWrite(code);
SRCLK.trigger(1,1);

}
RCLK.trigger(1,1);

}

let index = -1;
setInterval(() => {

index = (index+1)%16;

(continues on next page)

9.4. Output 743

SunFounder raphael-kit

(continued from previous page)

hc595_shift(segCode[index]);
}, 1000);

Code Explanation

const segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,
→˓0x5e,0x79,0x71];

Define a hexadecimal (common cathode) segment code array from 0 to F.

const SDI = new Gpio(17, { mode: Gpio.OUTPUT });
const RCLK = new Gpio(18, { mode: Gpio.OUTPUT });
const SRCLK = new Gpio(27, { mode: Gpio.OUTPUT });

Initialize pins 17, 18, and 27 as output mode, and copy them to SDI, RCLK, and SRCLK respectively.

function hc595_shift(dat) {
for (let j = 0; j < 8; j++) {

let code = 0x80 & (dat << j);
if (code != 0) {

code = 1;
}
SDI.digitalWrite(code);
SRCLK.trigger(1,1);

}
RCLK.trigger(1,1);

}

Implement a hc595_shift function to convert the fields in the array segCode into numbers and display them on
the digital tube.

let code = 0x80 & (dat << j);
if (code != 0) {

code = 1;
}
SDI.digitalWrite(code);

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111, when j=2, 0x3f will shift right(<<) 2
bits. 1111 1100 (0x3f << 2) & 1000 0000 (0x80) = 1000 0000, is true. At this time, 1 is written to SDI.

SRCLK.trigger(1,1);

Generate a rising edge pulse and move the DS data to the shift register.

trigger(pulseLen, level)

• pulseLen - pulse length in microseconds (1 - 100)

• level - 0 or 1

Sends a trigger pulse to the GPIO. The GPIO is set to level for pulseLen microseconds and then reset to not level.

RCLK.trigger(1,1);

Generate a rising edge pulse and move the data from the shift register to the storage register.

744 Chapter 9. Play with Nodejs

SunFounder raphael-kit

let index = -1;
setInterval(() => {

index = (index+1)%16;
hc595_shift(segCode[index]);

}, 1000);

Finally, use the function hc595_shift() to convert the fields in segCode and display them through the digital
tube.

Phenomenon Picture

1.1.5 4-Digit 7-Segment Display

Introduction

Next, follow me to try to control the 4-digit 7-segment display.

9.4. Output 745

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• 4-Digit 7-Segment Display

• 74HC595

Note: In this projiect, for the 4-Digit 7-Segment Display we should use BS model,if you use AS model it may not
light up.

746 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

9.4. Output 747

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node 4_digit_7_segment_display.js

After the code runs, the program takes a count, increasing by 1 per second, and the 4-digit 7-segment display displays
the count.

Code

const Gpio = require('pigpio').Gpio;

var counter = 0;

const number = [0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90]; //for BS

const SDI = new Gpio(24, { mode: Gpio.OUTPUT });
const RCLK = new Gpio(23, { mode: Gpio.OUTPUT });
const SRCLK = new Gpio(18, { mode: Gpio.OUTPUT });

const pin1 = new Gpio(10, { mode: Gpio.OUTPUT });
const pin2 = new Gpio(22, { mode: Gpio.OUTPUT });
const pin3 = new Gpio(27, { mode: Gpio.OUTPUT });
const pin4 = new Gpio(17, { mode: Gpio.OUTPUT });
const placePin = [pin1, pin2, pin3, pin4];

function clearDisplay() {
hc595_shift(0xff); //for BS

}

function hc595_shift(dat) {
for (let j = 0; j < 8; j++) {

(continues on next page)

748 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

let code = 0x80 & (dat << j);
if (code != 0) {

code = 1;
}
SDI.digitalWrite(code);
SRCLK.trigger(1,1);

}
RCLK.trigger(1,1);

}

function pickDigit(digit) {
for(let i=0;i<4;i++){

placePin[i].digitalWrite(0);
}
placePin[digit].digitalWrite(1);

}

let digit = -1
setInterval(() => {

digit = (digit +1)% 4
clearDisplay();
pickDigit(digit);
switch(digit){

case 0:
hc595_shift(number[Math.floor(counter % 10)]);
break;

case 1:
hc595_shift(number[Math.floor(counter % 100 / 10)]);
break;

case 2:
hc595_shift(number[Math.floor(counter % 1000 / 100)]);
break;

case 3:
hc595_shift(number[Math.floor(counter % 10000 / 1000)]);
break;

}
}, 5);

setInterval(() => {
counter++;

}, 1000);

Code Explanation

const pin1 = new Gpio(10, {mode: Gpio.OUTPUT});
const pin2 = new Gpio(25, {mode: Gpio.OUTPUT});
const pin3 = new Gpio(27, {mode: Gpio.OUTPUT});
const pin4 = new Gpio(17, {mode: Gpio.OUTPUT});
const placePin = [pin1,pin2,pin3,pin4];

Initialize pins 10, 25, 27, and 17 as output modes and place them in the array placePin to facilitate control of the
common anode of the four-digit 7-segment display.

const number = [0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90];

Define a constant array number to represent the hexadecimal segment code from 0 to 9 (common anode).

9.4. Output 749

SunFounder raphael-kit

function clearDisplay() {
hc595_shift(0xff);

}

Write 0xff to turn off the digital tube.

function pickDigit(digit) {
for(let i=0;i<4;i++){

placePin[i].digitalWrite(0);
}
placePin[digit].digitalWrite(1);

}

Select the place of the value. there is only one place that should be enable each time. The enabled place will be written
high.

let digit = -1
setInterval(() => {

digit = (digit +1)% 4
clearDisplay();
pickDigit(digit);
switch(digit){

case 0:
hc595_shift(number[Math.floor(counter % 10)]);
break;

case 1:
hc595_shift(number[Math.floor(counter % 100 / 10)]);
break;

case 2:
hc595_shift(number[Math.floor(counter % 1000 / 100)]);
break;

case 3:
hc595_shift(number[Math.floor(counter % 10000 / 1000)]);
break;

}
}, 5);

this code is used to set the number displayed on the 4-digit 7-segment Dispaly.

First, start the fourth segment display, write the single-digit number. Then start the third segment display, and type
in the tens digit; after that, start the second and the first segment display respectively, and write the hundreds and
thousands digits respectively. Because the refreshing speed is very fast, we see a complete four-digit display.

setInterval(() => {
counter++;

}, 1000);

Add one to the counter (the four-digit digital tube displays the number plus one) every second that passes.

750 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Phenomenon Picture

1.1.6 LED Dot Matrix Module

Introduction

In this project, you will learn about LED Matrix Module. LED Matrix Module uses the MAX7219 driver to drive the
8 x 8 LED Matrix.

9.4. Output 751

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• LED Matrix Module

Schematic Diagram

T-Board Name physical wiringPi BCM
SPIMOSI Pin 19 12 MOSI
SPICE0 pin 24 10 CE0
SPISCLK Pin 23 14 SCLK

752 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Note: Turn on the SPI before starting the experiment, refer to SPI Configuration for details.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Install dependencies.

9.4. Output 753

SunFounder raphael-kit

sudo npm install spi-device

Step 4: Run the code.

sudo node max7219_led_matrix.js

After running the code, the LED Dot Matrix displays from 0 to 9 and A to Z in sequence.

Code

const Gpio = require('pigpio').Gpio;
const spi = require('spi-device');

class MAX7219_LED_MATRIX {
constructor(bus, device) {

this.bus = bus;
this.device = device;

}
delay(ms) {

return new Promise((resolve, reject) => {setTimeout(resolve, ms)});
}

async write(addr, data) {
return new Promise((resolve, reject)=>{

const max7219 = spi.open(this.bus, this.device, (err)=>{
if (err) reject(err);

const message = [{
sendBuffer: Buffer.from([addr, data]),
receiveBuffer: Buffer.alloc(2),
byteLength: 2,
speedHz: 20000

}];

max7219.transfer(message, (err, message)=>{
if (err) reject(err);
else resolve();

})
})

})
}
async init() {

await this.write(0x09, 0x00);
await this.write(0x0a, 0x03);
await this.write(0x0b, 0x07);
await this.write(0x0c, 0x01);
await this.write(0x0f, 0x00);

}
}

const DISP=[
[0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x3C],//0
[0x08,0x18,0x28,0x08,0x08,0x08,0x08,0x08],//1
[0x7E,0x2,0x2,0x7E,0x40,0x40,0x40,0x7E],//2
[0x3E,0x2,0x2,0x3E,0x2,0x2,0x3E,0x0],//3
[0x8,0x18,0x28,0x48,0xFE,0x8,0x8,0x8],//4
[0x3C,0x20,0x20,0x3C,0x4,0x4,0x3C,0x0],//5
[0x3C,0x20,0x20,0x3C,0x24,0x24,0x3C,0x0],//6

(continues on next page)

754 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

[0x3E,0x22,0x4,0x8,0x8,0x8,0x8,0x8],//7
[0x0,0x3E,0x22,0x22,0x3E,0x22,0x22,0x3E],//8
[0x3E,0x22,0x22,0x3E,0x2,0x2,0x2,0x3E],//9
[0x8,0x14,0x22,0x3E,0x22,0x22,0x22,0x22],//A
[0x3C,0x22,0x22,0x3E,0x22,0x22,0x3C,0x0],//B
[0x3C,0x40,0x40,0x40,0x40,0x40,0x3C,0x0],//C
[0x7C,0x42,0x42,0x42,0x42,0x42,0x7C,0x0],//D
[0x7C,0x40,0x40,0x7C,0x40,0x40,0x40,0x7C],//E
[0x7C,0x40,0x40,0x7C,0x40,0x40,0x40,0x40],//F
[0x3C,0x40,0x40,0x40,0x40,0x44,0x44,0x3C],//G
[0x44,0x44,0x44,0x7C,0x44,0x44,0x44,0x44],//H
[0x7C,0x10,0x10,0x10,0x10,0x10,0x10,0x7C],//I
[0x3C,0x8,0x8,0x8,0x8,0x8,0x48,0x30],//J
[0x0,0x24,0x28,0x30,0x20,0x30,0x28,0x24],//K
[0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x7C],//L
[0x81,0xC3,0xA5,0x99,0x81,0x81,0x81,0x81],//M
[0x0,0x42,0x62,0x52,0x4A,0x46,0x42,0x0],//N
[0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x3C],//O
[0x3C,0x22,0x22,0x22,0x3C,0x20,0x20,0x20],//P
[0x1C,0x22,0x22,0x22,0x22,0x26,0x22,0x1D],//Q
[0x3C,0x22,0x22,0x22,0x3C,0x24,0x22,0x21],//R
[0x0,0x1E,0x20,0x20,0x3E,0x2,0x2,0x3C],//S
[0x0,0x3E,0x8,0x8,0x8,0x8,0x8,0x8],//T
[0x42,0x42,0x42,0x42,0x42,0x42,0x22,0x1C],//U
[0x42,0x42,0x42,0x42,0x42,0x42,0x24,0x18],//V
[0x0,0x49,0x49,0x49,0x49,0x2A,0x1C,0x0],//W
[0x0,0x41,0x22,0x14,0x8,0x14,0x22,0x41],//X
[0x41,0x22,0x14,0x8,0x8,0x8,0x8,0x8],//Y
[0x0,0x7F,0x2,0x4,0x8,0x10,0x20,0x7F],//Z

];

lm = new MAX7219_LED_MATRIX(0, 0);

async function main(){
lm.init();
while(1){

for(let j=0;j<36;j++){
for(let i=1;i<9;i++){

lm.write(i, DISP[j][i-1]);
}
await lm.delay(1000);

}
}

}
main();

Code Explanation

const spi = require('spi-device');

Import the modules needed for spi communication.

Note: When you have multiple devices that need spi communication, just connect the cs pins to different pins.

9.4. Output 755

SunFounder raphael-kit

class MAX7219_LED_MATRIX {
constructor(bus, device) {

this.bus = bus;
this.device = device;

}
delay(ms) {

return new Promise((resolve, reject) => {setTimeout(resolve, ms)});
}

async write(addr, data) {
return new Promise((resolve, reject)=>{

const max7219 = spi.open(this.bus, this.device, (err)=>{
if (err) reject(err);

const message = [{
sendBuffer: Buffer.from([addr, data]),
receiveBuffer: Buffer.alloc(2),
byteLength: 2,
speedHz: 20000

}];

max7219.transfer(message, (err, message)=>{
if (err) reject(err);
else resolve();

})
})

})
}

Implement a MAX7219_LED_MATRIX class, and the write() function encapsulated in it can light up the matrix.

Note: The async keyword is used to modify the function and is usually matched with the await keyword. The
statement modified by the await keyword needs to wait for the previous code to finish running before executing,
achieving the effect of synchronous blocking.

• Async Function

lm = new MAX7219_LED_MATRIX(0, 0);

Instantiate an object lm of the MAX7219_LED_MATRIX class, so that we can call the encapsulated write() func-
tion inside.

while(1){
for(let j=0;j<36;j++){

for(let i=0;i<8;i++){
lm.write(i, DISP[j][i]);

}
await lm.delay(1000);

}
}

The write(row,date) function allows you to display specified characters on the LED dot matrix, The first pa-
rameter selects the row of the LED Matrix (8 rows in total), The second parameter enters an 8-bit binary number to
control the 8 LEDs of the row (0 means off, 1 means on).

The variable j is used to select the glyph, which is DISP[] . There are a total of 35 glyphs, 0~9 and A~Z.

756 Chapter 9. Play with Nodejs

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

SunFounder raphael-kit

For example, when j=1, the LED Maxtrix should display the image 1 .

The variable i is used to write the 8 data in the DISP[] glyph into the LED Matrix in turn. After the loop is
completed, an 8x8 graphic can be generated.

For example, when j=1, i=1, the data of DISP[1][1] will be written here, that is, 0x18, This will cause the second
row of the LED Maxtrix to display the image 00011000.

9.4. Output 757

SunFounder raphael-kit

Phenomenon Picture

1.1.7 I2C LCD1602

Introduction

LCD1602 is a character type liquid crystal display, which can display 32 (16*2) characters at the same time.

758 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• I2C LCD1602

9.4. Output 759

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical
SDA1 Pin 3
SCL1 Pin 5

Experimental Procedures

Step 1: Build the circuit.

Step 2: Setup I2C (see I2C Configuration. If you have set I2C, skip this step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 4: Install dependencies.

760 Chapter 9. Play with Nodejs

SunFounder raphael-kit

sudo npm install @oawu/lcd1602

Step 5: Run the code.

sudo node i2c_lcd1602.js

After the code runs, you can see Greetings!!, From SunFounder displaying on the LCD.

Code

const LCD = require('@oawu/lcd1602');
const lcd = new LCD();

lcd.text(0, 0, 'Greetings!!');
lcd.text(1, 1, 'from SunFounder');

Code Explanation

const LCD = require('@oawu/lcd1602');
const lcd = new LCD();

Import the lcd1602 module and represent it with lcd.

Note: For the lcd1602 module, please refer to: https://www.npmjs.com/package/@oawu/lcd1602

lcd.text(0, 0, 'Greetings!!');
lcd.text(1, 1, 'from SunFounder');

Calling the encapsulated text() function in the LCD class can make the lcd1602 display the text we want.

The text() function receives three parameters, the first parameter is the line of lcd1602, the second parameter
represents the position of the displayed text, and the third parameter represents the text we want to display.

The 1602 number in the LCD model means it has 2 rows of 16 cells each.

9.4. Output 761

https://www.npmjs.com/package/@oawu/lcd1602

SunFounder raphael-kit

Phenomenon Picture

9.4.2 1.2 Sound

1.2.1 Active Buzzer

Introduction

In this project, we will learn how to drive an active buzzer to beep with a PNP transistor.

762 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

9.4. Output 763

SunFounder raphael-kit

Schematic Diagram

In this experiment, an active buzzer, a PNP transistor and a 1k resistor are used between the base of the transistor
and GPIO to protect the transistor. When the GPIO17 of Raspberry Pi output is supplied with low level (0V) by
programming, the transistor will conduct because of current saturation and the buzzer will make sounds. But when
high level is supplied to the IO of Raspberry Pi, the transistor will be cut off and the buzzer will not make sounds.

Experimental Procedures

Step 1: Build the circuit. (The active buzzer has a white table sticker on the surface and a black back.)

764 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run.

sudo node active_buzzer.js

The code run, the buzzer beeps.

Code

const Gpio = require('pigpio').Gpio;
const active = new Gpio(17,{mode: Gpio.OUTPUT});

setInterval(() => {
active.digitalWrite(!active.digitalRead());

}, 500);

process.on('SIGINT',function(){
active.digitalWrite(1);
process.exit();

});

Code Explanation

const Gpio = require('pigpio').Gpio;
const active = new Gpio(17,{mode: Gpio.OUTPUT});

Import the pigpio module, and instantiate an object active to control the IO port Gpio17, and the mode is set to
output mode.

setInterval(() => {
active.digitalWrite(!active.digitalRead());

}, 500);

The active buzzer is similar to the LED in usage and can be controlled with digitalWrite(), and
digitalRead() is used to read the current pin level. Here we make the active buzzer change its working state
every 500ms.

9.4. Output 765

SunFounder raphael-kit

process.on('SIGINT', function() {
/* DO SOME STUFF HERE */

process.exit()
})

Handle Ctrl+C, here is used to stop the buzzer sounding when exiting the program.

Process - NodeJS

Phenomenon Picture

9.4.3 1.3 Drivers

1.3.1 Motor

Introduction

In this project, we will learn to how to use L293D to drive a DC motor and make it rotate clockwise and counterclock-
wise. Since the DC Motor needs a larger current, for safety purpose, here we use the Power Supply Module to supply
motors.

766 Chapter 9. Play with Nodejs

https://nodejs.org/api/process.html

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Power Supply Module

• L293D

• DC Motor

9.4. Output 767

SunFounder raphael-kit

Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to pin of 5V, then it will output voltage of 5V.
Connect pin 1 of L293D to GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to GPIO17, then set
one pin high, while the other low. Thus you can change the motor’s rotation direction.

Experimental Procedures

Step 1: Build the circuit.

768 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Note: The power module can apply a 9V battery with the 9V Battery Buckle in the kit. Insert the jumper cap of the
power module into the 5V bus strips of the breadboard.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 4: Run the code.

sudo node motor.js

As the code runs, the motor first rotates clockwise for 1s then stops for 1s, after that, it rotates anticlockwise for 1s;
subsequently, the motor stops for 1s. This series of actions will be executed repeatedly.

Code

const Gpio = require('pigpio').Gpio;

MotorPin1 = new Gpio(17, { mode: Gpio.OUTPUT });
MotorPin2 = new Gpio(27, { mode: Gpio.OUTPUT });

(continues on next page)

9.4. Output 769

SunFounder raphael-kit

(continued from previous page)

MotorEnable = new Gpio(22, { mode: Gpio.OUTPUT });

// Define a motor function to spin the motor
// direction should be
// 2(clockwise), 1(counterclockwise), 0(stop)
function motor(direction) {

switch (direction) {
case 2: // Clockwise

// Set direction
MotorPin1.digitalWrite(1)
MotorPin2.digitalWrite(0)
// Enable the motor
MotorEnable.digitalWrite(1)
console.log('Clockwise')
break;

case 1: // Counterclockwise
// Set direction
MotorPin1.digitalWrite(0)
MotorPin2.digitalWrite(1)
// Enable the motor
MotorEnable.digitalWrite(1)
console.log('Counterclockwise')
break;

case 0: // Stop
// Disable the motor
MotorEnable.digitalWrite(0)
console.log('Stop')

}
}

process.on('SIGINT', function () {
MotorEnable.digitalWrite(0)
process.exit();

})

let index=-1
setInterval(() => {

index=(index+1)%3
motor(index)

}, 1000)

Code Explanation

MotorPin1 = new Gpio(17, { mode: Gpio.OUTPUT });
MotorPin2 = new Gpio(27, { mode: Gpio.OUTPUT });
MotorEnable = new Gpio(22, { mode: Gpio.OUTPUT });

Import the pigpio module and create three Gpio class objects to control the three IO ports of Gpio17, Gpio27, and
Gpio22.

function motor(direction) {
switch (direction) {

case 2: // Clockwise
// Set direction

(continues on next page)

770 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

MotorPin1.digitalWrite(1)
MotorPin2.digitalWrite(0)
// Enable the motor
MotorEnable.digitalWrite(1)
console.log('Clockwise')
break;

case 1: // Counterclockwise
// Set direction
MotorPin1.digitalWrite(0)
MotorPin2.digitalWrite(1)
// Enable the motor
MotorEnable.digitalWrite(1)
console.log('Counterclockwise')
break;

case 0: // Stop
// Disable the motor
MotorEnable.digitalWrite(0)
console.log('Stop')

}
}

Define a motor() function to control the motor,

1. When the direction is equal to 2, the MotorPin1 port writes a high level, the MotorPin2 port writes a low level,
and the enable port MotorEnable writes a high level, and the motor rotates clockwise.

2. When the direction is equal to 1, the MotorPin1 port writes a low level, the MotorPin2 port writes a high level,
and the enable port MotorEnable writes a high level, and the motor rotates counterclockwise.

3. When the direction is equal to 0, the enable port MotorEnable is written to a low level, and the motor stops
rotating.

let index=-1
setInterval(() => {

index=(index+1)%3
motor(index)

}, 1000)

Let the motor rotate clockwise and counterclockwise alternately, with an interval of 1 second.

process.on('SIGINT', function () {
MotorEnable.digitalWrite(0)
process.exit();

})

When it is detected that ctrl+c is pressed, MotorEnable is written low to stop the motor from spinning.

9.4. Output 771

SunFounder raphael-kit

Phenomenon Picture

1.3.2 Servo

Introduction

In this project, we will learn how to make the servo rotate.

772 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Servo

9.4. Output 773

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

774 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node servo.js

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0
degrees, circularly.

Code

const Gpio = require('pigpio').Gpio;

SERVO_MIN_ANGLE = 0
SERVO_MAX_ANGLE = 180
SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500

ServoPin = new Gpio(18,{mode: Gpio.OUTPUT})

function map(value, inMin, inMax, outMin, outMax){
return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

}

function angle2pulse(angle){
return Math.floor(map(angle,SERVO_MIN_ANGLE,SERVO_MAX_ANGLE,SERVO_MIN_PULSE ,

→˓SERVO_MAX_PULSE))
}

let angle=90;
let step=5;
setInterval(() => {

if(angle>=180||angle<=0){
step=-step

}
angle+=step;
ServoPin.servoWrite(angle2pulse(angle));

}, 20);

Code Explanation

const Gpio = require('pigpio').Gpio;

ServoPin = new Gpio(18,{mode: Gpio.OUTPUT})

Import the pigpio module and create an object of class Gpio, ServoPin, to control the output of Gpio18.

SERVO_MIN_ANGLE = 0
SERVO_MAX_ANGLE = 180
SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500

function map(value, inMin, inMax, outMin, outMax){
return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

}

(continues on next page)

9.4. Output 775

SunFounder raphael-kit

(continued from previous page)

function angle2pulse(angle){
return Math.floor(map(angle,SERVO_MIN_ANGLE,SERVO_MAX_ANGLE,SERVO_MIN_PULSE ,

→˓SERVO_MAX_PULSE))
}

The function that maps the angle to the pulse width is defined here. This is because the servo control function
servoWrite(pulseWidth) encapsulated in the Gpio class needs to write pulse width instead of angle. The
angle range of the servo we use is 0~180, which needs to be mapped to the range of pulseWidth, 500~2500.

let angle=90;
let step=5;
setInterval(() => {

if(angle>=180||angle<=0){
step=-step

}
angle+=step;
ServoPin.servoWrite(angle2pulse(angle));

}, 20);

Let the servo angle deflect back and forth from 0 to 180.

Phenomenon Picture

776 Chapter 9. Play with Nodejs

SunFounder raphael-kit

1.3.3 Relay

Introduction

In this project, we will learn to use a relay. It is one of the commonly used components in automatic control system.
When the voltage, current, temperature, pressure, etc., reaches, exceeds or is lower than the predetermined value, the
relay will connect or interrupt the circuit, to control and protect the equipment.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Transistor

9.4. Output 777

SunFounder raphael-kit

• Relay

• Diode

Schematic Diagram

778 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node relay.js

While the code is running, the LED lights up. In addition, you can hear a ticktock caused by breaking normally close
contact and closing normally open contact.

Code

const Gpio = require('pigpio').Gpio;
const relay = new Gpio(17,{mode: Gpio.OUTPUT});

setInterval(() => {
relay.digitalWrite(!relay.digitalRead());

}, 500);

process.on('SIGINT',function(){
relay.digitalWrite(0);
process.exit();

});

Code Explanation

const Gpio = require('pigpio').Gpio;
const relay = new Gpio(17,{mode: Gpio.OUTPUT});

Import the pigpio module and instantiate an object relay of Gpio to control the IO port Gpio17, and set it to output
mode.

9.4. Output 779

SunFounder raphael-kit

setInterval(() => {
relay.digitalWrite(!relay.digitalRead());

}, 500);

The relay is opened and closed continuously, and the LEDs will also be on and off continuously at intervals of 500ms.

process.on('SIGINT',function(){
relay.digitalWrite(0);
process.exit();

});

When ctrl+c is caught, the relay is opened.

Phenomenon Picture

9.5 Input

9.5.1 2.1 Controllers

2.1.1 Button

Introduction

In this project, we will learn how to turn on or off the LED by using a button.

780 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Button

9.5. Input 781

SunFounder raphael-kit

Schematic Diagram

Use a normally open button as the input of Raspberry Pi, the connection is shown in the schematic diagram below.
When the button is pressed, the GPIO18 will turn into low level (0V). We can detect the state of the GPIO18 through
programming. That is, if the GPIO18 turns into low level, it means the button is pressed. You can run the corresponding
code when the button is pressed, and then the LED will light up.

Note: The longer pin of the LED is the anode and the shorter one is the cathode.

782 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node button.js

Now, press the button, and the LED will light up; release the button, and the LED will go out.

Code

const Gpio = require('pigpio').Gpio;

const led = new Gpio(17, {mode: Gpio.OUTPUT});

const button = new Gpio(18, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

button.on('interrupt', (level) => {
led.digitalWrite(level);

});

Code Explanation

const Gpio = require('pigpio').Gpio;

const led = new Gpio(17, {mode: Gpio.OUTPUT});

Import the pigpio module, create a led object to control the IO port Gpio17, and set it to output mode.

9.5. Input 783

SunFounder raphael-kit

const button = new Gpio(18, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Create a button object to control the IO port Gpio18, set it to input mode, Pull down (low when the button is not
pressed, high when the button is pressed). And set the interrupt function, the mode is EITHER_EDGE, that is, both
rising and falling edges will trigger the interrupt function.

button.on('interrupt', (level) => {
led.digitalWrite(level);

});

Write an interrupt function, when the button is pressed, it is a falling edge, triggering the interrupt function, At this
time, write the low level of the button IO port to the IO port of the led, and the led lights up.

When the button is released, it is a rising edge, triggering the interrupt function, At this time, the high level of the
button IO port is written to the IO port of the led, and the led is off.

Phenomenon Picture

784 Chapter 9. Play with Nodejs

SunFounder raphael-kit

2.1.2 Micro Switch

Introduction

In this project, we will learn how to use Micro Switch. A Micro Switch is a small, very sensitive switch which requires
minimum compression to activate. Because they are reliable and sensitive, micro switches are often used as a safety
device.

They are used to prevent doors from closing if something or someone is in the way and other applications similar.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

9.5. Input 785

SunFounder raphael-kit

• Micro Switch

• Capacitor

Schematic Diagram

Connect the left pin of the Micro Switch to GPIO17, and two LEDs to pin GPIO22 and GPIO27 respectively. Then
when you press and release the move arm of the Micro Switch, you can see the two LEDs light up alternately.

786 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node micro_switch.js

While the code is running, press the Micro Switch, then the yellow LED lights up; release the moving arm, the red
LED turns on.

Code

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

const microSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

microSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

Code Explanation

const Gpio = require('pigpio').Gpio;

(continues on next page)

9.5. Input 787

SunFounder raphael-kit

(continued from previous page)

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

const microSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Import the pigpio module and create three objects led1, led2, micro, By reading the level of the micro IO port, the
on and off of led1 and led2 are controlled.

microSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

When the level of the read micro IO port changes, Write the same level to led1 and the opposite level to led2.

Phenomenon Picture

788 Chapter 9. Play with Nodejs

SunFounder raphael-kit

2.1.3 Touch Switch Module

Introduction

In this project, you will learn about touch switch module. It can replace the traditional kinds of switch with these
advantages: convenient operation, fine touch sense, precise control and least mechanical wear.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Touch Switch Module

9.5. Input 789

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node touch_switch.js

790 Chapter 9. Play with Nodejs

SunFounder raphael-kit

While the code is running, the red LED lights up; when you tap on the touch switch module, the yellow LED turns on.

Code

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

const touchSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

touchSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

Code Explanation

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

const touchSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Import the pigpio module and create three objects led1, led2, touchSwitch, By reading the level of the touchSwitch
IO port, the on and off of led1 and led2 are controlled.

touchSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

When the level of the read touchSwitch IO port changes, Write the same level to led1 and the opposite level to led2.

9.5. Input 791

SunFounder raphael-kit

Phenomenon Picture

2.1.4 Slide Switch

Introduction

In this project, we will learn how to use a slide switch. Usually,the slide switch is soldered on PCB as a power switch,
but here we need to insert it into the breadboard, thus it may not be tightened. And we use it on the breadboard to
show its function.

792 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Slide Switch

• Capacitor

9.5. Input 793

SunFounder raphael-kit

Schematic Diagram

Connect the middle pin of the Slide Switch to GPIO17, and two LEDs to pin GPIO22 and GPIO27 respectively. Then
when you pull the slide, you can see the two LEDs light up alternately.

794 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node slide_switch.js

While the code is running, get the switch connected to the left, then the yellow LED lights up; to the right, the red
light turns on.

Code

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

const slideSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

slideSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

Code Explanation

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

(continues on next page)

9.5. Input 795

SunFounder raphael-kit

(continued from previous page)

const slideSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Import the pigpio module, and create three objects led1, led2, slideSwitch, and control the on and off of led1 and led2
by reading the level of the slideSwitch IO port.

slideSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

When the read level of the slideSwitch IO port changes, Write the same level to led1 and the opposite level to led2.

Phenomenon Picture

796 Chapter 9. Play with Nodejs

SunFounder raphael-kit

2.1.5 Tilt Switch

Introduction

This is a ball tilt-switch with a metal ball inside. It is used to detect inclinations of a small angle.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Tilt Switch

9.5. Input 797

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

798 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node tilt_switch.js

Place the tilt vertically, and the green LED will turns on. If you tilt it, the red LED will turns on. Place it vertically
again, and the green LED will lights on.

Code

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, { mode: Gpio.OUTPUT });
const led2 = new Gpio(27, { mode: Gpio.OUTPUT });

const tilt = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

tilt.on('interrupt', (level) => {
if (level) {

console.log("Horizontally");
}
else {

console.log("Vertically");
}
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

Code Explanation

9.5. Input 799

SunFounder raphael-kit

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, { mode: Gpio.OUTPUT });
const led2 = new Gpio(27, { mode: Gpio.OUTPUT });

const tilt = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Import the pigpio module and create three objects led1, led2, tilt, By reading the level of the tilt IO port, the on and
off of led1 and led2 are controlled.

const tilt = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Create a tilt object to control the IO port Gpio17, set it to input mode, pull-down resistor (initially low level). And
set the interrupt function, the mode is EITHER_EDGE, that is, both rising and falling edges will trigger the interrupt
function.

tilt.on('interrupt', (level) => {
if (level) {

console.log("Horizontally");
}
else {

console.log("Vertically");
}
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

When the interrupt is triggered, write the same level to led1, and write the opposite level to led2. When the tilt IO port
is high, the terminal prints “Horizontally”; When the tilt IO port is low, the terminal prints “Vertically”.

800 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Phenomenon Picture

2.1.6 Rotary Encoder Module

Introduction

In this project, you will learn about Rotary Encoder. A rotary encoder is an electronic switch with a set of regular
pulses in strictly timing sequence. When used with IC, it can achieve increment, decrement, page turning and other
operations such as mouse scrolling, menu selection, and so on.

9.5. Input 801

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Rotary Encoder Module

802 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

9.5. Input 803

SunFounder raphael-kit

In this example, we can connect the Rotary Encoder pin directly to the Raspberry Pi using a breadboard and 40-pin
Cable, connect the GND of the Rotary Encoder to GND, +to 5V, SW to digital GPIO27, DT to digital GPIO18, and
CLK to digital GPIO 17.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node rotary_encoder_module.js

You will see the count on the shell. When you turn the rotary encoder clockwise, the count is increased; when turn

804 Chapter 9. Play with Nodejs

SunFounder raphael-kit

it counterclockwise, the count is decreased. If you press the switch on the rotary encoder, the readings will return to
zero.

Code

const Gpio = require('pigpio').Gpio;

const clkPin = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.RISING_EDGE

});
const dtPin = new Gpio(18, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,

});
const swPin = new Gpio(27, {

mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_UP,
edge: Gpio.FALLING_EDGE

});

var globalCounter = 0;

clkPin.on('interrupt',()=>{
if(dtPin.digitalRead()==1){

globalCounter--;
}
else{

globalCounter++;
}
console.log(`globalCounter = ${globalCounter}`);

});

swPin.on('interrupt', () => {
globalCounter = 0;
console.log(`globalCounter = ${globalCounter}`);

});

Code Explanation

var globalCounter = 0;

clkPin.on('interrupt',()=>{
if(dtPin.digitalRead()==1){

globalCounter--;
}
else{

globalCounter++;
}
console.log(`globalCounter = ${globalCounter}`);

});

When dtPin goes from low to high, if clkPin is high, the count decreases, otherwise the count increases.

swPin.on('interrupt', () => {
globalCounter = 0;
console.log(`globalCounter = ${globalCounter}`);

});

9.5. Input 805

SunFounder raphael-kit

The swPin will output low when the shaft is pressed. Let the globalCounter go to zero at this point

Phenomenon Picture

2.1.7 Potentionmeter

Introduction

The ADC function can be used to convert analog signals to digital signals, and in this experiment, ADC0834 is used
to get the function involving ADC. Here, we implement this process by using potentiometer. Potentiometer changes
the physical quantity – voltage, which is converted by the ADC function.

806 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Potentiometer

• ADC0834

9.5. Input 807

SunFounder raphael-kit

Schematic Diagram

808 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Note: Please place the chip by referring to the corresponding position depicted in the picture. Note that the grooves
on the chip should be on the left when it is placed.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node potentionmeter.js

After the code runs, rotate the knob on the potentiometer, the intensity of LED will change accordingly.

Code

const Gpio = require('pigpio').Gpio;
const ADC0834 = require('./adc0834.js').ADC0834;

const adc = new ADC0834(17, 18, 27);
const led = new Gpio(22, {mode: Gpio.OUTPUT});

setInterval(() => {
adc.read(0).then((value) => {

console.log(`Current analogVal: ${value}\n`);
led.pwmWrite(value);

}, (error)=>{
console.log("Error: " + error);

});
}, 100);

Code Explanation

const Gpio = require('pigpio').Gpio;

Import the pigpio module.

9.5. Input 809

SunFounder raphael-kit

const ADC0834 = require('./adc0834.js').ADC0834;

We import an ADC0834 constructor to use the adc0834 module.

const adc = new ADC0834(17, 18, 27);

Instantiate an ADC0834 object, the three parameters are its three pins.

This is a promise object, you may need to understand the concept from the following link.

• Promise

setInterval(() => {
adc.read(0).then((value) => {

console.log(`Current analogVal: ${value}\n`);
led.pwmWrite(value);

}, (error)=>{
console.log("Error: " + error);

});
}, 100);

The value of ADC0834 channel 0 (channel 0 is connected to the potentiometer) is read every 100ms, and the value
will be stored in value.

Print value and use it to control the brightness of the LED, now you can see that the brightness of the LED changes
with the value of the potentiometer.

Phenomenon Picture

810 Chapter 9. Play with Nodejs

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

SunFounder raphael-kit

2.1.8 Keypad

Introduction

A keypad is a rectangular array of buttons. In this project, We will use it input characters.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Keypad

9.5. Input 811

SunFounder raphael-kit

Schematic Diagram

812 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

9.5. Input 813

SunFounder raphael-kit

Step 2: Open the code file.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run.

sudo node keypad.js

After the code runs, the values of pressed buttons on keypad (button Value) will be printed on the screen.

Code

const Gpio = require('pigpio').Gpio;

var rowsPins = [18,23,24,25];
var colsPins = [10,6,27,17];
var keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"];

for(let i=0;i<rowsPins.length;i++){
rowsPins[i] = new Gpio(rowsPins[i],{mode: Gpio.OUTPUT})

(continues on next page)

814 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

}
for(let i=0;i<colsPins.length;i++){

colsPins[i] = new Gpio(colsPins[i],{
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.RISING_EDGE

})
}

var last_key_pressed = 0;

var col=-1;
for(let i=0;i<colsPins.length;i++){

colsPins[i].on('interrupt',()=>{
col=i;
pressed_keys=keys[row*colsPins.length+col];
if(last_key_pressed!=pressed_keys){

console.log(`${pressed_keys}`);
}
last_key_pressed = pressed_keys;

});
}

var row=-1;
setInterval(() => {

row=(row+1)%rowsPins.length;
for(let i=0;i<rowsPins.length;i++){

rowsPins[i].digitalWrite(0);
}
rowsPins[row].digitalWrite(1);

}, 10);

Code Explanation

const Gpio = require('pigpio').Gpio;

var rowsPins = [18,23,24,25];
var colsPins = [10,6,27,17];
var keys = ["1","2","3","A",

"4","5","6","B",
"7","8","9","C",
"*","0","#","D"];

for(let i=0;i<rowsPins.length;i++){
rowsPins[i] = new Gpio(rowsPins[i],{mode: Gpio.OUTPUT})

}
for(let i=0;i<colsPins.length;i++){

colsPins[i] = new Gpio(colsPins[i],{
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.RISING_EDGE

})
}

In the style of the keypad, declare two sets of pins and a matrix.

Four of the pins are the row of the keypad, set these pins to OUTPUT mode; The other four pins are the columns of
the keypad, set these pins to INPUT mode, and set the rising edge interrupt for them.

9.5. Input 815

SunFounder raphael-kit

The principle that the main controller can obtain the key value is as follows: The four row pins provide high level in
turn, if a button is pressed, The corresponding column pin will get the high level released by the row pin, which will
trigger the rising edge interrupt.

For example, if I press the button 3 , when the 2nd, 3rd, and 4th row pins release the high level, there is no effect;
When the row pin in the first position releases the high level, the third column pin will be able to obtain the high level
and trigger the rising edge interrupt. At this time, the 1st, 2nd, and 4th column pins do not trigger any events.

Then, according to the 1st row pin that releases the high level and the 3rd column pin that gets the high level, the main
controller will be able to know that the position of the pressed button is (1,3), which is the button 3.

var row=-1;
setInterval(() => {

row=(row+1)%rowsPins.length;
for(let i=0;i<rowsPins.length;i++){

rowsPins[i].digitalWrite(0);
}
rowsPins[row].digitalWrite(1);

}, 10);

The four row pins are periodically supplied high, and the variable row is used to locate the currently working row pin.

var col=-1;
for(let i=0;i<colsPins.length;i++){

colsPins[i].on('interrupt',()=>{
col=i;
// pressed_keys=keys[row*colsPins.length+col];
// if(last_key_pressed!=pressed_keys){
// console.log(`${pressed_keys}`);

(continues on next page)

816 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

// }
// last_key_pressed = pressed_keys;

});
}

Set up interrupt functions for the four column pins, and the variable col is used to locate the column pins that trigger
the rising edge interrupt event.

pressed_keys=keys[row*colsPins.length+col];
if(last_key_pressed!=pressed_keys){

console.log(`${pressed_keys}`);
}
last_key_pressed = pressed_keys;

There is also a piece of code in the break function to get the specific key value from the keys matrix according to
row and col. And every time you get a new key value, print the value.

Phenomenon Picture

9.5. Input 817

SunFounder raphael-kit

2.1.9 Joystick

Introduction

In this project, We’re going to learn how joystick works. We manipulate the Joystick and display the results on the
screen.

Components

• GPIO Extension Board

• Breadboard

818 Chapter 9. Play with Nodejs

SunFounder raphael-kit

• Resistor

• Joystick Module

• ADC0834

Schematic Diagram

When the data of joystick is read, there are some differents between axis: data of X and Y axis is analog, which need
to use ADC0834 to convert the analog value to digital value. Data of Z axis is digital, so you can directly use the GPIO
to read, or you can also use ADC to read.

9.5. Input 819

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node joystick.js

After the code runs, turn the Joystick, then the corresponding values of x, y, Btn are displayed on screen.

Code

const Gpio = require('pigpio').Gpio;
const ADC0834 = require('./adc0834.js').ADC0834;

const adc = new ADC0834(17, 18, 22);
const btn = new Gpio(25, {

mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_UP,

});

setInterval(async() => {

x_val = await adc.read(0);
y_val = await adc.read(1);

btn_val = btn.digitalRead();
console.log(`x = ${x_val}, y = ${y_val}, btn = ${btn_val}\n`);

}, 100);

Code Explanation

820 Chapter 9. Play with Nodejs

SunFounder raphael-kit

const ADC0834 = require('./adc0834.js').ADC0834;

We import an ADC0834 constructor to use the adc0834 module.

setInterval(async() => {

x_val = await adc.read(0);
y_val = await adc.read(1);

btn_val = btn.digitalRead();
console.log(`x = ${x_val}, y = ${y_val}, btn = ${btn_val}\n`);

}, 100);

When reading the values of multiple channels of ADC0834 at the same time, asynchronous programming is required.
We build a promise function here, And use the await instruction of async function to elegantly write this complex
asynchronous task.

• Promise

• Async Function

Phenomenon Picture

9.5. Input 821

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

SunFounder raphael-kit

9.5.2 2.2 Sensors

2.2.1 Photoresistor

Introduction

Photoresistor is a commonly used component of ambient light intensity in life. It helps the controller to recognize day
and night and realize light control functions such as night lamp. This project is very similar to potentiometer, and you
might think it changing the voltage to sensing light.

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

822 Chapter 9. Play with Nodejs

SunFounder raphael-kit

• ADC0834

• Photoresistor

Schematic Diagram

9.5. Input 823

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node photoresistor.js

When the code is running, the brightness of the LED will change according to the light intensity sensed by the
photoresistor.

Code

const Gpio = require('pigpio').Gpio;
const ADC0834 = require('./adc0834.js').ADC0834;

exports.ADC0834 = ADC0834;

const adc = new ADC0834(17, 18, 27);

const led = new Gpio(22, {mode: Gpio.OUTPUT});

setInterval(() => {
adc.read(0).then((value) => {
console.log(value);
led.pwmWrite(value);

}, (error)=>{
console.log("Error: " + error);

});
}, 100);

Code Explanation

The codes here are the same as that in 2.1.7 Potentiometer. Please check the code explanation of 2.1.7 Potentiometer
for details.

824 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Phenomenon Picture

2.2.2 Thermistor

Introduction

Just like photoresistor can sense light, thermistor is a temperature sensitive electronic device that can be used for
realizing functions of temperature control, such as making a heat alarm.

9.5. Input 825

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Thermistor

• ADC0834

826 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Schematic Diagram

9.5. Input 827

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node thermistor.js

With the code run, the thermistor detects ambient temperature which will be printed on the screen once it finishes the
program calculation.

Code

const Gpio = require('pigpio').Gpio;
const ADC0834 = require('./adc0834.js').ADC0834;

exports.ADC0834 = ADC0834;

const adc = new ADC0834(17, 18, 27);

setInterval(() => {
adc.read(0).then((value) => {
var Vr = 5 * value / 255;
var Rt = 10000 * Vr / (5 - Vr);
var temp = 1 / ((Math.log(Rt/10000) / 3950)+(1 / (273.15 + 25)));
var cel = (temp - 273.15).toFixed(2);
var Fah = (cel * 1.8 + 32).toFixed(2);
console.log(`Celsius: ${cel} C Fahrenheit: ${Fah} F\n`);

}, (error)=>{
console.log("Error: " + error);

});
}, 1000);

Code Explanation

828 Chapter 9. Play with Nodejs

SunFounder raphael-kit

setInterval(() => {
adc.read(0).then((value) => {
var Vr = 5 * value / 255;
var Rt = 10000 * Vr / (5 - Vr);
var temp = 1 / ((Math.log(Rt/10000) / 3950)+(1 / (273.15 + 25)));
var cel = (temp - 273.15).toFixed(2);
var Fah = (cel * 1.8 + 32).toFixed(2);
console.log(`Celsius: ${cel} C Fahrenheit: ${Fah} F\n`);

}, (error)=>{
console.log("Error: " + error);

});
}, 1000);

We can read the value of the thermistor through the statement adc.read(0).then((value) => {...})

var Vr = 5 * value / 255;
var Rt = 10000 * Vr / (5 - Vr);
var temp = 1 / ((Math.log(Rt/10000) / 3950)+(1 / (273.15 + 25)));
var cel = (temp - 273.15).toFixed(2);
var Fah = (cel * 1.8 + 32).toFixed(2);
console.log(`Celsius: ${cel} C Fahrenheit: ${Fah} F\n`);

These operations convert the thermistor value to a Celsius temperature value.

var Vr = 5 * value / 255;
var Rt = 10000 * Vr / (5 - Vr);

These two lines of code are used to calculate the voltage distribution from the read values, resulting in Rt (resistance
of the thermistor).

var temp = 1 / ((Math.log(Rt/10000) / 3950)+(1 / (273.15 + 25)));

This code refers to substituting Rt into the formula TK=1/(ln(RT/RN)/B+1/TN) to get the temperature in Kelvin.

var cel = (temp - 273.15).toFixed(2);

This paragraph is to convert the Kelvin temperature to Celsius with two decimal places.

var Fah = (cel * 1.8 + 32).toFixed(2);

This paragraph converts Celsius to Fahrenheit with two decimal places.

console.log(`Celsius: ${cel} C Fahrenheit: ${Fah} F\n`);

Print Celsius, Fahrenheit and their units on the terminal.

9.5. Input 829

SunFounder raphael-kit

Phenomenon Picture

2.2.3 DHT-11

Introduction

The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal
output of temperature and humidity. The technology of a dedicated digital modules collection and the technology of
the temperature and humidity sensing are applied to ensure that the product has high reliability and excellent stability.

The sensors include a wet element resistive sensor and a NTC temperature sensor and they are connected to a high
performance 8-bit microcontroller.

830 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• Humiture Sensor Module

9.5. Input 831

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

832 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Install dependencies.

sudo npm install node-dht-sensor

Step 4: Run the code.

sudo node dht11.js

After the code runs, the program will print the temperature and humidity detected by DHT11 on the computer screen.

Code

var sensor = require("node-dht-sensor");

setInterval(function(){
sensor.read(11, 17, function(err, temperature, humidity) {
if (!err) {

console.log(`temp: ${temperature}\`C, humidity: ${humidity}%`);
}

});
},1000);

Code Explanation

var sensor = require("node-dht-sensor");

Import the module node-dht-sensor module, which provides functions for us to read the value of DHT-11.

Note: For more details, please refer to: https://www.npmjs.com/package/node-dht-sensor

sensor.read(11, 17, function(err, temperature, humidity){...})

The node-dht-sensor module provides the read() function for us to read the measured temperature and hu-
midity, where 11 means DHT-11, 17 means and its connected to GPIO17.

9.5. Input 833

https://www.npmjs.com/package/node-dht-sensor

SunFounder raphael-kit

if (!err) {
console.log(`temp: ${temperature}\`C, humidity: ${humidity}%`);

}

When there is no error in the reading, the temperature and humidity values are printed on the terminal.

Phenomenon Picture

2.2.4 Reed Switch Module

Introduction

In this project, we will learn about the reed switch, which is an electrical switch that operates by means of an applied
magnetic field.

834 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Reed Switch Module

9.5. Input 835

SunFounder raphael-kit

Schematic Diagram

T-Board Name physical wiringPi BCM
GPIO17 Pin 11 0 17
GPIO27 Pin 13 2 27
GPIO22 Pin 15 3 22

Experimental Procedures

Step 1: Build the circuit.

836 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node reed_switch_module.js

The green LED will light up when the code is run. If a magnet is placed close to the reed switch module, the red LED
lights up; take away the magnet and the green LED lights up again.

Code

const Gpio = require('pigpio').Gpio;

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

const reedSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

reedSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

Code Explanation

9.5. Input 837

SunFounder raphael-kit

const Gpio = require('pigpio').Gpio;

const reedSwitch = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

Import the pigpio module, create a ReedPin object to control the IO port, set it to input mode, pull down (initially low
level), and set an interrupt.

const led1 = new Gpio(22, {mode: Gpio.OUTPUT});
const led2 = new Gpio(27, {mode: Gpio.OUTPUT});

Create two objects led1, led2 to control the IO ports Gpio22 and Gpio27, and set them to output mode.

reedSwitch.on('interrupt', (level) => {
led1.digitalWrite(level);
led2.digitalWrite(!level);

});

When the interrupt is triggered, write the same level to led1, and write the opposite level to led2.

Phenomenon Picture

838 Chapter 9. Play with Nodejs

SunFounder raphael-kit

2.2.5 IR Obstacle Avoidance Sensor

Introduction

In this project, we will learn IR obstacle avoidance module, which is a sensor module that can be used to detect
obstacles at short distances, with small interference, easy to assemble, easy to use, etc. It can be widely used in robot
obstacle avoidance, obstacle avoidance trolley, assembly line counting, etc.

Components Required

• GPIO Extension Board

• Breadboard

• Obstacle Avoidance Module

9.5. Input 839

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit

840 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node ir_obstacle.js

After the code runs, when you put your hand in front of the module’s probe, the output indicator on the module lights
up and the “Detected Barrier!” will be repeatedly printed on the screen until the your hand is removed.

Code

const Gpio = require('pigpio').Gpio;

const ir_ob = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.FALLING_EDGE

});

ir_ob.on('interrupt', () => {
console.log('Detected Barrier!');

});

Code Explanation

const Gpio = require('pigpio').Gpio;

const ir_ob = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.FALLING_EDGE

});

Import the pigpio module, create an object to control the IO port Gpio17, Set it to input mode and interrupt on falling
edge.

ir_ob.on('interrupt', () => {
console.log('Detected Barrier!');

});

When an interrupt is triggered, meaning an obstacle is detected, print “Detected Barrier!”.

9.5. Input 841

SunFounder raphael-kit

Phenomenon Picture

2.2.6 Speed Sensor Module

Introduction

In this project, we will learn the use of the speed sensor module. A Speed sensor module is a type of tachometer that
is used to measure the speed of a rotating object like a motor.

842 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

• Speed Sensor Module

9.5. Input 843

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

844 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node speed_sensor_module.js

After the code runs, the green LED will light up. If you place an obstacle in the gap of the speed sensor module, the
“light blocked” will be printed on the screen and the red LED will be lit. Remove the obstacle and the green LED will
light up again.

Code

const Gpio = require('pigpio').Gpio;

const Rpin = new Gpio(22, { mode: Gpio.OUTPUT });
const Gpin = new Gpio(27, { mode: Gpio.OUTPUT });

const speedPin = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

});

speedPin.on('interrupt', (level) => {
if (level) {

console.log("Light was blocked");
}
Rpin.digitalWrite(level);
Gpin.digitalWrite(!level);

});

process.on('SIGINT', function () {
Rpin.digitalWrite(0);
Gpin.digitalWrite(0);
process.exit();

});

Code Explanation

The code of this example is almost the same as 2.1.5 Tilt Switch, so no need to repeat it.

9.5. Input 845

SunFounder raphael-kit

Phenomenon Picture

2.2.7 PIR

Introduction

In this project, we will make a device by using the human body infrared pyroelectric sensors. When someone gets
closer to the LED, the LED will turn on automatically. If not, the light will turn off. This infrared motion sensor is a
kind of sensor that can detect the infrared emitted by human and animals.

846 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

• PIR Motion Sensor Module

9.5. Input 847

SunFounder raphael-kit

Schematic Diagram

848 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node pir.js

After the code runs, PIR detects surroundings and let RGB LED glow yellow if it senses someone walking by. There
are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection distance.
In order to make the PIR module work better, you need to try to adjust these two potentiometers.

Code

const Gpio = require('pigpio').Gpio;

(continues on next page)

9.5. Input 849

SunFounder raphael-kit

(continued from previous page)

const pirPin = new Gpio(17, {
mode: Gpio.INPUT,
pullUpDown: Gpio.PUD_DOWN,
edge: Gpio.EITHER_EDGE

}) // the pir connect to pin17

const redPin = new Gpio(18, { mode: Gpio.OUTPUT, })
const greenPin = new Gpio(27, { mode: Gpio.OUTPUT, })
const bluePin = new Gpio(22, { mode: Gpio.OUTPUT, })
//'Red':18, 'Green':27, 'Blue':22

var p_R, p_G, p_B

// Set all led as pwm channel and frequece to 2KHz
p_R = redPin.pwmFrequency(2000)
p_G = greenPin.pwmFrequency(2000)
p_B = bluePin.pwmFrequency(2000)

// Set all begin with value 0
p_R.pwmWrite(0)
p_G.pwmWrite(0)
p_B.pwmWrite(0)

// Define a MAP function for mapping values. Like from 0~255 to 0~100
function MAP(x, in_min, in_max, out_min, out_max) {

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
}

// Define a function to set up colors
function setColor(color) {

// configures the three LEDs' luminance with the inputted color value .
// Devide colors from 'color' veriable
R_val = (color & 0xFF0000) >> 16
G_val = (color & 0x00FF00) >> 8
B_val = (color & 0x0000FF) >> 0
// Map color value from 0~255 to 0~100
R_val = MAP(R_val, 0, 255, 0, 100)
G_val = MAP(G_val, 0, 255, 0, 100)
B_val = MAP(B_val, 0, 255, 0, 100)

//Assign the mapped duty cycle value to the corresponding PWM channel to change
→˓the luminance.

p_R.pwmWrite(R_val)
p_G.pwmWrite(G_val)
p_B.pwmWrite(B_val)
//print ("color_msg: R_val = %s, G_val = %s, B_val = %s"%(R_val, G_val, B_val))

}

pirPin.on('interrupt', (level) => {
if (level) {

setColor(0xFFFF00)
}else{

setColor(0x0000FF)
}

});

process.on('SIGINT', function () {
(continues on next page)

850 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

p_R.pwmWrite(0)
p_G.pwmWrite(0)
p_B.pwmWrite(0)
process.exit();

})

Code Explanation

The code for this example is a combination of 2.1.1 Button and 1.1.2 RGB LED, no need to go into details.

Phenomenon Picture

2.2.8 Ultrasonic Sensor Module

Introduction

The ultrasonic sensor uses ultrasonic to accurately detect objects and measure distances. It sends out ultrasonic waves
and converts them into electronic signals.

9.5. Input 851

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• Ultrasonic Module

852 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Schematic Diagram

Experimental Procedures

Step 1: Build the circuit.

9.5. Input 853

SunFounder raphael-kit

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node ultrasonic_sensor.js

With the code run, the ultrasonic sensor module detects the distance between the obstacle ahead and the module itself,
then the distance value will be printed on the screen.

Code

const Gpio = require('pigpio').Gpio;

// The number of microseconds it takes sound to travel 1cm at 20 degrees celcius
const MICROSECDONDS_PER_CM = 1e6/34321;

const trigger = new Gpio(23, {mode: Gpio.OUTPUT});
const echo = new Gpio(24, {mode: Gpio.INPUT, alert: true});

trigger.digitalWrite(0); // Make sure trigger is low

const watchHCSR04 = () => {
let startTick;

echo.on('alert', (level, tick) => {
if (level === 1) {

startTick = tick;
} else {

const endTick = tick;
const diff = (endTick >> 0) - (startTick >> 0); // Unsigned 32 bit arithmetic
console.log(diff / 2 / MICROSECDONDS_PER_CM);

}
});

(continues on next page)

854 Chapter 9. Play with Nodejs

SunFounder raphael-kit

(continued from previous page)

};

watchHCSR04();

// Trigger a distance measurement once per second
setInterval(() => {

trigger.trigger(10, 1); // Set trigger high for 10 microseconds
}, 1000);

Code Explanation

The trigger function can be used to generate a pulse on a GPIO and alerts can be used to determine the time of
a GPIO state change accurate to a few microseconds.

These two features can be combined to measure distance using a HC-SR04 ultrasonic sensor.

setInterval(() => {
trigger.trigger(10, 1); // Set trigger high for 10 microseconds

}, 1000);

This is to periodically send out a 10us ultrasonic pulse.

const watchHCSR04 = () => {

echo.on('alert', (level, tick) => {
if (level === 1) {

startTick = tick;
} else {

const endTick = tick;
const diff = (endTick >> 0) - (startTick >> 0); // Unsigned 32 bit arithmetic
console.log(diff / 2 / MICROSECDONDS_PER_CM);

}
});

};

This function sets an alert that will record the time between sending the pulse (level is 1) and receiving the echo (level
is 0). By multiplying the time difference by the speed of sound (and dividing by 2), you can get the distance to the
obstacle ahead.

9.5. Input 855

SunFounder raphael-kit

Phenomenon Picture

2.2.9 MPU6050 Module

Introduction

The MPU-6050 is the world’s first and only 6-axis motion tracking devices (3-axis Gyroscope and 3-axis Accelerom-
eter) designed for smartphones, tablets and wearable sensors that have these features, including the low power, low
cost, and high performance requirements.

In this experiment, use I2C to obtain the values of the three-axis acceleration sensor and three-axis gyroscope for
MPU6050 and display them on the screen.

856 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Components

• GPIO Extension Board

• Breadboard

• MPU6050 Module

9.5. Input 857

SunFounder raphael-kit

Schematic Diagram

MPU6050 communicates with the microcontroller through the I2C bus interface. The SDA1 and SCL1 need to be
connected to the corresponding pin.

858 Chapter 9. Play with Nodejs

SunFounder raphael-kit

Experimental Procedures

Step 1: Build the circuit.

Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this step.)

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Install dependencies.

sudo npm install mpu6050-gyro

Step 4: Run the code.

sudo node mpu6050_module.js

With the code run, the angle of deflection of the x-axis and y-axis and the acceleration, angular velocity on each axis
read by MPU6050 will be printed on the screen after being calculating.

Code

var gyro = require("mpu6050-gyro");

var address = 0x68; //MPU6050 address
var bus = 1; //i2c bus used
var gyro = new gyro(bus,address);

async function update_telemetry() {

var gyro_xyz = gyro.get_gyro_xyz();
var accel_xyz = gyro.get_accel_xyz();

var gyro_data = {
gyro_xyz: gyro_xyz,
accel_xyz: accel_xyz,
rollpitch: gyro.get_roll_pitch(gyro_xyz, accel_xyz)

}

(continues on next page)

9.5. Input 859

SunFounder raphael-kit

(continued from previous page)

console.log(gyro_data);

setTimeout(update_telemetry, 500);
}

if (gyro) {
update_telemetry();

}

Code Explanation

var gyro = require("mpu6050-gyro");

var address = 0x68; //MPU6050 address
var bus = 1; //i2c bus used
var gyro = new gyro(bus,address);

Import the mpu6050-gyro module, determine the MPU6050 address and the bus creation object gyro, It is conve-
nient to call the encapsulated functions in the module.

Note: About this module, please refer to: https://www.npmjs.com/package/mpu6050-gyro

var gyro_xyz = gyro.get_gyro_xyz();
var accel_xyz = gyro.get_accel_xyz();

var gyro_data = {
gyro_xyz: gyro_xyz,
accel_xyz: accel_xyz,
rollpitch: gyro.get_roll_pitch(gyro_xyz, accel_xyz)

}

console.log(gyro_data);

setTimeout(update_telemetry, 500);

The module encapsulates three available functions:

gyro.get_gyro_xyz(): Returns JSON object with raw x,y,z datas from gyroscope.

gyro.get_accel_xyz(): Returns JSON object with raw x,y,z datas from accelerometer.

gyro.get_roll_pitch(gyro_xyz, accel_xyz): Returns JSON object with roll and pitch in degrees.

860 Chapter 9. Play with Nodejs

https://www.npmjs.com/package/mpu6050-gyro

SunFounder raphael-kit

Phenomenon Picture

9.6 Extension

9.6.1 3.1.1 Photograph Module

Introduction

In this kit, equipped with a camera module, let’s try to take a picture with Raspberry Pi.

9.6. Extension 861

SunFounder raphael-kit

Components

For more information on how to connect the camera module and its configuration, please refer to Camera Module.

Experimental Procedures

Step 1: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 2: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/nodejs/

Step 3: Run the code.

sudo node camera.js

After the code runs, the camera will take a photo. Now you can see the photo named test.jpg in current directory.

Code

const exec = require('child_process').exec;

exec('libcamera-still -o test.jpg');

Code Explanation

const exec = require('child_process').exec;

Import the child_process module, which allows nodejs to perform various operations on child processes, includ-
ing creating child processes to directly execute system commands.

862 Chapter 9. Play with Nodejs

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

Note: About this module, please refer to: https://nodejs.org/api/child_process.html

exec('libcamera-still -o test.jpg');

After enabling the Camera function, you can directly use the command libcamera-still -o test.jpg
to capture photos in the terminal. We can also use the method provided by the child_process module
child_process.exec(cmd, [options] , callback) to create child processes to run system com-
mands.

By adding loop and delay functions, we can also achieve the effect of timing photos or time-lapse video.

9.6. Extension 863

https://nodejs.org/api/child_process.html

SunFounder raphael-kit

864 Chapter 9. Play with Nodejs

CHAPTER

TEN

PLAY WITH SCRATCH

Scratch is a block-based visual programming language and website targeted primarily at children 8-16 as an educa-
tional tool for coding. Users of the site can create projects on the web using a block-like interface. The service is
developed by the MIT Media Lab, has been translated into 70+ languages, and is used in most parts of the world.

Here you will learn to use Scratch 3 in Raspberry Pi and access Raspberry Pi GPIO with Scratch 3, which is not
possible with online Scratch.

Note: When programming with Scratch 3, you may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Of course, if you don’t have a screen, you can also access the Raspberry Pi desktop remotely, for a
detailed tutorial please refer to Remote Desktop.

10.1 Quick Guide on Scratch

Note: When programming with Scratch 3, you may need a screen for a better experience, refer to: Connect your
Raspberry Pi. Of course, if you don’t have a screen, you can also access the Raspberry Pi desktop remotely, for a
detailed tutorial please refer to Remote Desktop.

In addition, Scratch 3 needs at least 1GB of RAM to run, and we recommend a Raspberry Pi 4 with at least 2GB
RAM. While you can run Scratch 3 on a Raspberry Pi 2, 3, 3B+, or a Raspberry 4 with 1GB RAM, performance on
these models is reduced, and depending on what other software you run at the same time, Scratch 3 may fail to start
due to lack of memory.

10.1.1 Install Scratch 3

When installing Raspberry Pi OS (Installing the OS), you have to choose the version with desktop, either with desktop
only or with desktop and recommended software.

If you install the version with the recommended software, you can see Scratch 3 in the system menu at Programming.

If you installed the desktop-only version, you will need to install Scratch 3 manually, as described below.

Open up the menu, click on Preferences -> Recommended Software.

865

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3

SunFounder raphael-kit

Find scratch 3 and check it, then click Apply and finally wait for the installation to finish.

866 Chapter 10. Play with Scratch

SunFounder raphael-kit

Once the installation is complete, you should see it on the Programming in the system menu.

10.1. Quick Guide on Scratch 867

SunFounder raphael-kit

10.1.2 About Scratch 3’s Interface

Scratch 3 is designed to be fun, educational, and easy to learn. It has tools for creating interactive sto-
ries, games, art, simulations, and more, using block-based programming. Scratch also has its own paint edi-
tor and sound editor built-in.

The top of scratch 3 has some basic options, the first one from left to right is the language option, you can choose
different languages for programming. The second one is the File option, you can create new files, read local files and
save current files with this option. The third is the Edit option, which allows you to resume some deletion operations
and enable the acceleration mode (in which the sprite movement becomes particularly fast). The fourth is the Tutorials
option, which allows you to view tutorials for some projects. The fifth is the file naming option, where you can rename
the project.

Code

It has three main sections: a stage area, block palette, and coding area. Programming by clicking and dragging the
block on the block palette to the coding area, and finally your programming results will be displayed on the stage area.

868 Chapter 10. Play with Scratch

SunFounder raphael-kit

Here is the sprites area of Scratch 3. Above the area are the basic parameters of the sprites, you can add sprites that
come with Scratch 3 or upload local sprites.

Here is the Scratch 3 backdrop area, mainly to add a suitable backdrop for your stage, you can add the backdrop that
comes with Scratch 3 or upload a local one.

10.1. Quick Guide on Scratch 869

SunFounder raphael-kit

This is a Add Extension button.

In Scratch 3, we can add all kinds of useful extensions, here we take Video Sensing as an example and click on it.

870 Chapter 10. Play with Scratch

SunFounder raphael-kit

You will see it on the block palette and you can use the functions associated with this extension. If you have a camera
connected, you will see the camera screen on the stage area.

10.1. Quick Guide on Scratch 871

SunFounder raphael-kit

Costumes

Click on the Costumes option in the upper left corner to enter the costumes palette. Different costumes allow the
sprites to have different static movements, and when these static movements are stitched together, they form a coherent
dynamic movement.

872 Chapter 10. Play with Scratch

SunFounder raphael-kit

Sounds

You may need to use some music clips to make your experiments more interesting. Click on the Sounds option in the
upper left corner and you can edit the current sound or select/upload a new one.

10.1. Quick Guide on Scratch 873

SunFounder raphael-kit

10.2 Projects

In this chapter, you will play with Scratch 3 through 18 projects.

If you are a user who has just used Scratch 3, we recommend that you try the projects in order so that you can quickly
get started with Scratch 3.

Note: Before trying the projects, you should have downloaded the relevant materials and code files. Open a Terminal
and enter the following command to download them from github.

git clone https://github.com/sunfounder/raphael-kit.git

874 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2.1 1.1 Wand

Today we will use LED, Raspberry Pi and Scratch to make a fun game. When we wave the magic wand, the LED will
blink.

10.2. Projects 875

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED

876 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Add GPIO Extension

Click on the Add Extension button in the bottom left cornerthen add the Raspberry Pi GPIO, an extension we use
for all of our Scratch projects.

10.2. Projects 877

SunFounder raphael-kit

878 Chapter 10. Play with Scratch

SunFounder raphael-kit

Load the Code and See What Happens

Load the code file from your computer(home/pi/raphael-kit/scratch/code) to Scratch 3.

After clicking the magic wand in the stage area, you will see the LED will blink for two seconds.

10.2. Projects 879

SunFounder raphael-kit

Tips on Sprite

Click on the Upload Sprite.

880 Chapter 10. Play with Scratch

SunFounder raphael-kit

Upload Wand.png from the home/pi/raphael-kit/scratch/picture path to Scratch 3.

Finally, delete the Sprite1.

10.2. Projects 881

SunFounder raphael-kit

Tips on Codes

This is an event block whose trigger condition is to click on the green flag on the stage. A trigger event is required at
the beginning of all codes, and you can select other trigger events in the Events category of the block palette.

For example, we can now change the trigger event to a click on the sprite.

This is a block with a set number of cycles. When we fill in the number 10, the events in the block will be executed 10

882 Chapter 10. Play with Scratch

SunFounder raphael-kit

times.

This block is used to pause the program for a period of time in seconds.

Since the BCM naming method is used in Scratch, this code is setting GPIO17(BCM17) as 0V (low level). Since the
cathode of LED is connected to GPIO17, thus the LED will light up. On the contrary, if you set GPIO(BCM17) as
high, the LED will turn off.

10.2.2 1.2 Colorful Balls

Clicking on different colored balls on the stage area will cause the RGB LED to light up in different colors.

10.2. Projects 883

SunFounder raphael-kit

884 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• RGB LED

10.2. Projects 885

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

After loading the code file (1.2_colorful_balls.sb3) into Scratch 3, the RGB LED will light up yellow, blue,
red, green or purple respectively when you click on the corresponding ball.

Tips on Sprites

Delete the default sprite, then choose the Ball sprite.

And duplicate it 5 times.

886 Chapter 10. Play with Scratch

SunFounder raphael-kit

Choose different costumes for these 5 Ball sprites and move them to the corresponding positions.

Tips on Codes

Before understanding the code, we need to understand the RGB color model.

The RGB color model is an additive color model in which red, green, and blue light are added together in various ways
to reproduce a broad array of colors.

Additive color mixing: adding red to green yields yellow; adding green to blue yields cyan; adding blue to red yields
magenta; adding all three primary colors together yields white.

10.2. Projects 887

https://en.wikipedia.org/wiki/RGB_color_model

SunFounder raphael-kit

An RGB LED is a combination of 3 LEDs(red LED, green LED, blue LED) in just one package, you can produce
almost any color by combining those three colors. It has 4 pins, one of which is GND, and the other 3 pins control 3
LEDs respectively.

So the code to make the RGB LED light yellow is as follows.

888 Chapter 10. Play with Scratch

SunFounder raphael-kit

When the Ball sprite (yellow ball) is clicked, we set gpio17 high (red LED on), gpio18 high (green LED on) and
gpio27 low (blue LED off) so that the RGB LED will light yellow.

You can Write codes to other sprites in the same way to make the RGB LEDs light up in the corresponding colors.

10.2.3 1.3 Tumbler

In this project, we will make a tilt switch controlled tumbler toy.

10.2. Projects 889

SunFounder raphael-kit

890 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Tilt Switch

10.2. Projects 891

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.3_tumbler.sb3) to Scratch 3.

When the tilt switch is placed upright, the tumbler is standing. If you tilt it, the tumbler will also fall. Place it upright
again, and the tumbler will stand up again.

892 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Sprite

Select Sprite1 and click Costumes in the top left corner; upload tumbler1.png and tumbler2.png from the home/
pi/raphael-kit/scratch/picture path via the Upload Costume button; delete the default 2 costumes, and
rename the sprite to tumbler.

Tips on Codes

When the green flag is clicked, the initial state of gpio17 is set to low.

10.2. Projects 893

SunFounder raphael-kit

When pin17 is low (the tilt switch is placed upright), we switch the tumbler sprite’s costume to tumbler1 (upright
state).

When pin17 is high (tilt switch is tilted), switch the tumbler sprite’s costume to tumbler2 (tilt state).

10.2.4 1.4 Hare

Today, we will use Button, Raspberry Pi and Scratch to create a hare with various changes!

When we press the first button, the hare in the stage area will change its body color; when we press the second button,
the hare will change its body size; when we press the third button, the hare will take a step forward.

894 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2. Projects 895

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Button

896 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.4_hare.sb3) into Scratch 3.

Now you can try to press each of the 3 buttons to see how the Hare on the stage will change.

Tips on Sprite

Click the Choose a Sprite button in the lower right corner of the sprite area, enter Hare in the search box, and then
click to add it.

10.2. Projects 897

SunFounder raphael-kit

Delete Sprite1.

Tips on Codes

This is an event block that is triggered when the level of GPIO17 is high, which means that the button is pressed at
that moment.

898 Chapter 10. Play with Scratch

SunFounder raphael-kit

This is a block to change the color of Hare, the range of the value is 0 ~ 199, beyond 199 will change from 0 again.

This is a block used to change the size for sprite, the higher the value, the larger the sprite.

Note: The sprite is also not infinitely large, and its maximum size is related to the original image size.

This is a block that switches sprite costumes, and when Hare’s costume keeps switching, it does a series of coherent
actions. For example, in this project, make Hare take a step forward.

10.2.5 1.5 Wake up the Owl

Today we are going to play a game of waking up the owl.

When someone approaches the PIR sensor module, the owl will wake up from sleep.

10.2. Projects 899

SunFounder raphael-kit

900 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• PIR Motion Sensor Module

10.2. Projects 901

SunFounder raphael-kit

Build the Circuit

There are two potentiometers on the PIR module: one is to adjust sensitivity and the other is to adjust the detection
distance. To make the PIR module work better, you You need to turn both of them counterclockwise to the end.

902 Chapter 10. Play with Scratch

SunFounder raphael-kit

Load the Code and See What Happens

Load the code file (1.5_wake_up_the_owl.sb3) to Scratch 3.

When you approach the PIR sensor module, you will see the owl on the stage area open its wings and wake up, and
when you leave, the owl will go back to sleep again.

Tips on Sprite

Select Sprite1 and click Costumes in the top left corner; upload owl1.png and owl2.png from the home/pi/
raphael-kit/scratch/picture path via the Upload Costume button; delete the default 2 costumes, and
rename the sprite to owl.

10.2. Projects 903

SunFounder raphael-kit

Tips on Codes

When the green flag is clicked, the initial state of gpio17 is set to low.

904 Chapter 10. Play with Scratch

SunFounder raphael-kit

When pin17 is low (no one is approaching), switch the costume of the owl sprite to owl1 (sleeping state).

When pin17 is high (someone is approaching), we switch the costume of owl sprite to owl2 (wake up state).

10.2.6 1.6 Vanishing Vase

Now let’s do a little magic trick, do nothing, and then the vase somehow disappears.

10.2. Projects 905

SunFounder raphael-kit

906 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Reed Switch Module

10.2. Projects 907

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.6_vanishing_vase.sb3) to Scratch 3.

When you use a magnet near the reed switch module, a vase will appear on the stage, take away the magnet and the
vase will disappear.

908 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Sprite

Select Sprite1 and click Costumes in the top left corner; upload desk1.png and desk2.png from the home/pi/
raphael-kit/scratch/picture path via the Upload Costume button; delete the default 2 costumes, and
rename the sprite to desk.

Tips on Codes

When the magnet is close to the reed switch module, gpio17 is low, and the costume of the desk sprite is switched to
desk1 (the vase is still on the desk).

10.2. Projects 909

SunFounder raphael-kit

After taking away the magnet, gpio17 is high, at this time the costume of the desk sprite is switched to desk2 (only
one desk).

10.2.7 1.7 Piggy Bank

In this project we will use Speed sensor module, Raspberry Pi and Scratch to make a Piggy Bank.

Place a piece of paper in the middle of the Speed sensor module and you will see a coin fall into the Piggy Bank on
the stage.

910 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Speed Sensor Module

10.2. Projects 911

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.7_piggy_bank.sb3) to Scratch 3.

The 2 terminals in the middle of the speed sensor, one is to send light, one is to receive light; if you put a piece of
paper in the middle to isolate the light transmission, thus the speed sensor will output a high level. At this point Scratch
receives the high level, then switch the costumes of the sprite and you will see a coin fall into the Piggy Bank on the
stage.

Tips on Sprite

Select Sprite1 and click Costumes in the top left corner; upload piggybank1.png, piggybank2.png and piggy-
bank3.png from the home/pi/raphael-kit/scratch/picture path via the Upload Costume button; delete
the default 2 costumes, and rename the sprite to piggybank.

912 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Codes

When pin17 is low (no coins are put in), switch the sprite’s costume to piggybank1.

10.2. Projects 913

SunFounder raphael-kit

When pin17 is high (a coin is put in), switch the sprite’s costume to piggybank2, and after 0.5s switch to piggybank3,
so that we can see a coin falling into the Piggy Bank on the stage.

10.2.8 1.8 Service Bell

Today, we will use Micro Switch, speakers, audio amplifier module, Raspberry Pi and scratch to make a service bell.

Tap the Micro Switch to make the service bell sound.

914 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2. Projects 915

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Micro Switch

• Capacitor

• Audio Module and Speaker

916 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.8_service_bell.sb3) to Scratch 3.

Press the micro switch and the service bell will ring once.

Note: If your Raspberry Pi is connected to a screen with speakers, it may cause no sound from this external speaker,
please refer to Change Audio Output for the solution.

Also, if you want to adjust the volume level, please refer to Adjust Volume.

Tips on Sprite

Select Sprite1 and click Costumes in the top left corner; upload bell1.png and bell2.png from the home/pi/
raphael-kit/scratch/picture path via the Upload Costume button; delete the default 2 costumes, and
rename the sprite to bell.

10.2. Projects 917

SunFounder raphael-kit

In the Sounds option, upload the bell.wav from the home/pi/raphael-kit/scratch/sound path to
Scratch 3.

918 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Codes

When pin17 is high (the Micro switch is not pressed), switch the costume of the bell sprite to bell1 (released state).

10.2. Projects 919

SunFounder raphael-kit

Press the micro switch, gpio17 is low level. At this time, switch the costume of the bell sprite to bell2 (press state),
and play a sound effect through the speaker.

10.2.9 1.9 Drumming

In this project, we play the drum with a touch switch module.

920 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Touch Switch Module

• Audio Module and Speaker

10.2. Projects 921

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.9_drumming.sb3) to Scratch 3.

When you tap on the touch switch module, you will hear the sound of drums coming from the speaker.

Tips on Sprite

Delete the default sprite, then find the Drum-snare sprite and add it, and change the size to 200.

922 Chapter 10. Play with Scratch

SunFounder raphael-kit

Scratch has a Music extension to play instruments and drums, now add it via the Add Extension button.

10.2. Projects 923

SunFounder raphael-kit

Tips on Codes

When pin17 is low (not tapped on the touch switch module), switch the Drum-snare sprite costume to drum-snare-a.

When you tap on the touch switch module, gpio17 is low. At this point, the Drum-snare sprite costume is switched
to drum-snare-b and the drum sound played on speaker.

924 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2.10 1.10 Drumming in the Air

Today we will learn to use the Raspberry Pi camera, Scratch has an expansion module for Video Sensing which turns
on the camera in Scratch and detects the movement of objects on the stage.

10.2. Projects 925

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Audio Module and Speaker

• Camera Module

926 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Note: You need to refer to Camera Module to connect the camera module and enable the Raspberry Pi camera
interface.

10.2. Projects 927

SunFounder raphael-kit

Load the Code and See What Happens

Load the code file (1.10_drumming_in_the_air.sb3) to Scratch 3.

Click on the green flag to start the game, place your hand in front of the camera module and Scratch 3 will make
instrument sounds when your hand is shown touching an instrument on the stage area.

Note: For a better gaming experience, please try to play on a white background to avoid interference with the camera
from other objects.

Tips on Sprite

First delete the default sprites, then find the Drum-cymbal sprite and Drum-snare sprite and add them.

Click the Add Extension icon at the bottom left of Scratch and add the Music and Video Sensing extensions to it.

928 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2. Projects 929

SunFounder raphael-kit

Tips on Codes

When the green flag is clicked, it keeps cycling to detect if our hand is moving over the Drum-cymbal sprite by more
than 60. if so, it is assumed that our hand touched the sprite, at which point the Open Hi-Hat instrument sound is
played.

Note: The movement magnitude refers to the change in coordinates on the stage area, which is calculated with respect
to the amount of change in the coordinates of the detection target on the stage area.

930 Chapter 10. Play with Scratch

SunFounder raphael-kit

Similarly, if the movement of our hand on the Drum-snare sprite is detected to be greater than 60, our hand is
considered to have touched the sprite and the sound of the snare drum instrument is played.

10.2.11 1.11 Repelling locusts

Today, we will use IR obstacle avoidance module, Raspberry Pi and Scratch to make a locust repelling game.

Place your hand in front of the obstacle avoidance module and you will see the locusts being chased away.

10.2. Projects 931

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Obstacle Avoidance Module

932 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.11_repelling_locusts.sb3) to Scratch 3.

Place your hand in front of the obstacle avoidance module and you will see the locusts being chased away.

10.2. Projects 933

SunFounder raphael-kit

Tips on Sprite

Select Sprite1 and click Costumes in the top left corner; upload locust1.png, locust1.png and locust3.png from
the home/pi/raphael-kit/scratch/picture path via the Upload Costume button; delete the default 2
costumes, and rename the sprite to locust.

Tips on Codes

When the IR obstacle avoidance module does not detect an obstacle (no hand is placed in front of the probe), the gpio
is high.

934 Chapter 10. Play with Scratch

SunFounder raphael-kit

When gpio17 is high (no obstacles go in front of the IR obstacle avoidance module), switch the locust sprite’s costume
to locust1 (locusts gather in wheat). Conversely when gpio17 is low (put your hand in front of the IR obstacle avoidance
module), switch the locust sprite’s costume to locust2 (expel locusts), then switch the locust sprite’s costume to locust3
(locusts are completely expelled) after 0.5s.

10.2.12 1.12 Water Lamp

Today, we will use LED Bar Graph, Raspberry Pi and scratch to make a Water Lamp.

The LED Bar Graph will light up in order with the direction of the arrows on the stage.

10.2. Projects 935

SunFounder raphael-kit

936 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• LED Bar Graph

10.2. Projects 937

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.12_water_lamp.sb3) from your computer to Scratch 3.

By clicking on Arrow1, the LEDs on the LED bar are lit in sequence from the left to the right (one at a time) and then
off. Click Arrow2 and the LEDs light up in the opposite order.

Tips on Sprites

Delete the default sprite and choose the Arrow1 sprite.

Here we will need 2 Arrow1 sprites, which can be done with the duplicate button.

938 Chapter 10. Play with Scratch

SunFounder raphael-kit

Click on the Arrow 2 sprite and change the direction of the arrow by selecting costume 2.

Now let’s make a variable.

10.2. Projects 939

SunFounder raphael-kit

Name it as num.

Follow the same method to create a list called led.

940 Chapter 10. Play with Scratch

SunFounder raphael-kit

After adding, you should see the num variable and the led list on the stage area.

Click + to add 10 list items and enter the pin numbers in order (17,18,27,22,23,24,25,2,3,8).

10.2. Projects 941

SunFounder raphael-kit

Tips on Codes

This is an event block that is triggered when the current sprite is clicked.

The initial value of the num variable determines which LED is lit first.

Set the pin corresponding to num in the led list to low to light the LED, and then set the pin corresponding to num-1
to high to turn off the previous LED.

10.2.13 1.13 Doorbell

Today we will make a doorbell, click the button3 sprite on the stage, the buzzer will sound; click again, the buzzer will
stop sounding.

942 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2. Projects 943

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• Transistor

944 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.13_doorbell.sb3) to Scratch 3.

Click on the green flag on the stage. When we click on the Button 3 sprite, it will turn blue and then the buzzer will
sound; when we click again, the Button3 sprite reverts to gray and the buzzer stops sounding.

Tips on Sprite

Delete the default sprite, then choose the Button 3 sprite.

Then set the size to 200.

10.2. Projects 945

SunFounder raphael-kit

Tips on Codes

This block allows you to switch the sprite’s costume.

Set gpio17 to low to make the buzzer sound; set it to high and the buzzer will not sound.

The status switch is used here, and we will use a flowchart to help you understand the whole code.

When the green flag is clicked, the status will be set to 0 first, and wait for the sprite to be clicked at this time; if
button3 sprite is clicked, it will switch to costume as button-b costume (blue) and the status will be set to 1. When
the main program receives the status as 1, it will let the buzzer sound at 0.1s interval. If button3 is clicked again, it
will switch to button-a costume (gray) and status will be set to 0 again.

946 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2.14 1.14 123 Wooden Man

Today, we are going to play a game of 123 wooden man.

Click on the green flag to start the game, hold down the right arrow key on the keyboard to make the sprite go right.
If the green light is on, the sprite can move; but when the red LED is on, you have to stop the sprite from moving;
otherwise the buzzer will keep ringing.

10.2. Projects 947

SunFounder raphael-kit

948 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Buzzer

• LED

• Transistor

10.2. Projects 949

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.14_123_wooden_man.sb3) to Scratch 3.

When the green LED is on, you can use the right arrow key to control Avery to walk to the right; when the red LED
is on, if you continue to let Avery move to the right, then an alarm will sound.

Tips on Sprite

Delete the default sprite, then choose the Avery Walking sprite.

950 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Codes

Initialize all pins to high.

10.2. Projects 951

SunFounder raphael-kit

When the game starts, assign the status variable to 1, indicating that the Avery Walking sprite is movable, and then set
gpio18 to low, which lights up the green LED for 5s.

Set gpio18 to high, then set gpio27 to low, which means turn off the green LED and light up the yellow LED for 0.5s.

Assign the status variable to 0, which means the Avery Walking sprite is not moving; then set gpio27 to low and gpio17
to high, which turns off the yellow LED and then lights up the red LED for 3s. Finally, set gpio17 to high to turn off
the red LED.

952 Chapter 10. Play with Scratch

SunFounder raphael-kit

When we press the right arrow key on the keyboard, we need to switch the Avery Walking sprite to the next costume
so that we can see Avery walking to the right. Then we need to determine the value of the status variable. If it is 0,
it means that the Avery Walking sprite is not moving at this moment, and the buzzer will sound to warn you that you
cannot press the right arrow key again.

10.2.15 1.15 Inflating the Balloon

Here, we will play a game of ballooning.

By toggling Slide to the left to start to inflate the balloon, at this time the balloon will get bigger and bigger. If the
balloon is too large will blow up; if the balloon is too small, it will not float into the air. You need to judge when to
toggle the switch to the right to stop pumping.

10.2. Projects 953

SunFounder raphael-kit

954 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Slide Switch

• Capacitor

10.2. Projects 955

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.15_inflating_the_balloon.sb3) to Scratch 3.

By toggling Slider to the left to start to inflate the balloon, at this time the balloon will get bigger and bigger. If the
balloon is too large will blow up; if the balloon is too small, it will not float into the air. You need to judge when to
toggle the switch to the right to stop pumping.

Tips on Sprite

Delete the previous Sprite1 sprite, then add the Balloon1 sprite.

956 Chapter 10. Play with Scratch

SunFounder raphael-kit

A balloon explosion sound effect is used in this project, so let’s see how it was added.

Click the Sound option at the top, then click Upload Sound to upload boom.wav from the home/pi/
raphael-kit/scratch/sound path to Scratch 3.

10.2. Projects 957

SunFounder raphael-kit

958 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Codes

This is an event block, and the trigger condition is that gpio17 is high, that is, the switch is toggled to the left.

Set the size threshold of the Ballon1 sprite to 120

Move the coordinates of the Balloon1 sprite to (0,0), which is the center of the stage area.

Set the size of the Balloon1 sprite to 50 and show it in the stage area.

10.2. Projects 959

SunFounder raphael-kit

Set up a loop to inflate the balloon, this loop stops when the slider switch is toggled to the right.

Within this loop, the balloon size is increased by 1 every 0.1s, and if it is larger than maxSize, the balloon will burst,
at which point the boom sound is made and the code is exited.

960 Chapter 10. Play with Scratch

SunFounder raphael-kit

After the last loop exits (Slider toggles to the right), determine the position of the Balloon1 sprite based on its size. If
the size of the Balloon1 sprite is greater than 90, lift off (move the coordinates to (0, 90), otherwise land (move the
coordinates to (0, -149).

10.2.16 1.16 Fishing Game

Today, we will make a fishing game.

Observe the water on the stage area and if you find a fish on the hook, remember to tilt the switch to catch it.

10.2. Projects 961

SunFounder raphael-kit

962 Chapter 10. Play with Scratch

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Resistor

• Tilt Switch

10.2. Projects 963

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.16_fishing_game.sb3) to Scratch 3.

You will see a child is fishing, after a period of time when the water surface movement, you can shake the tilt switch
to catch the fish. Remember, if you do not keep shaking the switch, the fish will escape.

964 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Sprite

Select Sprite1, click Costumes in the upper left corner; upload 6 pictures (fish1 to fish6) from the home/pi/
raphael-kit/scratch/picture path via the Upload Costume button; delete the default 2 costumes and
rename the sprite to fish.

Tips on Codes

Set the initial costume of the fish sprite to fish1 and assign the value of fish_status to 0 (when fish_status=0, it means
the fish is not hooked, when fish_status=1, it means the fish is hooked).

10.2. Projects 965

SunFounder raphael-kit

When fish_status=0, i.e. the fish is not hooked yet, start the fishing game. Wait for a random time from 0 to 10
seconds, then assign fish_status to 1, which means the fish is hooked, and broadcast a message “The fish is biting”.

Note: The purpose of the broadcast block is to send a message to other code blocks or other sprites. The message can
be either a request or a command.

966 Chapter 10. Play with Scratch

SunFounder raphael-kit

When the message “The fish is biting” is received, let the fish sprite switch between the fish2 and fish3 costumes so
that we can see the fish biting.

After switching the costume, if the game is not over, it means that the fish is off the hook and gone, so that we will
switch the fish sprite costume to fish6 (fish slipped state).

10.2. Projects 967

SunFounder raphael-kit

When gpio17 is high (the tilt switch is tilted), it means the fishing rod is pulled up. At this time, the value of fish_status
is judged. If it is 1, it means that the fishing rod was pulled up when the fish was hooked and switched to fish4 costume
(fish was caught). On the contrary, it means that the fishing rod pulled up when the fish is not hooked is switched to
the fish5 costume (nothing is caught).

10.2.17 1.17 Rotating fan

In this project, we will make a spinning star sprite and fan.

968 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2. Projects 969

SunFounder raphael-kit

Required Components

• GPIO Extension Board

• Breadboard

• Power Supply Module

• L293D

• DC Motor

970 Chapter 10. Play with Scratch

SunFounder raphael-kit

Build the Circuit

Load the Code and See What Happens

Load the code file (1.17_rotating_fan.sb3) to Scratch 3.

After clicking the green flag on the stage, click on the star spritethen it and the motor will rotate clockwise; you can
change the direction of rotation by clicking on the two arrow sprites. When you click on the star sprite again, it and
the motor will stop rotating.

Tips on Sprite

Delete the default sprite, then select the Star sprite and the Arrow1 sprite, and copy Arrow1 once.

10.2. Projects 971

SunFounder raphael-kit

In the Costumes option, change the Arrow2 sprite to a different direction costume.

Adjust the size and position of the sprite appropriately.

972 Chapter 10. Play with Scratch

SunFounder raphael-kit

Tips on Codes

Flow Chart

10.2. Projects 973

SunFounder raphael-kit

In this code, you will see 2 pink blocks, turn left and turn right, which are our custom blocks (functions).

How to Make a Block?

Let’s learn how to make a block (function). The block (function) can be used to simplify your program, especially
if you perform the same operation multiple times. Putting these operations into a newly declared block can be very
convenient for you.

First find My Blocks in the block palette, then select Make a Block.

974 Chapter 10. Play with Scratch

SunFounder raphael-kit

Enter the name of the new block.

10.2. Projects 975

SunFounder raphael-kit

After writing the function of the new block in the coding area, save it and then you can find the block in the blocks
palette.

976 Chapter 10. Play with Scratch

SunFounder raphael-kit

turn left

This is the code inside the turn left block to make the motor rotate counterclockwise.

turn right

This is the code inside the turn right block to make the motor rotate clockwise.

10.2. Projects 977

SunFounder raphael-kit

10.2.18 1.18 Eating Banana Game

Description

Scratch has a Video Sensing expansion module, which can turn on the camera in Scratch and detect the movement of
objects on the camera screen.

Today, we will use the camera to make a eating banana game. In the stipulated time, help the Monkey eat more
bananas.

To play the game against a white background, click on the green flag to start. Move colored objects in front of the
camera to control the Monkey sprite.

978 Chapter 10. Play with Scratch

SunFounder raphael-kit

10.2. Projects 979

SunFounder raphael-kit

Required Components

• Camera Module

Build the Circuit

Note: You need to refer to Camera Module to connect the camera module and enable the Raspberry Pi camera
interface.

980 Chapter 10. Play with Scratch

SunFounder raphael-kit

Load the Code and See What Happens

Load the code file (1.18_eating_banana_game.sb3) to Scratch 3.

Tips on Codes

Arrange monkeys and bananas

First, we delete the original sprite, then add Monkey sprite and Bananas sprite, and change their sizes to 50.

Let Bananas appear randomly.

Bananas disappears after encountering the Monkey, which means it was eaten by the Monkey and reappears randomly.

10.2. Projects 981

SunFounder raphael-kit

Let the Monkey appear in the center of the stage and initialize the camera data (transparency is set to 20).

982 Chapter 10. Play with Scratch

SunFounder raphael-kit

If the camera detects an object moving, let the Monkey move towards the object.

10.2. Projects 983

SunFounder raphael-kit

Now, click on the green flag at the top of the stage area to start the game.

Let the Monkey eat bananas, it is very hungry! Try to play this game on a white background to prevent interference
from other objects.

Challenge

I believe that you will be smart enough to program and implement this game soon. Next, we will add some challenges
to enrich our game content.

· When Monkey eats banana, we add 1 to the score. Within 30s, see who has the highest score!

· When Monkey eats a banana, it emits a suitable sound effect.

984 Chapter 10. Play with Scratch

CHAPTER

ELEVEN

APPENDIX

11.1 Install the Libraries

11.1.1 For C User

BCM2835

This is a C library for Raspberry Pi (RPi). It provides access to GPIO and other IO functions on the Broadcom BCM
2835 chip, as used in the RaspberryPi, allowing access to the GPIO pins on the 26 pin IDE plug on the RPi board so
you can control and interface with various external devices.

It provides functions for reading digital inputs and setting digital outputs, using SPI and I2C, and for accessing the
system timers. Pin event detection is supported by polling (interrupts are not supported).

Works on all versions upt to and including RPI 4. Works with all versions of Debian up to and including Debian Buster
10.

Open a terminal and download the bcm2835 library to the /home/pi path.

cd /home/pi
wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.69.tar.gz

Unzip the package.

tar zxvf bcm2835-1.69.tar.gz

Install the BCM2835 library with the following commands.

cd bcm2835-1.69
./configure
make
sudo make check
sudo make install

• Reference: bcm2835

985

http://www.airspayce.com/mikem/bcm2835/

SunFounder raphael-kit

11.1.2 For Python User

Luma.LED_Matrix

This is a Python 3 library interfacing LED matrix displays with the MAX7219 driver (using SPI), WS2812 (NeoPixels,
inc Pimoroni Unicorn pHat/Hat and Unicorn Hat HD) and APA102 (DotStar) on the Raspberry Pi and other Linux-
based single board computers.

Install the dependencies for library first with:

sudo usermod -a -G spi,gpio pi
sudo apt install build-essential python3-dev python3-pip libfreetype6-dev libjpeg-dev
→˓libopenjp2-7 libtiff5

Note: warning

The default pip and setuptools bundled with apt on Raspbian are really old, and can cause components to not be
installed properly. Make sure they are up to date by upgrading them first:

sudo -H pip install --upgrade --ignore-installed pip setuptools

Proceed to install latest version of the luma.led_matrix library directly from PyPI:

sudo python3 -m pip install --upgrade luma.led_matrix

• Reference: Luma.LED_Matrix

Spidev and MFRC522

The spidev library helps handle interactions with the SPI and is a key component to this tutorial as we need it for
the Raspberry Pi to interact with the RFID RC522.

Run the following command to install spidev to your Raspberry Pi via pip.

sudo pip3 install spidev

Continue to install the MFRC522 library.

sudo pip3 install mfrc522

The MFRC522 library contains two files: MFRC522.py and SimpleMFRC522.py.

Among them MFRC522.py is the realization of RFID RC522 interface, this library handles all the heavy work of
communicating with RFID through Pi’s SPI interface.

SimpleMFRC522.py takes the MFRC522.py file and greatly simplifies it by allowing you to deal with only a few
functions instead of a few functions.

986 Chapter 11. Appendix

https://luma-led-matrix.readthedocs.io/en/latest/install.html

SunFounder raphael-kit

11.2 I2C Configuration

Step 1: Enable the I2C port of your Raspberry Pi (If you have enabled it, skip this; if you do not know whether you
have done that or not, please continue).

sudo raspi-config

3 Interfacing options

P5 I2C

11.2. I2C Configuration 987

SunFounder raphael-kit

<Yes>, then <Ok> -> <Finish>

Step 2: Check whether the i2c modules are loaded and active.

lsmod | grep i2c

Then the following codes will appear (the number may be different), if it does not appear, please reboot the Raspberry
Pi with sudo reboot.

i2c_dev 6276 0
i2c_bcm2708 4121 0

Step 3: Install i2c-tools.

sudo apt-get install i2c-tools

Step 4: Check the address of the I2C device.

i2cdetect -y 1 # For Raspberry Pi 2 and higher version

i2cdetect -y 0 # For Raspberry Pi 1

pi@raspberrypi ~ $ i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If there is an I2C device connected, the address of the device will be displayed.

Step 5:

988 Chapter 11. Appendix

SunFounder raphael-kit

For C language users: Install libi2c-dev.

sudo apt-get install libi2c-dev

For Python users: Install smbus for I2C.

sudo pip3 install smbus2

11.3 SPI Configuration

Step 1: Enable the SPI port of your Raspberry Pi (If you have enabled it, skip this; if you do not know whether you
have done that or not, please continue).

sudo raspi-config

3 Interfacing options

P4 SPI

11.3. SPI Configuration 989

SunFounder raphael-kit

<YES>, then click <OK> and <Finish>.

Step 2: Check that the spi modules are loaded and active.

990 Chapter 11. Appendix

SunFounder raphael-kit

ls /dev/sp*

Then the following codes will appear (the number may be different).

/dev/spidev0.0 /dev/spidev0.1

Step 3: Install Python module SPI-Py.

git clone https://github.com/lthiery/SPI-Py.git
cd SPI-Py
sudo python3 setup.py install

Note: This step is for python users, if you use C language, please skip.

11.4 Audio Configuration

11.4.1 Change Audio Output

If your speaker have no sound, it may be because the Raspberry Pi has selected the wrong audio output, the correct
one should be Headphones. You can change the audio output by following these steps.

Enter the following command.

sudo raspi-config

Select 1 System Options.

11.4. Audio Configuration 991

SunFounder raphael-kit

Then S2 Audio.

992 Chapter 11. Appendix

SunFounder raphael-kit

After selecting 1 Headphones, press Enter to confirm and select Finish to exit.

11.4. Audio Configuration 993

SunFounder raphael-kit

11.4.2 Adjust Volume

If you feel that the volume of the speakers is too low, you can adjust it by entering the following command.

alsamixer

994 Chapter 11. Appendix

SunFounder raphael-kit

The default page is shown below.

Press F6 to select Headphones mode.

11.4. Audio Configuration 995

SunFounder raphael-kit

Then press the arrow keys up and down to adjust the volume level, and press ESC to exit.

996 Chapter 11. Appendix

SunFounder raphael-kit

11.5 Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

11.5.1 VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

Step 2

Choose 3 Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

11.5. Remote Desktop 997

SunFounder raphael-kit

Step 3

P3 VNC

Step 4

Select Yes -> OK -> Finish to exit the configuration.

Login to VNC

Step 1

You need to download and install the VNC Viewer on personal computer. After the installation is done, open it.

998 Chapter 11. Appendix

https://www.realvnc.com/en/connect/download/viewer/

SunFounder raphael-kit

Step 2

Then select “New connection”.

Step 3

Input IP address of Raspberry Pi and any Name.

11.5. Remote Desktop 999

SunFounder raphael-kit

Step 4

Double click the connection just created:

1000 Chapter 11. Appendix

SunFounder raphael-kit

Step 5

Enter Username (pi) and Password (raspberry by default).

11.5. Remote Desktop 1001

SunFounder raphael-kit

Step 6

Now you can see the desktop of the Raspberry Pi:

1002 Chapter 11. Appendix

SunFounder raphael-kit

That’s the end of the VNC part.

11.5.2 XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

11.5. Remote Desktop 1003

SunFounder raphael-kit

Step 4

Finished the installation, you should login to your Raspberry Pi by using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that comes with Windows. If you are a Mac user,
you can download and use Microsoft Remote Desktop from the APP Store, and there is not much difference between
the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop Connection, and input the IP address of Raspberry Pi,
then click on “Connect”.

Step 3

1004 Chapter 11. Appendix

SunFounder raphael-kit

Then the xrdp login page pops out. Please type in your username and password. After that, please click “OK”. At the
first time you log in, your username is “pi” and the password is “raspberry”.

Step 4

Here, you successfully login to RPi by using the remote desktop.

11.5. Remote Desktop 1005

SunFounder raphael-kit

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study, investigation, enjoyment, or other non-commercial or nonprofit purposes,
under the related regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

11.6 Filezilla Software

The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a
server to a client on a computer network.

Filezilla is an open source software that not only supports FTP, but also FTP over TLS (FTPS) and SFTP. We can
use Filezilla to upload local files (such as pictures and audio, etc.) to the Raspberry Pi, or download files from the
Raspberry Pi to the local.

Step 1: Download Filezilla.

1006 Chapter 11. Appendix

SunFounder raphael-kit

Download the client from Filezilla’s official website, Filezilla has a very good tutorial, please refer to: Documentation
- Filezilla.

Step 2: Connect to Raspberry Pi

After a quick install open it up and now connect it to an FTP server. It has 3 ways to connect, here we use the Quick
Connect bar. Enter the hostname/IP, username, password and port (22), then click Quick Connect or press Enter
to connect to the server.

Note: Quick Connect is a good way to test your login information. If you want to create a permanent entry, you can
select File-> Copy Current Connection to Site Manager after a successful Quick Connect, enter the name and click
OK. Next time you will be able to connect by selecting the previously saved site inside File -> Site Manager.

Step 3: Upload/download files.

You can upload local files to Raspberry Pi by dragging and dropping them, or download the files inside Raspberry Pi
files locally.

11.6. Filezilla Software 1007

https://filezilla-project.org/
https://wiki.filezilla-project.org/Documentation
https://wiki.filezilla-project.org/Documentation
https://wiki.filezilla-project.org/Using#Connecting_to_an_FTP_server

SunFounder raphael-kit

11.7 How to use Blynk on mobile device?

Note: As datastreams can only be created in Blynk on the web, you will need to reference different projects to create
datastreams on the web, then follow the tutorial below to create widgets in Blynk on your mobile device.

1. Open Google Play or APP Store on your mobile device and search for “Blynk IoT” (not Blynk(legacy)) to
download.

2. After opening the APP, login in, this account should be the same as the account used on the web client.

3. Then go to Dashboard (if you don’t have one, create one) and you will see that the Dashboard for mobile and
web are independent of each other.

1008 Chapter 11. Appendix

SunFounder raphael-kit

4. Click Edit Icon.

5. Click on the blank area.

6. Choose the same widget as on the web page, such as select a Joystick widget.

7. Now you will see a Joystick widget appear in the blank area, click on it.

8. Joystick Settings will appear, select the Xvalue and Yvalue datastreams you just set in the web page. Note that
each widget corresponds to a different datastream in each project.

11.7. How to use Blynk on mobile device? 1009

SunFounder raphael-kit

9. Go back to the Dashboard page and you can operate the Joystick when you want.

1010 Chapter 11. Appendix

CHAPTER

TWELVE

FAQ

12.1 C code is not working?

• Check your wiring for problems.

• Check if the code is reporting errors, if so, refer to: Install and Check the WiringPi.

• Has the code been compiled before running.

• If all the above 3 conditions are OK, it may be that your wiringPi version (2.50) is not compatible with your
Raspberry Pi 4B and above, refer to Install and Check the WiringPi to manually upgrade it to version 2.52.

1011

SunFounder raphael-kit

1012 Chapter 12. FAQ

CHAPTER

THIRTEEN

THANK YOU

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the
users who have been following and supporting us. Your valuable suggestions to us are our motivation to provide better
products!

Particular Thanks

• Len Davisson

• Kalen Daniel

• Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

Note: After submitting the questionnaire, please go back to the top to view the results.

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,
under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

1013

	About Video Course
	Components List and Introduction
	Components List
	Components Introductions

	Install and Setup Raspberry Pi OS
	What Do We Need?
	Installing the OS
	Set up Your Raspberry Pi

	GPIO Extension Board
	Download the Code
	Play with Python
	Check the RPi.GPIO
	Output
	Input
	Audiovisual
	IoT
	Extension

	Play with C
	Install and Check the WiringPi
	Output
	Input
	Extension

	Play with Processing
	What is Processing？
	Install the Processing
	Install Hardware I/O
	Projects

	Play with Nodejs
	What is Nodejs？
	Install or update nodejs and npm
	Check the pigpio
	Output
	Input
	Extension

	Play with Scratch
	Quick Guide on Scratch
	Projects

	Appendix
	Install the Libraries
	I2C Configuration
	SPI Configuration
	Audio Configuration
	Remote Desktop
	Filezilla Software
	How to use Blynk on mobile device?

	FAQ
	C code is not working?

	Thank You

