

Buy

SN54LVC540A, SN74LVC540A

SCAS297N - JANUARY 1993-REVISED JUNE 2014

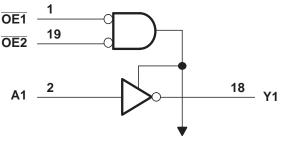
SNx4LVC540A Octal Buffers/Drivers with 3-State Outputs

1 Features

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 5.3 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) • > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Ioff Supports Live Insertion, Partial Power Down Mode, and Back Drive Protection
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)
- On Products Compliant to MIL-PRF-38535, • All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

Simplified Schematic 4

2 Applications


- Handset: Smartphone
- Network Switch
- Health and Fitness: Wearables

3 Description

The SN54LVC540A octal buffer/driver is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC540A octal buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

Device information 4							
PACKAGE	BODY SIZE (NOM)						
SIOC (20)	12.80 mm × 7.50 mm						
SO (20)	12.60 mm × 5.30 mm						
SSOP (20)	7.50 mm × 5.30 mm						
TVSOP (20)	5.00 mm × 4.40 mm						
TSSOP (20)	6.50 mm × 4.40 mm						
	PACKAGE SIOC (20) SO (20) SSOP (20) TVSOP (20)						

(1) For all available packages, see the orderable addendum at the end of the data sheet.

To Seven Other Channels

Device Information⁽¹⁾

2

Table of Contents

1	Feat	ures 1
2	Арр	lications1
3	Des	cription1
4	Sim	plified Schematic1
5		ision History2
6		Configuration and Functions 3
7	Spe	cifications
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics 6
	7.6	Switching Characteristics, SN54LVC540A 6
	7.7	Switching Characteristics, SN74LVC540A 6
	7.8	Operating Characteristics7
	7.9	Typical Characteristics 7
8	Para	meter Measurement Information
9	Deta	iled Description

	9.1	Overview	9
	9.2	Functional Block Diagram	9
	9.3	Feature Description	9
	9.4	Device Functional Modes	9
10	Арр	lication and Implementation	10
	10.1	Application Information	10
	10.2	Typical Application	10
11	Pow	ver Supply Recommendations	11
12	Lay	out	11
	12.1	Layout Guidelines	11
	12.2	Layout Example	11
13	Dev	ice and Documentation Support	12
	13.1	Related Links	12
	13.2	Trademarks	12
	13.3	Electrostatic Discharge Caution	12
	13.4	Glossary	12
14		hanical, Packaging, and Orderable	
	Info	mation	12

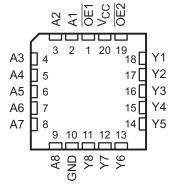
5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision M (May 2005) to Revision N	Page
•	Updated document to new data sheet standards	1
•	Deleted Ordering Information table.	1
•	Added Military Disclaimer to Features list.	1
•	Added Device Information table.	1
	Added Handling Ratings table.	
•	Changed MAX ambient temperature to 125°C	5
	Added Thermal Information table.	
•	Added Typical Characteristics.	7
•	Added Device and Documentation Support.	12
•	Added ESD warning.	12
•	Added Mechanical, Packaging, and Orderable Information.	12

www.ti.com

SN54LVC540A, SN74LVC540A SCAS297N – JANUARY 1993 – REVISED JUNE 2014


www.ti.com

6 Pin Configuration and Functions

SN54LVC540A . . . J OR W PACKAGE SN74LVC540A . . . DB, DGV, DW, NS, OR PW PACKAGE (TOP VIEW)

	`	,	
OE1	1	\cup_{20}] v _{cc}
A1 [2	19] <u>OE2</u>
A2 [3	18] Y1
A3 [4	17] Y2
A4 [5	16] Y3
A5 [15] Y4
A6 [7	14] Y5
A7 [8	13] Y6
A8 [9	12] Y7
GND [10	11] Y8

SN54LVC540A...FK PACKAGE (TOP VIEW)

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
OE1	1	I	Output enable
A1	2	I	A1 input
A2	3	I	A2 input
A3	4	I	A3 input
A4	5	I	A4 input
A5	6	I	A5 input
A6	7	I	A6 input
A7	8	I	A7 input
A8	9	I	A8 input
GND	10	-	Ground pin
Y8	11	0	Y8 output
Y7	12	0	Y7 output
Y6	13	0	Y6 output
Y5	14	0	Y5 output
Y4	15	0	Y4 output
Y3	16	0	Y3 output
Y2	17	0	Y2 output
Y1	18	0	Y1 output
OE2	19	I	Output enable
V _{CC}	20	-	Power pin

SCAS297N - JANUARY 1993 - REVISED JUNE 2014

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the	high-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the	high or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	orage temperature range		150	°C
	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	N/
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			SN54LV	SN54LVC540A		SN74LVC540A	
			MIN	MAX	MIN	MAX	UNIT
	Currely valtage	Operating	2	3.6	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		1.5		v
		V _{CC} = 1.65 V to 1.95 V			$0.65 \times V_{CC}$		
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$			1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		2		
V _{IL}		V_{CC} = 1.65 V to 1.95 V				$0.35 \times V_{CC}$	
	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$				0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		0.8	
VI	Input voltage		0	5.5	0	5.5	V
	Output voltage	High or low state	0	V _{CC}	0	V _{CC}	V
Vo		3-state	0	5.5	0	5.5	v
		V _{CC} = 1.65 V				-4	
	Lich lovel output ourrent	$V_{CC} = 2.3 V$				-8	mA
I _{OH}	High-level output current	$V_{CC} = 2.7 V$		-12		-12	ШA
		$V_{CC} = 3 V$		-24		-24	
		V _{CC} = 1.65 V				4	
	Low lovel output ourrent	$V_{CC} = 2.3 V$				8	~ ^
I _{OL}	Low-level output current	$V_{CC} = 2.7 V$		12		12	mA
L		$V_{CC} = 3 V$		24		24	
T _A	Operating free-air temperature	· · · ·	-55	125	-40	125	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

		SN74LVC540A					
	THERMAL METRIC ⁽¹⁾	DB	DGV	DW	NS	PW	UNIT
				20 PINS			
R_{\thetaJA}	Junction-to-ambient thermal resistance	94.5	114.7	88.3	74.7	102.5	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	56.2	29.8	51.1	40.5	35.9	
$R_{\theta JB}$	Junction-to-board thermal resistance	49.7	56.2	50.9	42.3	53.5	00AM
Ψ_{JT}	Junction-to-top characterization parameter	18.1	0.8	20.0	14.3	2.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	49.2	55.5	50.5	41.9	52.9	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	-	-	-	-	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN54LVC540A, SN74LVC540A

SCAS297N-JANUARY 1993-REVISED JUNE 2014

www.ti.com

STRUMENTS

EXAS

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

			SN54LVC540A			SN74	LVC540	4	
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNI
	1 100	1.65 V to 3.6 V				$V_{CC} - 0.2$			
	I _{OH} = -100 μA	2.7 V to 3.6 V	$V_{CC} - 0.2$						
	$I_{OH} = -4 \text{ mA}$	1.65 V				1.2			
V _{OH}	$I_{OH} = -8 \text{ mA}$	2.3 V				1.7			V
	10	2.7 V	2.2			2.2			
	$I_{OH} = -12 \text{ mA}$	3 V	2.4			2.4			
	$I_{OH} = -24 \text{ mA}$	3 V	2.2			2.2			
	1 100	1.65 V to 3.6 V						0.2	
	I _{OL} = 100 μA	2.7 V to 3.6 V			0.2				
M	I _{OL} = 4 mA	1.65 V						0.45	V
V _{OL}	I _{OL} = 8 mA	2.3 V						0.7	v
	I _{OL} = 12 mA	2.7 V			0.4			0.4	
	I _{OL} = 24 mA	3 V			0.55			0.55	
l _l	V ₁ = 0 to 5.5 V	3.6 V			±5			±5	μA
I _{off}	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0						±10	μA
I _{OZ}	$V_0 = 0 \text{ to } 5.5 \text{ V}$	3.6 V			±15			±10	μA
	$V_{I} = V_{CC}$ or GND	0.01/			10			10	
I _{CC}	$I_{\rm O} = 0$ 3.6 V \leq V _I \leq 5.5 V ⁽²⁾	3.6 V			10			10	μA
ΔI _{CC}	One input at V _{CC} $-$ 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500			500	μA
Ci	$V_{I} = V_{CC}$ or GND	3.3 V		4			4		pF
Co	$V_{O} = V_{CC}$ or GND	3.3 V		5.5			5.5		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C. (2) This applies in the disabled state only.

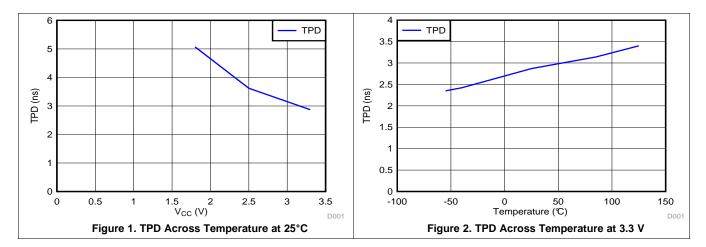
7.6 Switching Characteristics, SN54LVC540A

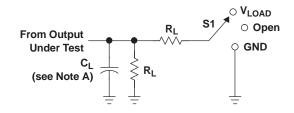
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

			;				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	
t _{pd}	A	Y		7.1	1	5.3	ns
t _{en}	OE	Y		8	1	6.6	ns
t _{dis}	OE	Y		8.2	1	7.4	ns

7.7 Switching Characteristics, SN74LVC540A

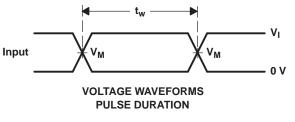
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

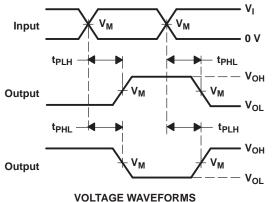

			SN74LVC540A										
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		$V_{CC} = 2.7 V$		V _{CC} = 3.3 V ± 0.3 V		UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{pd}	А	Y	1	16.4	1	7.8	1	7.1	1.4	5.3	ns		
t _{en}	OE	Y	1	16.5	1	10.5	1	8	1.1	6.6	ns		
t _{dis}	OE	Y	1	15.9	1	9	1	8.2	1.8	7.4	ns		
t _{sk(o)}										1	ns		


7.8 Operating Characteristics

$T_A = 2$	25°C							
	PARAMETER		TEST	V _{CC} = 1.8 V	$V_{CC} = 2.5 V$	V _{CC} = 3.3 V	UNIT	
	FARAMETER		CONDITIONS	TYP	ТҮР	ТҮР	UNIT	
C	Power dissipation capacitance per	Outputs enabled	f = 10 MHz	63	56	31	рF	
C _{pd}	^C _{pd} buffer/driver	Outputs disabled		3	3	3	- pr	

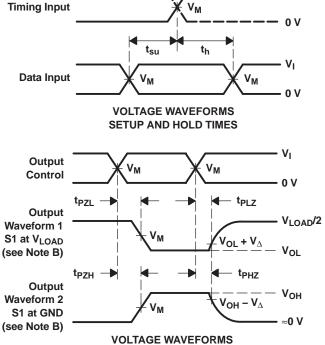
7.9 Typical Characteristics


Parameter Measurement Information 8



LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND


	INF	PUTS			•	-	
V _{CC}	VI	t _r /t _f	VM	V _{LOAD}	CL	RL	V_{Δ}
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. CL includes probe and jig capacitance.

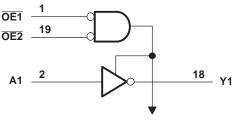
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

STRUMENTS

VI

XAS


Detailed Description 9

9.1 Overview

These devices are ideal for driving bus lines or buffer memory address registers. These devices feature inputs and outputs on opposite sides of the package that facilitate printed circuit board layout. The 3-state control gate is a 2-input AND gate with active-low inputs so that, if either output-enable (OE1 or OE2) input is high, all outputs are in the high-impedance state. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. These devices are fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current

backflow through the devices when they are powered down. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

9.2 Functional Block Diagram

To Seven Other Channels

Figure 4. Logic Diagram (Positive Logic)

9.3 Feature Description

- Wide operating voltage range
 - Operates from 1.65 V to 3.6 V
- Allows down voltage translation
- Inputs accept voltages to 5.5 V
- Ioff Feature
 - Allows voltages on the inputs and outputs when V_{CC} is 0 V

9.4 Device Functional Modes

Table 1. Function Table

	INPUTS		OUTPUT
OE1	OE2	А	Y
L	L	L	Н
L	L	Н	L
н	Х	х	Z
х	Н	х	Z

10 Application and Implementation

10.1 Application Information

The SN74LVC540A is a high drive CMOS device that can be used for a multitude of bus interface type applications where the data needs to be retained or latched . It can produce 24 mA of drive current at 3.3 V making it ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

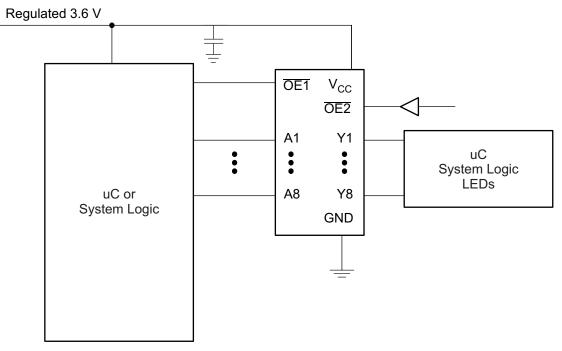
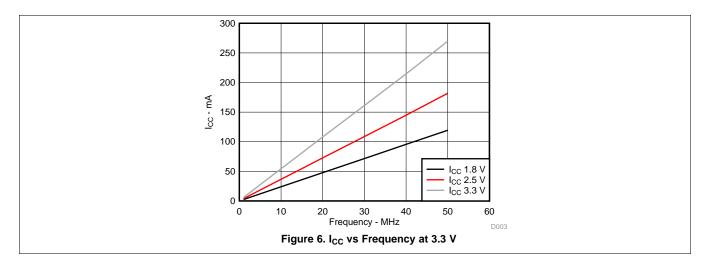


Figure 5. Typical Application Diagram

10.2.1 Design Requirements


This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

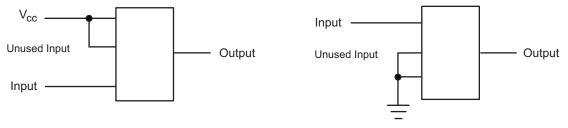
10.2.2 Detailed Design Procedure

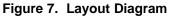
- 1. Recommended Input Conditions
 - Rise time and fall time specs: See ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
 - Specified high and low levels: See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC} .
- 2. Recommend Output Conditions
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

Typical Application (continued) 10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.


Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. It is generally OK to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the IO's so they also cannot float when disabled.

12.2 Layout Example

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54LVC540A	Click here	Click here	Click here	Click here	Click here
SN74LVC540A	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LVC540ADBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540ADBRE4	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540ADGVR	ACTIVE	TVSOP	DGV	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540ADW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC540A	Samples
SN74LVC540ADWG4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC540A	Samples
SN74LVC540ADWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC540A	Samples
SN74LVC540ANSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC540A	Samples
SN74LVC540APW	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540APWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540APWRE4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540APWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples
SN74LVC540APWT	ACTIVE	TSSOP	PW	20	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC540A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

10-Dec-2020

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

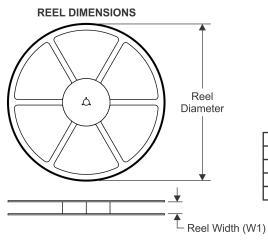
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

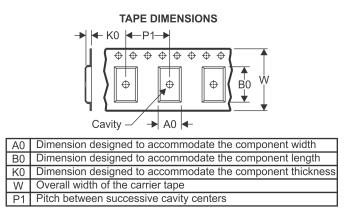
OTHER QUALIFIED VERSIONS OF SN74LVC540A :

Automotive: SN74LVC540A-Q1

Enhanced Product: SN74LVC540A-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

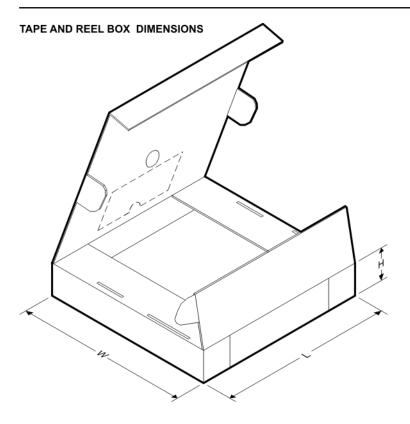

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC540ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVC540ADGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC540ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LVC540ANSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LVC540APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74LVC540APWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

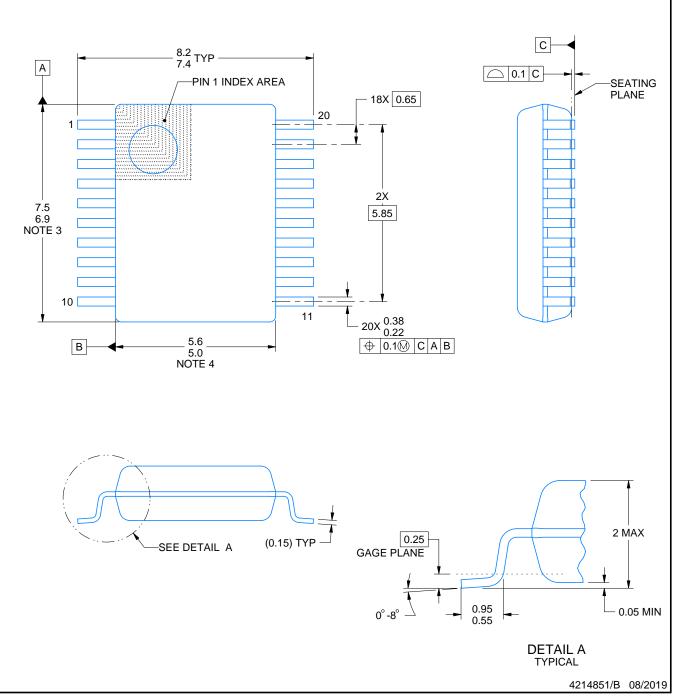
www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC540ADBR	SSOP	DB	20	2000	853.0	449.0	35.0
SN74LVC540ADGVR	TVSOP	DGV	20	2000	853.0	449.0	35.0
SN74LVC540ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVC540ANSR	SO	NS	20	2000	367.0	367.0	45.0
SN74LVC540APWR	TSSOP	PW	20	2000	853.0	449.0	35.0
SN74LVC540APWT	TSSOP	PW	20	250	853.0	449.0	35.0


DB0020A

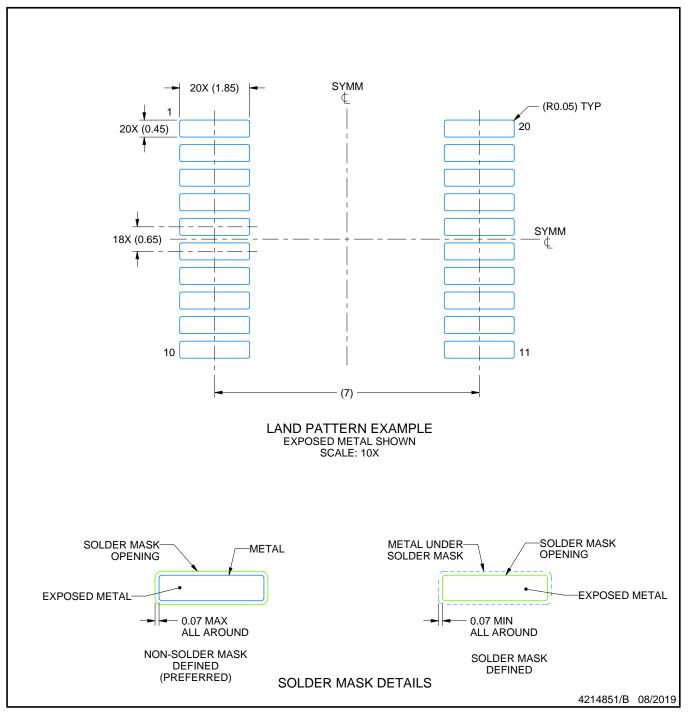
PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0020A

EXAMPLE BOARD LAYOUT

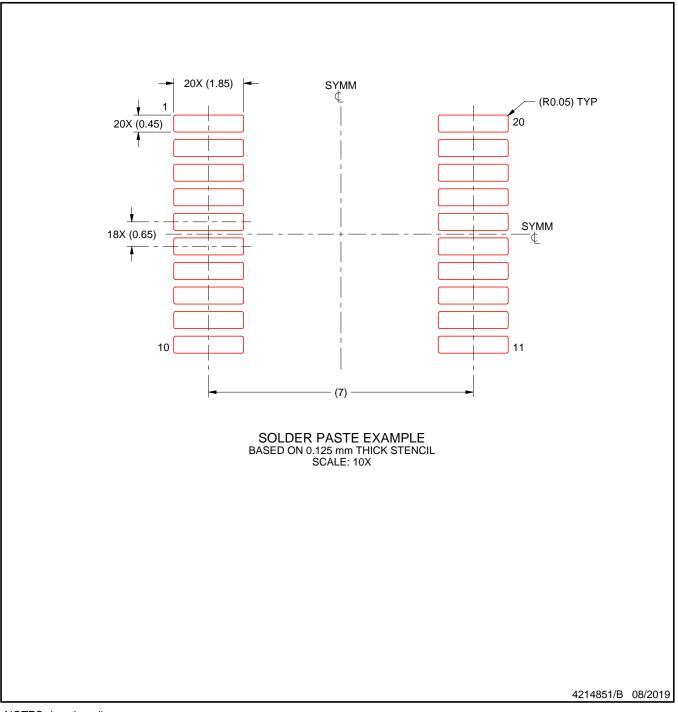
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0020A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

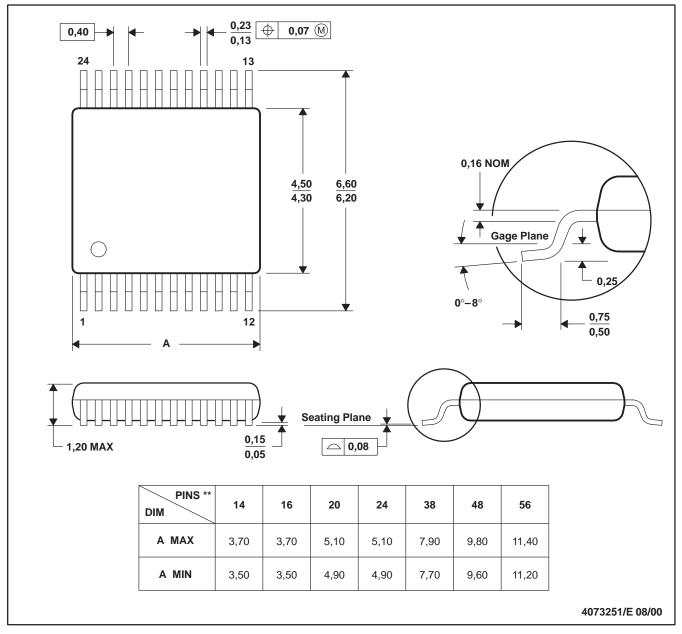
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

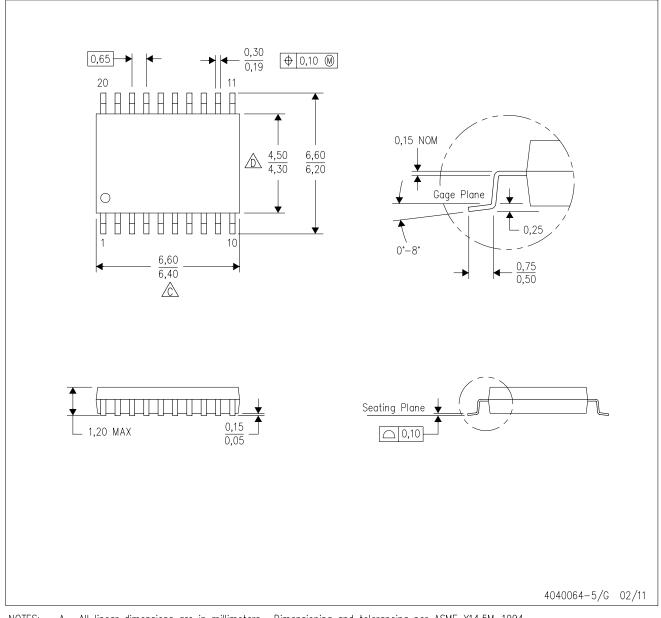
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

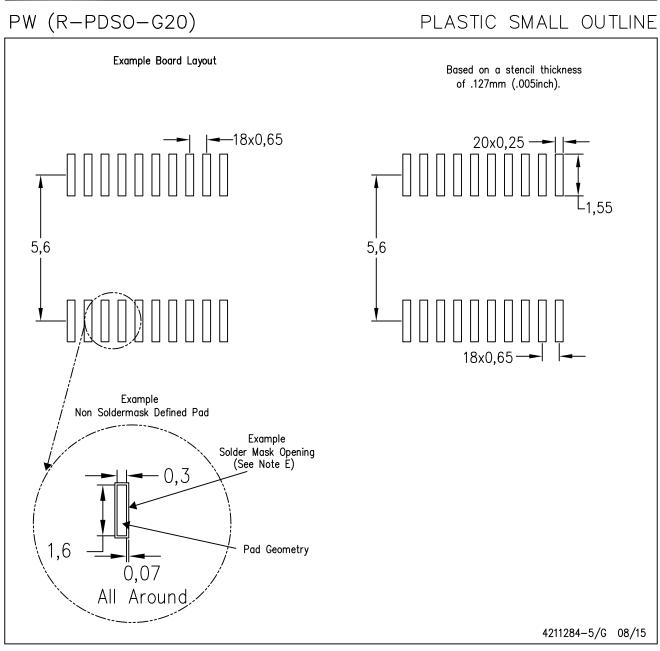
14/16/20/56 Pins – MO-194

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

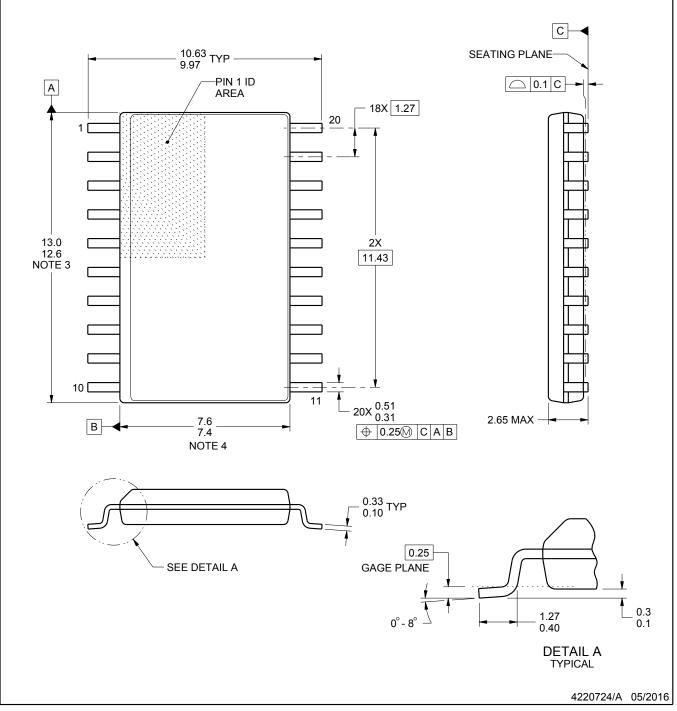
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

DW0020A

EXAMPLE BOARD LAYOUT

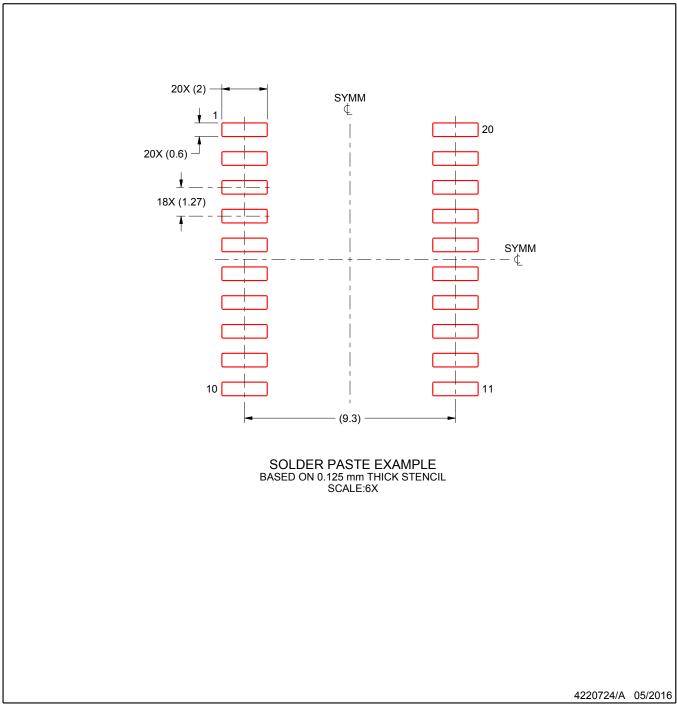
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated