Datasheet

CONBNC002 BNC Jack PCB Through-Hole Connector

The CONBNC002 is a BNC right-angle panelmount jack PCB through-hole connector designed for reflow-solder mounting directly to a printed circuit board. The CONBNC002 combines superior performance, compact size, and a convenient bayonet-style (push-twist) mating interface to provide a reliable, easy-to-use connector. Additionally, all Linx connectors meet RoHS and REACH lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

Features

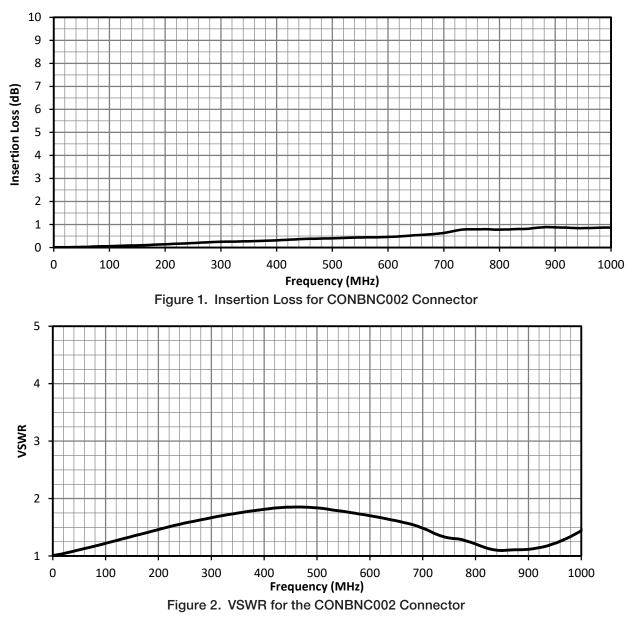
- BNC jack (female socket) connection
 - Gold plated brass center contact
 - Bayonet-style (push-twist) connection
- Direct PCB attachment
- Reflow- or hand-solder assembly
- Isolated ground

Applications

- Audio/Video
- Broadcasting
- Test Equipment
- Surveillance Systems
- Ethernet
- Industrial, Commercial, Enterprise

Ordering Information

Part Number	Description
CONBNC002	BNC jack (female socket) right-angle PCB through-hole connector


Available from Linx Technologies and select distributors and representatives.

Performance

Table 1 shows the electrical specifications, insertion loss and VSWR values for the CONBNC002 connector across the operating frequency range.

Table 1. Electrical Specifications				
Band	Sub-1 GHz			
Frequency Range	0 Hz to 1 GHz			
Insertion Loss (dB max.)	0.89			
VSWR (max.)	1.9			
Impedance	50 Ω			

Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line (Figure 1). VSWR (Figure 2) describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency.

Parameter	Value			
Mounting Type	PCB Through-Hole			
Fastening Type	Bayonet-style Coupling (Push/Twist)			
Interface in Accordance with	MIL-STD-348B			
Weight	11.3 g (0.40 oz)			

Table 2. Mechanical Specifications

Table 3. Environmental Specifications

MIL-STD, Method, Test Condition				
Corrosion (Salt spray)	MIL-STD-202 Method 101 test condition B			
Thermal Shock	MIL-STD-202 Method 107 test condition C			
Vibration	MIL-STD-202 Method 204 test condition B			
Mechanical Shock	MIL-STD-202 Method 213 test condition B			
Moisture Resistance	MIL-STD-202 Method 106 test condition D			
Temperature Range	-60 °C to +165 °C			
Environmental Compliance	RoHS, REACH			

Product Dimensions

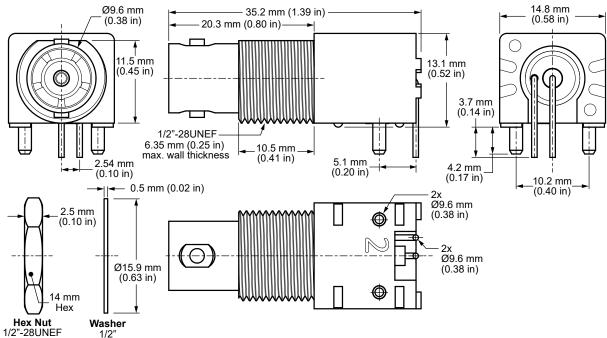


Figure 3. Product Dimensions for the CONBNC002 Connector

Parameter	Value		
Connector Part	Material	Finish	
Body	Zinc	Nickel	
Center Contact	Phosphor Bronze	Gold	
Insulator	Polypropylene (PP)	-	
Washer	Steel	Nickel	
Nut	Brass	Nickel	

Table 4. Connector Components

Recommended PCB Footprint and Mounting Dimensions

Figure 4 shows the recommended PCB footprint for the CONBNC002 connector. Figure 5 shows the recommended enclosure mounting dimensions. The maximum enclosure wall thickness should be no greater than 6.35 mm (0.25 in).

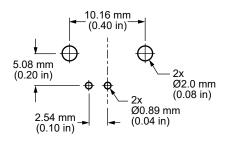


Figure 4. Recommended PCB Footprint

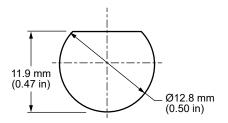


Figure 5. Recommended Mounting Dimensions

Reflow Solder Profile

Figure 6 shows the time and temperature data for reflow soldering the connector to a PCB.

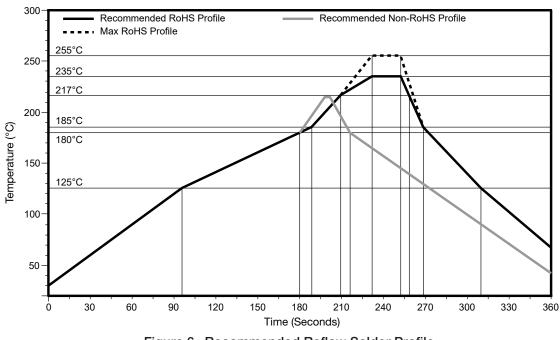


Figure 6. Recommended Reflow Solder Profile

Packaging Information

The CONBNC002 connector is packaged in a plastic bag of 100 pcs, 1000 Pcs per carton. Carton size is 325 mm x 260 mm x 260 mm (12.80 in x 10.24 in x 10.24 in) Distribution channels may offer alternative packaging options.

Datasheet

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10\left[\frac{Return \ Loss}{20}\right] + 1}{10\left[\frac{Return \ Loss}{20}\right] - 1}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{τ} and the power transmitted to the load after the insertion of the component P_{R} .

Insertion Loss (dB) =
$$10 \log_{10} \frac{P_T}{P_R}$$

Website:http://linxtechnologies.comLinx Offices:159 Ort Lane, Merlin, OR, US 97532Phone:+1 (541) 471-6256E-MAIL:info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2022 Linx Technologies

All Rights Reserved

Doc# DS22005-198CON

