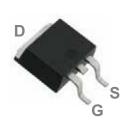
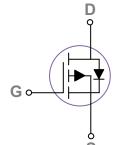


RM16P60LD

60V P-Channel MOSFETs

General Description


These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.


BVDSS	RDSON	ID
-60V	48m $Ω$	-16A

Features

- -60V, -16A, RDS(ON) = $48m\Omega@VGS = -10V$
- Improved dv/dt capability
- Fast switching
- 100% EAS Guaranteed
- Green Device Available

TO252 Pin Configuration

Applications

- Motor Drive
- Power Tools
- LED Lighting
- P/N suffix V means AEC-Q101qualified, e.g:RM16P60LDV
- P/N suffix V meansHalogen-free

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	-60	V
V _{GS}	Gate-Source Voltage	±20	V
	Drain Current – Continuous (T _C =25°C)	-16	А
ID	Drain Current – Continuous (T _C =100°C)	-10	А
I _{DM}	Drain Current – Pulsed ¹	-64	А
EAS	Single Pulse Avalanche Energy ²	51	mJ
IAS	Single Pulse Avalanche Current ²	-32	А
D	Power Dissipation (T _C =25°C)	25	W
P_D	Power Dissipation – Derate above 25°C	0.2	W/°C
T _{STG}	Storage Temperature Range	-50 to 150	°C
TJ	Operating Junction Temperature Range	-50 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction to ambient		62	°C/W
R _{eJC}	Thermal Resistance Junction to Case		5	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	BV _{DSS} Drain-Source Breakdown Voltage V _{GS} =0V , I _D =-250uA		-60			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.05		V/°C
I _{DSS}	Drain Source Leakage Current	V _{DS} =-60V , V _{GS} =0V , T _J =25°C			-1	uA
	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =125°C			-10	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA

On Characteristics

D	Static Drain-Source On-Resistance	V _{GS} =-10V , I _D =-8A		39	48	mΩ
R _{DS(ON)}	Static Drain-Source On-Nesistance	V_{GS} =-4.5 V , I_D =-4 A		53	65	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA		-1.6	-2.2	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient			5		mV/°C
gfs	Forward Transconductance	V _{DS} =-10V , I _D =-8A		10		S

Dynamic and switching Characteristics

Qg	Total Gate Charge ^{3,4}		 22.4	31	
Q _{gs}	Gate-Source Charge ^{3,4}	V_{DS} =-30V , V_{GS} =-10V , I_{D} =-8A	 4.1	6	nC
Q_{gd}	Gate-Drain Charge ^{3,4}		 5.2	7	
$T_{d(on)}$	Turn-On Delay Time ^{3, 4}		 13	25	
Tr	Rise Time ^{3,4}	V_{DD} =-30V , V_{GS} =-10V , R_{G} =6 Ω	 42.4	81	20
T _{d(off)}	Turn-Off Delay Time ^{3, 4}	I _D =-1A	 64.6	123	ns
T _f	Fall Time ^{3,4}		 16.4	31	
C _{iss}	Input Capacitance		 1250	1810	
C _{oss}	Output Capacitance	V_{DS} =-30V , V_{GS} =0V , F=1MHz	 85	125	pF
C _{rss}	Reverse Transfer Capacitance		 65	95	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, F=1MHz	 15	30	Ω

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V =V =0V Force Current			-16	Α
I _{SM}	Pulsed Source Current	V _G =V _D =0V , Force Current			-64	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V
t _{rr}	Reverse Recovery Time ³	V _G s=0V,ls=-1A , dl/dt=100A/µs				ns
Q_{rr}	Reverse Recovery Charge ³	T _J =25°C				nC

Note:

- Repetitive Rating : Pulsed width limited by maximum junction temperature.
 V_{DD}=-25V,V_{GS}=-10V,L=0.1mH,I_{AS}=-32A.,R_G=25Ω, Starting T_J=25°C
- 3. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 4. Essentially independent of operating temperature.

RATING AND CHARACTERISTICS CURVES (RM16P60LD)

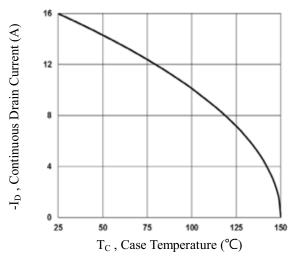


Fig.1 Continuous Drain Current vs. T_c

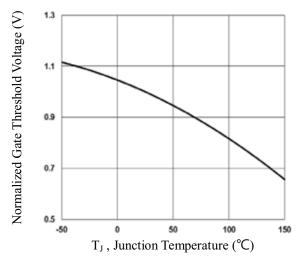


Fig.3 Normalized V_{th} vs. T_J

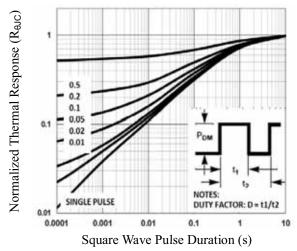


Fig.5 Normalized Transient Impedance

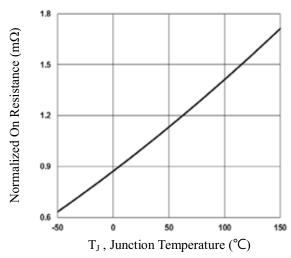


Fig.2 Normalized RDSON vs. T_J

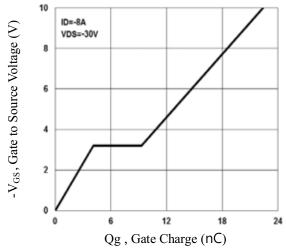


Fig.4 Gate Charge Waveform

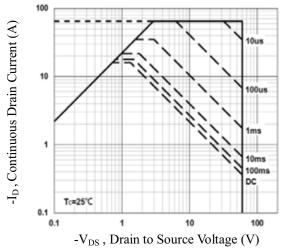
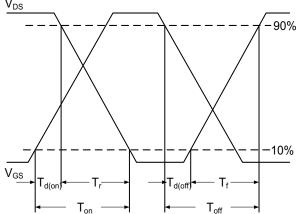



Fig.6 Maximum Safe Operation Area

$$EAS = \frac{1}{2} L \times (-I_{AS})^2 \times \frac{-BVDSS}{-BVDSS-(-VDD)}$$

$$-BV_{DSS}$$

$$-I_{AS}$$

$$-I_{AS}$$

$$-I_{Off}$$

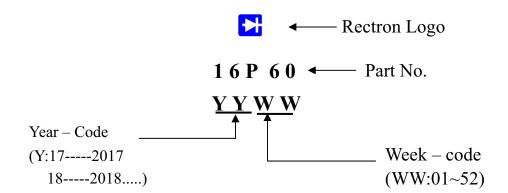
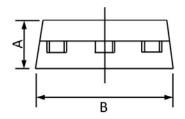
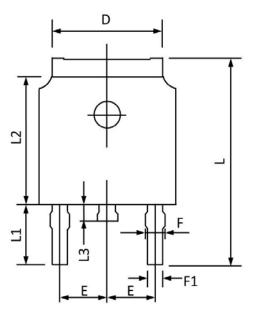
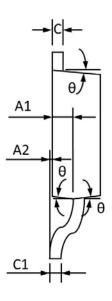

$$-V_{GS}$$

Fig.7 Switching Time Waveform

Fig.8 EAS Waveform




Marking on the body



TO252 PACKAGE INFORMATION

Symbol	Dimensions	In Millimeters	Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
A	2.20	2.40	0.087	0.094	
A1	0.91	1.11	0.036	0.044	
A2	0.00	0.15	0.000	0.006	
В	6.50	6.70	0.256	0.264	
C	0.46	0.580	0.018	0.230	
C 1	0.46	0.580	0.018	0.030	
D	5.10	5.46	0.201	0.215	
E	2.186	2.386	0.086	0.094	
F	0.74	0.94	0.029	0.037	
F1	0.660	0.860	0.026	0.034	
L	9.80	10.40	0.386	0.409	
L1	2.9	REF	0.114REF		
L2	6.00	6.20	0.236	0.244	
L3	0.60	1.00	0.024	0.039	
θ	3°	9°	3°	9°	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

