
ESP32-S2 Thing Plus Hookup Guide

Introduction
The ESP32-S2 Thing Plus is a feather form-factor development board with the improved ESP32-S2 module, from
Espressif. The new ESP32-S2 module addresses the security flaws in the original ESP32. While the ESP32-S2
does include improved security features, it lacks the Bluetooth capabilities of the original ESP32 module.

SparkFun Thing Plus - ESP32-S2 WROOM
 WRL-17743

Product Showcase: SparkFun Thing Plus ESP32-S2 WROOMProduct Showcase: SparkFun Thing Plus ESP32-S2 WROOM

https://www.sparkfun.com/
https://www.sparkfun.com/products/17743
https://www.espressif.com/
https://www.espressif.com/en/news/ESP32_FIA_Analysis
https://www.sparkfun.com/products/17743
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/17743
https://www.youtube.com/watch?v=FoEmSkyTgjg

Required Materials

To get started, users will need a few items. Now some users may have a few of these items, feel free to modify
your cart accordingly.

ESP32-S2 Thing Plus
USB 3.1 Cable A to C - 3 Foot - The USB interface serves two purposes: it powers the board and allows you
to upload programs to it. (*If your computer doesn't provide a USB-A slot, then you will need to choose an
appropriate cable or purchase an adapter as well.)
Computer with the an operating system (OS) that is compatible with all the software installation
requirements.

HEADERS BATTERIES JUMPER MODIFICATION JTAG FUNCTIONALITY

Click the buttons above to toggle the additional materials based on the options you
wish to use. Feel free to modify the items in your cart to fit your needs.

Suggested Reading

As a more professionally oriented product, we will skip over the more fundamental tutorials (i.e. Ohm's Law and
What is Electricity?). However, below are a few tutorials that may help users familiarize themselves with various
aspects of the board.

SparkFun Thing Plus - ESP32-S2 WROOM
 WRL-17743

USB 3.1 Cable A to C - 3 Foot
 CAB-14743

How to Solder: Through-Hole Soldering Serial Communication

https://www.sparkfun.com/products/17743
https://www.sparkfun.com/products/14743
https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law
https://learn.sparkfun.com/tutorials/what-is-electricity
https://www.sparkfun.com/products/17743
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/17743
https://www.sparkfun.com/products/14743
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14743
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-communication

This tutorial covers everything you need to know about
through-hole soldering.

Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

Serial Peripheral Interface (SPI)
SPI is commonly used to connect microcontrollers to
peripherals such as sensors, shift registers, and SD
cards.

Pulse Width Modulation
An introduction to the concept of Pulse Width
Modulation.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Analog vs. Digital
This tutorial covers the concept of analog and digital
signals, as they relate to electronics.

How to Work with Jumper Pads and PCB Traces
Handling PCB jumper pads and traces is an essential
skill. Learn how to cut a PCB trace, add a solder
jumper between pads to reroute connections, and
repair a trace with the green wire method if a trace is
damaged.

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/analog-vs-digital
https://learn.sparkfun.com/tutorials/how-to-work-with-jumper-pads-and-pcb-traces
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/esp32-thing-plus-hookup-guide

One of the new, advanced features of the board is that it takes advantage of the Qwiic connect system. We
recommend familiarizing yourself with the Logic Levels and I C tutorials. Click on the banner above to learn more
about Qwiic products.

Installing Arduino IDE
A step-by-step guide to installing and testing the
Arduino software on Windows, Mac, and Linux.

ESP32 Thing Plus Hookup Guide
Hookup guide for the ESP32 Thing Plus using the
ESP32 WROOM's WiFi/Bluetooth system-on-chip in
Arduino.

Installing Board Definitions in the Arduino IDE
How do I install a custom Arduino board/core? It's
easy! This tutorial will go over how to install an Arduino
board definition using the Arduino Board Manager. We
will also go over manually installing third-party cores,
such as the board definitions required for many of the
SparkFun development boards.

2

SparkFun's Qwiic Connect SystemSparkFun's Qwiic Connect System

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/esp32-thing-plus-hookup-guide
https://learn.sparkfun.com/tutorials/installing-board-definitions-in-the-arduino-ide
https://www.sparkfun.com/qwiic
https://www.youtube.com/watch?v=x0RDEHqFIF8

Hardware Overview

Board Dimensions

The board dimensions are illustrated in the drawing below. The listed measurements are in inches and the two
mounting holes are compatible with 4-40 standoff screws.

[Board dimensions (PDF)](for the ESP32-S2 Thing Plus, in inches. (Click to enlarge)

USB-C Connector

The USB connector is provided to power and program the board. For most users, it will be the primary programing
interface for the ESP32-S2.

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_dimensions.png

USB-C connector on the ESP32-S2 Thing Plus. (Click to enlarge)

TC7USB40MU USB Switch

The TC7USB40MU is used to switch the data lines for the USB-C connection, between the ESP32-S2 module's
native USB pins or its UART pins, through a CP2102 Serial-to-UART bridge. There is a jumper on the back of the
board to control the USB switch; by default, the data lines from the USB-C connector are tied to the CP2102
Serial-to-UART bridge.

Functional block diagram for the TC7USB40MU USB switch. (Click to enlarge)

CP2102 Serial-to-UART

The CP2102 allows the ESP32-S2 to communicate with a computer/host device through its USB-C connection.
This allows the board to show up as a device on the serial (or COM) port of the computer. Users will need to install
the latest drivers for the computer to recognize the board (see Software Overview section).

Power

The ESP32-S2 Thing Plus only requires 3.3V to power the board. However, the simplest method to power the
board is with the USB-C connector. There are additional power pins available on the board:

3.3V - A regulated 3.3V voltage source.
Regulated from the USB 5V power and/or battery connection.
Used to power the ESP32-S2 module and Qwiic I C bus.

USB - The voltage from the USB-C connector, usually 5V.

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_usb.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/usb_switch_func_block_diagram.png
https://learn.sparkfun.com/tutorials/1660/software-overview#CP2104

VBAT - The voltage from the JST battery connector; meant for single cell LiPo batteries.
GND - The common ground or the 0V reference for the voltage supplies.

ESP32-S2 Thing Plus power connections. (Click to enlarge)

Charging Circuit

The charging circuit utilizes the MCP73831 linear charge management controller and is powered directly from the
USB-C connector or USB . The controller is configured for a 500mA charge rate by default; there is a jumper on
the back of the boards for users to lower the charge rate to 100mA. Battery charging is indicated when the yellow,
CHG LED. If the charge controller is shutdown or charging is complete, the CHG LED will turn off. For more

information, please refer to the MCP73831 datasheet.

ESP32-S2 Module

The ESP32-S2 WROOM module from Espressif is the brains of the ESP32-S2 Thing Plus. While the new ESP32-
S2 module does include improved security features to addresses the security flaws in the original ESP32, it lacks
the Bluetooth capabilities of the original module. For more details check out the datasheets for the ESP32-S2
chipset and the ESP32-S2 WROOM module.

Xtensa® Single-Core 32-bit LX7 Microprocessor (up to 240MHz)
RISC-V ULP Coprocessor
128KB ROM and 320KB SRAM
4MB of Embedded SPI Flash Storage

Cryptographic Hardware Accelerators
AES, ECB/CBC/OFB/CFB/CTR, GCM, SHA, RSA, and ECC (Digital Signature)

Physical Security Features
Transparent external flash and RAM encryption (AES-XTS)
Secure Boot feature ensures only signed firmware (with RSA-PSS signature) is booted
HMAC and Digital Signature modules use software inaccessible keys to generate SHA-MAC and
MAC signatures

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_power.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/5/MCP738312.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/5/MCP738312.pdf
https://cdn.sparkfun.com/assets/b/4/8/0/c/esp32-s2-wroom_module_datasheet.pdf
https://www.sparkfun.com/products/17743
https://cdn.sparkfun.com/assets/7/8/e/4/f/esp32-s2_datasheet.pdf#36
https://www.espressif.com/en/news/ESP32_FIA_Analysis
https://cdn.sparkfun.com/assets/7/8/e/4/f/esp32-s2_datasheet.pdf
https://cdn.sparkfun.com/assets/b/4/8/0/c/esp32-s2-wroom_module_datasheet.pdf

Note: Users should be aware of the following nuances and details of this board
The ESP32-S2 is only compatible with 2.4GHz WiFi networks; it will not work on the 5GHz bands.
Users interested in the AES-XTS RAM encryption feature, will need to use the Espressif IDF. For more
information, check out section 3.1.3 External Flash and RAM of the ESP32-S2 chipset datasheet.
For details on the boot mode configuration, please refer to section 3.3 Strapping Pins of the ESP32-
S2 WROOM module datasheet. By default, IO46 uses an internal pull-down resistor.

Note: While most users will utilize the USB connection for serial programming, the ESP32-S2 can also be
programmed through its JTAG or SWD pins. This might is useful for individuals developing and debugging
firmware that would be flashed directly onto the module, such as in production for commercial applications.

Integrated 802.11 b/g/n WiFi 2.4GHz Transceiver (up to 150Mbps)
Integrated Temperature Sensor (-20°C to 110°C)
34 GPIO (excluding strapping pins)

1x USB OTG Interface
1x DVP Camera Interface
1x LCD Interface

Operating Voltage: 3.0 to 3.6V
WiFi: 310mA (peak)
Light-Sleep: 550µA
Deep-Sleep: 20-235µA

ESP32-S2 module on the ESP32-S2 Thing Plus. (Click to enlarge)

https://cdn.sparkfun.com/assets/7/8/e/4/f/esp32-s2_datasheet.pdf#10
https://cdn.sparkfun.com/assets/b/4/8/0/c/esp32-s2-wroom_module_datasheet.pdf#8
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_esp32.jpg

The JTAG pins on the ESP32-S2 Thing Plus. (Click to enlarge)

Peripherals and I/O

Note: Users should be aware of the following nuances of this board
⚡ All the GPIO on the ESP32-S2 Thing Plus are 3.3V pins.
⚡ There are electrical limitations to the amount of current that the ESP32-S2 module can sink or
source. For more details, check out the ESP32-S2 WROOM module datasheet.
⚡ There is a pullup resistor on IO18 on pin A1 . For more details, check out the Note following Fig. 6
in the Peripheral Schematics section of the ESP32-S2 WROOM module datasheet.
There are some limitations to the ADC performance, see the Note from the ADC Characteristics
section of the ESP32-S2 WROOM module datasheet.
The EN pin is used to contol the ESP32-S2 chip.

High: On - enables the chip.
Low: Off - the chip powers off.

The pins from the ESP32-S2 module are broken out into a feather form factor layout. There are 21 I/O pins broken
out on this board, with 8 I/O pads on the back of the board. All of the ESP32-S2 Thing Plus pins are broken out
with .1" pitch spacing for headers. With the ESP32's pin multiplexing, various pins will be capable of several
functionalities. For more technical specifications on the I/O pins, you can refer to the ESP32-S2 datasheet.

16x 12-bit ADC Channels
2x 8-bit DAC
14x Capacitive Touch Sensing
4x SPI (only one is configured by default in the Arduino IDE)
1x I S
2x I C (only one is configured by default in the Arduino IDE)
2x UART (only two are configured by default in the Arduino IDE, one UART is used for bootloading/debug)
8x PWM Channels
1x DVP Camera Interface
1x LCD Interface

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_JTAG.jpg
https://cdn.sparkfun.com/assets/b/4/8/0/c/esp32-s2-wroom_module_datasheet.pdf
https://cdn.sparkfun.com/assets/b/4/8/0/c/esp32-s2-wroom_module_datasheet.pdf#13
https://cdn.sparkfun.com/assets/7/8/e/4/f/esp32-s2_datasheet.pdf#3d
https://www.sparkfun.com/products/17743
https://cdn.sparkfun.com/assets/7/8/e/4/f/esp32-s2_datasheet.pdf

Graphical datasheet for the ESP32-S2 Thing Plus. (Click to enlarge)

Note: Users should be aware of the following limitations for the board in the Arduino IDE.
Not all of the features, listed above, are available in the Arduino IDE. For the full capabilities of the
ESP32-S2, the Espressif IDF should be utilized.
Only one I C bus is defined.
Only two UART interfaces are available.

UART (USB): Serial
RX1 / TX1 Pins: Serial1

Only one SPI bus is defined.
The bit-width for the ADC2 channels needs to be set when reading ADC values.

Setting the bit-width before taking any ADC readings doesn’t work; the bit-width must be set,
when the making ADC readings.

Buttons

There are two buttons on ESP32-S2 Thing Plus; a Reset and IO0 button.

Reset Button

The reset (RST) button allows users to reset the program running on the ESP32-S2 module without unplugging
the board.

2

https://cdn.sparkfun.com/assets/d/b/4/3/e/graphical_datasheet_ESP32-S2_thing_plus.pdf

Reset button on the ESP32-S2 Thing Plus. (Click to enlarge)

User Button

Note: In order to utilize the user button, connected to IO 0 , the pin mode will need to be configured as an
input with an internal pullup (i.e. INPUT_PULLUP); see an example below.

pinMode(D0, INPUT_PULLUP);

The user (0) button allows users to short IO 0 to ground (GND).

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_button_reset.jpg

IO 0 button on the ESP32-S2 Thing Plus. (Click to enlarge)

Indicator LEDs

There are two indicator LEDs on the ESP32-S2 Thing Plus:

Status/Pin 13 (Blue)
Battery Charging (Yellow)

Battery Charging LED

The yellow, CHG LED will light while a battery is being charged through the charging circuit. The LED will be off
when no battery is present (*dimmed), when the charge management controller is in standby (after the battery
charging has been completed), or when the charge management controller is shutdown. The LED will be on when
the charge management controller is in the process of charging the battery. For more information, please refer to
the MCP73831 datasheet.

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_button_0.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/6/9/5/MCP738312.pdf

STAT LED

The blue, status (13) LED is typically used as a test or status LED to make sure that a board is working or for
basic debugging. This indicator is connected to GPIO 18 .

The battery charging (CHG) LED indicator on the ESP32-S2 Thing Plus. (Click to enlarge)

Charge Cycle State STAT1

Shutdown
Thermal Shutdown
V < V

Off (High Z)

No Battery Present Dimmed (High Z)

Charge Complete – Standby Off (H)

Preconditioning On (L)

Constant-Current Fast Charge On (L)

Constant Voltage On (L)

DD BAT

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_LED_charge.jpg

The status (13) LED indicator on the ESP32-S2 Thing Plus. (Click to enlarge)

Jumpers

There are three jumpers on the back of the board that can be used to easily modify the hardware connections on
the board.

USB - This jumper can be used to control the USB-C data line connections through the TC7USB40MU USB
switch.

By default, the data lines are connected to the CP2102 Serial-to-UART bridge; and therefore, tied to
the ESP32-S2's UART pins.

CHG - This jumper can be used to modify the charging rate to the LiPo JST connector.
By default, the charge rate is configured to 500mA.

GPIO18PU - This jumper can be used to disconnect the pull-up resistor on GPIO18 .

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_LED_13.jpg

Primary I C Bus

The jumpers on the back of the ESP32-S2 Thing Plus. (Click to enlarge)

Never modified a jumper before? Check out our Jumper Pads and PCB Traces tutorial for a quick
introduction!

How to Work with Jumper Pads and PCB Traces
APRIL 2, 2018
Handling PCB jumper pads and traces is an essential skill. Learn how to cut a
PCB trace, add a solder jumper between pads to reroute connections, and repair
a trace with the green wire method if a trace is damaged.

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_jumpers.jpg
https://learn.sparkfun.com/tutorials/664
https://learn.sparkfun.com/tutorials/how-to-work-with-jumper-pads-and-pcb-traces

The Qwiic connector is attached to the primary I C bus. The primary I C bus for this board utilizes the pin
connections, detailed in the table below:

Connection VDD GND SCL SDA

Pad Number
(ESP32-S2 module)

3.3V GND IO1 IO2

Qwiic Connector

A Qwiic connector is provided for users to seamlessly integrate with SparkFun's Qwiic Ecosystem.

Qwiic connector and I C pins on the ESP32-S2 Thing Plus. (Click to enlarge)

What is Qwiic?

The Qwiic system is intended a quick, hassle-free cabling/connector system for I C devices. Qwiic is actually a
play on words between "quick" and I C or "iic".

2 2

2

2

2

SparkFun's Qwiic Connect SystemSparkFun's Qwiic Connect System

https://www.sparkfun.com/qwiic
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/ESP32-S2_thing_plus_I2C.jpg
https://www.youtube.com/watch?v=x0RDEHqFIF8

Features of the Qwiic System

Software Overview

Installing the CP2104 USB Driver

 Note: Make sure to manually install the driver for the CP210X with the following instructions. The driver
that Windows auto-installs will not work with the auto-reset circuit on the board and cause serial uploads to
fail.

Users will need to install the SiLabs CP2104 Driver, which can be found here: USB to UART Bridge VCP Driver

DOWNLOAD WINDOWS VCP DRIVER (ZIP)

DOWNLOAD MAC OSX VCP DRIVER (ZIP)

Note: If applicable, make sure you are using the proper driver files for your CPU architecture. This is usually
indicated by a folder or file name with "x86" for 32-bit processors or "x64" for 64-bit processors.

Arduino IDE

NO SOLDERING POLARIZED CONNECTOR DAISY CHAIN

Keep your soldering iron at bay.

Cables plug easily between boards making quick work of setting up a new prototype. We currently offer three
different lengths of Qwiic cables as well as a breadboard friendly cable to connect any Qwiic enabled board to
anything else. Initially you may need to solder headers onto the shield to connect your platform to the Qwiic
system but once that’s done it’s plug and go!

Qwiic cables connected to Spectral Sensor Breakout

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers#software
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/CP210x_Universal_Windows_Driver.zip
https://www.silabs.com/documents/public/software/Mac_OSX_VCP_Driver.zip
https://www.sparkfun.com/products/14414

Note: For first-time users, who have never programmed before and are looking to use the Arduino IDE, we
recommend beginning with the SparkFun Inventor's Kit (SIK), which includes a simpler board like the Arduino
Uno or SparkFun RedBoard and is designed to help users get started programming with the Arduino IDE.

Most users may already be familiar with the Arduino IDE and it's use. However, for those of you who have never
heard the name Arduino before, feel free to check out the Arduino website. To get started with using the Arduino
IDE, check out our tutorials below:

Install Board Definition

Installing Development Arduino Core:

Currently, the ESP32 Arduino core hasn't been updated to include support for the ESP32-S2. However,
there is a branch in development that users can use to get a head start on their development in the Arduino
IDE. For more information, please refer to the Installation Instructions from the GitHub repository. (*User

Installing an Arduino Library
How do I install a custom Arduino library? It's easy!
This tutorial will go over how to install an Arduino
library using the Arduino Library Manager. For libraries
not linked with the Arduino IDE, we will also go over
manually installing an Arduino library.

What is an Arduino?
What is this 'Arduino' thing anyway? This tutorials dives
into what an Arduino is and along with Arduino projects
and widgets.

Installing Arduino IDE
A step-by-step guide to installing and testing the
Arduino software on Windows, Mac, and Linux.

Installing Board Definitions in the Arduino IDE
How do I install a custom Arduino board/core? It's
easy! This tutorial will go over how to install an Arduino
board definition using the Arduino Board Manager. We
will also go over manually installing third-party cores,
such as the board definitions required for many of the
SparkFun development boards.

https://www.sparkfun.com/products/15631
https://www.sparkfun.com/products/11224
https://www.sparkfun.com/products/15123
https://www.arduino.cc/en/Guide/HomePage
https://github.com/espressif/arduino-esp32#installation-instructions
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/what-is-an-arduino
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-board-definitions-in-the-arduino-ide

will need to have Git installed and be familiar with utilizing the command prompt.)

1. Install the latest ESP32 Arduino core, through the Ardiuno IDE Boards Manager.
2. Locate the hardware folder for the Espressif ESP32 Arduino core. Depending on your operating

system, IDE version, and IDE type (i.e. store App, .zip file installation, or .exe installation), the
folder location may vary. For our computers, the folder for the Arduino IDE was located in the
Documents folder. From there, depending on how the Arduino IDE was installed, the folder for the

ESP32 Arduino core was in one of the following locations:
Arduino\hardware\espressif\esp32
ArduinoData\packages\esp32\hardware\esp32\<version_number>

3. Delete the file contents.

Example of file contents. (Click to enlarge)
4. Using the command prompt (or terminal), clone the master branch of the ESP32 Arduino core from

the GitHub repository with the following command: git clone
https://github.com/espressif/arduino-esp32.git

Cloning GiHub repository. (Click to enlarge)
5. Using the command prompt (or terminal), change directories into the arduino-esp32 folder. Then,

update the submodules with the following command: git submodule update --init --recursive

Updating submodules. (Click to enlarge)
6. Move the contents from the arduino-esp folder up a directory (i.e. into the folder the arduino-esp

folder resides in).

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/esp32_hardware_folder_contents.PNG
https://github.com/espressif/arduino-esp32
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/clone_repo_2.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/update_submodules_2.png

Moving the file contents back into the appropriate directory. (Click to enlarge)

*In step 4, users could also have modified the command to clone the GitHub repository into the
current directory, but the command varies by system:

git clone https://github.com/espressif/arduino-esp32.git .\
git clone https://github.com/espressif/arduino-esp32.git && \

7. Using the command prompt (or terminal), change directories into the tools folder. Then, execute the
get.py (or get.exe) file (depending on your operating system) to install the required tools. Using

the command prompt, this is done with the command: python get.py . For more details, please refer
to the Installation Instructions from the GitHub repository.

Installing required tools. (Click to enlarge)

Users should now, be able to open the Arduino IDE and select the ESP32-S2 Thing Plus board and upload
code.

ESP32-S2 Thing Plus is available in the board options. (Click to enlarge)

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/move_files.gif
https://github.com/espressif/arduino-esp32#installation-instructions
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/install_tools.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/select_board.PNG

Note: Once Espressif releases a new Arduino core supporting the ESP32-S2, users will need to uninstall
(and possibly manually delete the installed files), from the instructions above; before re-installing the latest
board definitions.

Install the latest ESP32 board definitions in the Arduino IDE.

Note: For more instructions, users can follow this tutorial on Installing Additional Cores provided by Arduino.
Users will also need the .json file for the Espressif Arduino Core:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Hardware Assembly

USB Programming

Successfully uploading code to the ESP32-S2 Thing Plus. (Click to enlarge)

Installing Board Definitions in the Arduino IDE
SEPTEMBER 9, 2020
How do I install a custom Arduino board/core? It's easy! This tutorial will go over
how to install an Arduino board definition using the Arduino Board Manager. We
will also go over manually installing third-party cores, such as the board
definitions required for many of the SparkFun development boards.

https://github.com/espressif/arduino-esp32/releases
https://www.arduino.cc/en/guide/cores
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/upload_success.PNG
https://learn.sparkfun.com/tutorials/installing-board-definitions-in-the-arduino-ide

The USB connection is utilized for programming and serial communication. Users only need to plug their ESP32-
S2 Thing Plus into a computer using a USB-C cable.

The ESP32-S2 Thing Plus with USB-C cable attached. (Click to enlarge)

Battery

For remote IoT applications, a Li-Po battery can be connected. Additionally, users may be interested in utilizing a
solar panel and USB-C cable to recharge their battery.

The ESP32-S2 Thing Plus with a battery connected. (Click to enlarge)

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/assembly_ESP32-S2_USB.jpg
https://www.sparkfun.com/products/16835
https://www.sparkfun.com/products/14743
https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/assembly_ESP32-S2_battery.jpg

Qwiic Devices

The Qwiic system allows users to effortlessly prototype with a Qwiic compatible I C device without soldering.
Users can attach any Qwiic compatible sensor or board, with just a Qwiic cable. (*The example below, is for
demonstration purposes and is not pertinent to the board functionality or this tutorial.)

Solar Panel Charger - 10W
 PRT-16835

USB 3.1 Cable A to C - 3 Foot
 CAB-14743

2

https://www.sparkfun.com/qwiic#sensors
https://www.sparkfun.com/products/15081
https://www.sparkfun.com/products/16835
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/16835
https://www.sparkfun.com/products/14743
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14743

The Qwiic XA110 GPS breakout board and Micro OLED board connected to the ESP32-S2 Thing Plus.

Arduino Examples

Blink

To verify the toolchain and board are properly set up on their computer, users can upload the simplest of sketches
-- Blink! The LED attached to GPIO 13 is perfect for this test. Plus, with the ESP32 attached to your computer, this
is a good time to test out serial communication. Copy and paste the example sketch below into a fresh Arduino
sketch:

int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
 Serial.begin(115200);
}

void loop()
{
 Serial.println("Hello, world!");
 digitalWrite(ledPin, HIGH);
 delay(500);
 digitalWrite(ledPin, LOW);
 delay(500);
}

With everything setup correctly, upload the code! Once the code finishes transferring, open the serial monitor
and set the baud rate to 115200. Users should see Hello, world! 's begin to fly by.

If the blue LED remains dimly lit, it's probably still sitting in the bootloader. After uploading a sketch, users
may need to tap the RESET button to get your ESP32-S2 Thing Plus to begin running the sketch.

https://cdn.sparkfun.com/assets/learn_tutorials/1/6/6/0/assembly_ESP32-S2_qwiic.jpg
https://www.sparkfun.com/products/14414
https://www.sparkfun.com/products/14532
https://learn.sparkfun.com/tutorials/terminal-basics

When the ESP32 boots up, it prints out a long sequence of debug messages. These are emitted every time the
chip resets -- always at 115200 baud.

WiFi

The ESP32 Arduino core includes a handful of WiFi examples, which demonstrate everything from scanning for
nearby networks to sending data to a client server. Users can find the examples under the File > Examples >
WiFi menu.

Here's another example using the WiFi library, which demonstrates how to connect to a nearby WiFi network and
poll a remote domain (http://example.com/) as a client.

Note: Connect to the 2.4GHz band your wireless router; the ESP32 is not compatible with 5GHz signals.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/ResetOutput1.png
https://github.com/espressif/arduino-esp32/blob/master/libraries/WiFi/examples/WiFiScan/WiFiScan.ino
http://example.com/

#include <WiFi.h>

// WiFi network name and password:
const char * networkName = "YOUR_NETWORK_HERE";
const char * networkPswd = "YOUR_PASSWORD_HERE";

// Internet domain to request from:
const char * hostDomain = "example.com";
const int hostPort = 80;

const int BUTTON_PIN = 0;
const int LED_PIN = 13;

void setup()
{
 // Initilize hardware:
 Serial.begin(115200);
 pinMode(BUTTON_PIN, INPUT_PULLUP);
 pinMode(LED_PIN, OUTPUT);

 // Connect to the WiFi network (see function below loop)
 connectToWiFi(networkName, networkPswd);

 digitalWrite(LED_PIN, LOW); // LED off
 Serial.print("Press button 0 to connect to ");
 Serial.println(hostDomain);
}

void loop()
{
 if (digitalRead(BUTTON_PIN) == LOW)
 { // Check if button has been pressed
 while (digitalRead(BUTTON_PIN) == LOW)
 ; // Wait for button to be released

 digitalWrite(LED_PIN, HIGH); // Turn on LED
 requestURL(hostDomain, hostPort); // Connect to server
 digitalWrite(LED_PIN, LOW); // Turn off LED
 }
}

void connectToWiFi(const char * ssid, const char * pwd)
{
 int ledState = 0;

 printLine();
 Serial.println("Connecting to WiFi network: " + String(ssid));

 WiFi.begin(ssid, pwd);

 while (WiFi.status() != WL_CONNECTED)
 {
 // Blink LED while we're connecting:

 digitalWrite(LED_PIN, ledState);
 ledState = (ledState + 1) % 2; // Flip ledState
 delay(500);
 Serial.print(".");
 }

 Serial.println();
 Serial.println("WiFi connected!");
 Serial.print("IP address: ");
 Serial.println(WiFi.localIP());
}

void requestURL(const char * host, uint8_t port)
{
 printLine();
 Serial.println("Connecting to domain: " + String(host));

 // Use WiFiClient class to create TCP connections
 WiFiClient client;
 if (!client.connect(host, port))
 {
 Serial.println("connection failed");
 return;
 }
 Serial.println("Connected!");
 printLine();

 // This will send the request to the server
 client.print((String)"GET / HTTP/1.1\r\n" +
 "Host: " + String(host) + "\r\n" +
 "Connection: close\r\n\r\n");
 unsigned long timeout = millis();
 while (client.available() == 0)
 {
 if (millis() - timeout > 5000)
 {
 Serial.println(">>> Client Timeout !");
 client.stop();
 return;
 }
 }

 // Read all the lines of the reply from server and print them to Serial
 while (client.available())
 {
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }

 Serial.println();
 Serial.println("closing connection");
 client.stop();
}

void printLine()
{
 Serial.println();
 for (int i=0; i<30; i++)
 Serial.print("-");
 Serial.println();
}

Make sure to fill in the networkName and networkPswd variables with the name (or SSID) and password of your
WiFi network! Then upload the code, open the Serial Monitor.

After the ESP32-S2 connects to the WiFi network, it will wait for users to press the 0 button. Tapping that will
cause the ESP32 to make an HTTP request to example.com. You should see a string of HTTP headers and HTML
similar to the screenshot above.

Troubleshooting

 Not working as expected and need help?

If you need technical assistance and more information on a product that is not working as you expected, we
recommend heading on over to the SparkFun Technical Assistance page for some initial troubleshooting.

SPARKFUN TECHNICAL ASSISTANCE PAGE

If you can't find what you need there, you'll need a Forum Account to search product forums and post

https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/wifi-example-serial.png
http://example.com/
https://www.sparkfun.com/technical_assistance
https://www.sparkfun.com/technical_assistance
https://forum.sparkfun.com/ucp.php?mode=register

questions.

Resources and Going Further
Schematic (PDF)
Eagle Files (ZIP)
Board Dimensions (PDF)
Graphical Datasheet (PDF)
Hardware Component Information:

ESP32-S2 Datasheet (PDF)
ESP32-S2 WROOM Module Datasheet (PDF)
ESP32-S2 Hardware Design Guidelines (PDF)
SparkFun Qwiic Connect System

GitHub Hardware Repository
Development Platforms for Artemis Module:

Espressif's ESP32 Arduino Core
.json file needed for Epressif's ESP32 Arduino Core:
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-
pages/package_esp32_index.json

SFE Product Showcase

For more inspiration, check out these other ESP32 tutorials:

ESP32 Environment Sensor Shield Hookup
Guide
SparkFun's ESP32 Environment Sensor Shield
provides sensors and hookups for monitoring
environmental conditions. This tutorial will show you
how to connect your sensor suite to the Internet and
post weather data online.

ESP32 Thing Power Control Shield Hookup
Guide
This tutorial shows you how to get started with the
ESP32 Thing Power Control Shield.

ESP32 Thing Motion Shield Hookup Guide SparkFun ESP32 DMX to LED Shield

https://cdn.sparkfun.com/assets/a/d/0/6/d/ESP32-S2_thing_plus_schematic_2.pdf
https://cdn.sparkfun.com/assets/8/c/9/a/b/ESP32-S2_thing_plus_eagle_files.zip
https://cdn.sparkfun.com/assets/2/c/a/9/a/ESP32-S2_thing_plus_dimensions.pdf
https://cdn.sparkfun.com/assets/d/b/4/3/e/graphical_datasheet_ESP32-S2_thing_plus.pdf
https://cdn.sparkfun.com/assets/7/8/e/4/f/esp32-s2_datasheet.pdf
https://cdn.sparkfun.com/assets/b/4/8/0/c/esp32-s2-wroom_module_datasheet.pdf
https://cdn.sparkfun.com/assets/5/2/8/9/4/esp32-s2_hardware_design_guidelines.pdf
https://www.sparkfun.com/qwiic
https://github.com/sparkfun/ESP32-S2_Thing_Plus
https://github.com/espressif/arduino-esp32
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
https://youtu.be/FoEmSkyTgjg
https://learn.sparkfun.com/tutorials/esp32-environment-sensor-shield-hookup-guide
https://learn.sparkfun.com/tutorials/esp32-thing-power-control-shield-hookup-guide
https://learn.sparkfun.com/tutorials/esp32-thing-motion-shield-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-esp32-dmx-to-led-shield

Getting started with the ESP32 Thing Motion Shield to
detect movements using the on-board LSM9DS1 IMU
and adding a GPS receiver. Data can be easily logged
by adding an microSD card to the slot.

Learn how to utilize your DMX to LED Shield in a
variety of different ways.

