

Compliance Engineering Ireland Ltd

CLONROSS LANE, DUNSHAUGHLIN, CO. MEATH, IRELAND Tel: +353 1 8256722 Fax: +353 1 8256733

Page 1 of 89

Confidential Report

EMC Test Report for Vox Power Ltd

Report Reference: 16E5939-4

Vox Power Product: VCCM600M-XXXX VCCM600S-XXXX

13TH APRIL, 2017 COMPLIANCE ENGINEERING IRELAND LTD.

Client:	Test of:
Vox Power Ltd	VCCM600M-XXXX
Unit 9	600W modular conduction cooled power
Robinhood Business Park	supply
Robinhood Road	
Ballymount	To:
Dublin 22	EN 55011: 2009 + A1: 2010
Ireland	EN 60601-1-2: 2007 (3 rd Edition)
	EN 60601-1-2: 2014 (4 th Edition)
	EN 61000-3-2: 2014
	EN 61000-3-3: 2013
	Mil STD 461F(Parts of):RE102, CE102,
	RS101,RS103,CS114,CS115,CS116
	MIL-STD-704F(Parts of)
Attention: Mr. Brian McDonald	MIL-STD-1399:Section 300A(Parts of)
	SEMI F47

COPIES TO: Files

REPORT REF: 16E5939-4	TESTED BY: L Brien, D Dunne			
DATE RECEIVED: 22 nd April 2016	REPORT BY: L Brien			
ISSUE DATE: 28th November 2019	APPROVED SIGNATORY: J McAuley			
	JOB TITLE:	Technical Manager		
	SIGNATURE:	John Me anley		
		()		

This report 16E5939-4 supersedes 16E5939-3

Compliance Engineering Ireland Ltd Terms and Conditions

- All quotations are submitted, orders are accepted and services supplied by Compliance Engineering Ireland Limited ("CEIL") subject to and upon the following express Terms and Conditions and all other Conditions, warranties and representations express or implied and statutory or otherwise are hereby excluded insofar as it is lawful to do so. No addition thereto or variation therefrom, contained or referred to in the Customers order form or otherwise effected shall apply unless specifically agreed in writing by a duly Authorised Officer of CEIL.
- 2. All orders including any based on a quotation previously submitted by CEIL are subject to acceptance in writing by CEIL.
- 3.(a) The prices set out in any quotation are based upon current costs and if there is any variation in the said costs between the date of the order or Contract and delivery of the final report CEIL shall be entitled to adjust prices to reflect such variations.
 - b) In the event of any suspension or variation of work arising from the Customer's instructions or lack of instructions the price set out in any quotation may be increased to cover any extra expense incurred by CEIL.
 - c) All prices quoted are strictly NET. The customer shall where applicable, in addition to the relevant price, pay a sum equal to the VAT chargeable in respect of the supply of services.
 - d) Accounts must be paid in full in advance or by way of an irrevocable letter of credit opened with a Bank approved by CEIL unless credit terms have been agreed by CEIL in which event accounts must be paid in full within 1 month from the date of the invoice. Time for payment is of the essence and the customer shall be liable to pay any outstanding amount from its due date until the date of payment at a rate of 2% per month or part thereof.
- 4. Any times quoted for the performance of services are to be treated as estimates only. CEIL shall not be liable in any manner whatsoever for failure to perform services within the time quoted, nor in such circumstances shall the Customer be entitled to cancel or terminate any order or contract.
- 5. The Customer is responsible for delivery to CEIL of test item(s) free of any duty, VAT, freight charges etc. unless otherwise agreed in writing by CEIL.
- 6. The Customer shall be responsible for collecting non-perishable samples received for testing or laboratory work upon completion of tests or laboratory work. If the Customer fails to collect such samples within 90 days from completion of the tests or laboratory work CEIL shall be entitled without further notice to dispose of the samples without liability.
- 7. No action or legal proceedings shall be taken (except in the case of willful neglect or default) against CEIL by reason of or arising out of any research, investigation, test or analyses or the publication of the results thereof in the name of CEIL. Under no circumstances shall CEIL be liable to the Customer for any indirect, incidental, special or consequential damages of any nature whatsoever (including but not limited to loss of use, revenue, profit, data or business opportunity) either based upon a claim or action in Contract or in Tort, indemnity or contribution, or otherwise arising out of the Contract or performance of services by CEIL even if CEIL has been advised of the possibility of such damages. The limit of CEIL's aggregate liability (whether in Contract, Tort, strict liability in Tort or by statute or otherwise) to the Customer or to any third party for non-performance by CEIL and for any and all other claims shall not in the aggregate exceed the fees paid by the Customer to CEIL. The Customer shall indemnify CEIL against all claims made against CEIL by any third party arising from this Contract.
- 8. The copyright of any report is reserved to CEIL and it shall not be used either in whole or in part, for the purposes of advertising, publicity, litigation or otherwise without the prior written consent of a duly Authorised Officer of CEIL where such consent is given the Customer shall comply with any conditions attaching to the consent. In conformance with laboratory accreditation requirements reports shall only be produced in full. The test results tabulated shall relate only to the defined item(s) tested.
- 9. If in CEIL's judgment, the customer's financial condition is such as could adversely affect the customers ability to perform any of its obligations or if the customer is in default in any of its obligations to CEIL whether hereunder or under any other Contract CEIL may terminate this Contract and/ or any other Contract between CEIL and the Customer, cancel any uncompleted order or suspend performance of services or the delivery of any reports and if it does so the Customer shall indemnify CEIL against all costs, charges, expense and damages incurred thereby.
- 10. CEIL will not be liable for non-performance in whole or in part of its obligations if this is attributable to any cause beyond the control of CEIL including (without limitation) any act of god, force majeure, war, civil war, disturbance, rebellion, embargo, strike, labour dispute, illness, flood, fire, sabotage or government action or regulation. If a Contract or order or any part thereof shall become impossible of performance or otherwise frustrated CEIL shall be entitled to reasonable remuneration for any work done up to the date of such impossibility or frustration, due credit being given for any amounts in respect of the Contract or order paid by the Customer.
- 11. CEI agrees to keep confidential all matters relating to this contract. This includes but is not limited to products tested, methods used, results of the work and contents of any reports.
- 12. These Conditions and the Contract to which the document relates shall in all respects be governed by and construed in accordance with the laws of the Republic of Ireland and in accordance with the Republic of Ireland shall have exclusive jurisdiction to determine any disputes arising therefrom unless otherwise agreed.
- 13. CEI is an accredited test laboratory and relevant test reports are denoted by use of the accreditation logo. When the accreditation logo is not used, the report is outside our scope accreditation.

Report Ref: 16E5939-4 Page 4 of 89

The equipment under test fulfils the standards listed below

Standard	Test result
EN 60601-1-2: 2014 (4 th Edition) Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.	Pass
EN 60601-1-2: 2007 (3 rd Edition) Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.	Pass

Declaration of Conformity.

The intention of these tests is such that the following statement can be added to the Declaration of Conformity i.e. DoC

This product complies with the EMC directive 2014/30/EU, EMC Directive Conformity was demonstrated by testing to and passing the limits set in the following standards.

EN 55011: 2009 + A1: 2010 Class B EN 60601-1-2: 2007 (3rd Edition)

EN 61000-3-2: 2014 EN 61000-3-3: 2013

Report Ref: 16E5939-4 Page 5 of 89

Guidance and	Guidance and manufacturer's declaration – electromagnetic emissions				
The VCCM600 Power s	The VCCM600 Power supply is intended for use in the electromagnetic environment specified below. The				
		nould assure that it is used in such an environment			
Emissions test	Compliance				
RF Emissions CISPR 11 EN 55011: 2009 + A1: 2010	Group 1	The VCCM600 Power supply must emit electromagnetic energy in order to perform its intended function. Nearby electronic equipment may be affected.			
RF Emissions CISPR 11 EN 55011: 2009 + A1: 2010	Class B	Class B equipment is equipment suitable for use in domestic establishments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes. In the documentation for the user, a statement shall be included drawing attention to the fact that there may be potential difficulties in ensuring electromagnetic compatibility in other environments, due to conducted as well as radiated disturbances.			
Harmonic emissions IEC 61000-3-2 EN 61000-3-2: 2014	Class A				
Voltage fluctuations / flicker emissions IEC 61000-3-3 EN 61000-3-3: 2013	All Parameters				

Table 201 – Guidance and manufacturer's declaration – electromagnetic emissions – for all equipment and systems

Guidance and manufacturer's declaration – electromagnetic immunity					
The VCCM600 Power supply is intended for use in the electromagnetic environment specified below. The customer or the user of the VCCM600 Power supply should assure that it is used in such an environment					
Immunity test	IEC 60601 Test level	Compliance level	Electromagnetic environment - guidance		
Electrostatic discharge (ESD) IEC 61000-4-2 EN 61000-4-2: 2009	±8 kV contact ±15 kV air	±2, 4, 6 & 8 kV contact ±2, 4, 8 & 15 kV air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.		
Electrical fast transient/burst IEC 61000-4-4 EN 61000-4-4: 2012	± 2 kV for power supply lines ± 1 kV for input/output lines	±2kV for power supply lines ±1kV for input/output lines	Mains power quality should be that of a typical commercial or hospital environment		
Surge IEC 61000-4-5 EN 61000-4-5: 2006	±1kV differential mode ±2 kV common mode	±0.5 & 1kV differential mode ±0.5, 1 & 2 kV common mode	Mains power quality should be that of a typical commercial or hospital environment		
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11 EN 61000-4-11: 2004	<5 % Ut (>95 % dip in Ut) for 0.5 cycle @ 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 70 % Ut (30 % dip in Ut) for 25 cycles <5 % Ut (>95 % dip in Ut) for 5 sec <5 % Ut (>95 % dip in Ut) for 1 cycle 40 % Ut (>60 % dip in Ut) for 5 cycle	<5 % Ut (>95 % dip in Ut) for 0.5 cycle @ 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 70 % Ut (30 % dip in Ut) for 25 cycles <5 % Ut (>95 % dip in Ut) for 5 sec <5 % Ut (>95 % dip in Ut) for 1 cycle 40 % Ut (>60 % dip in Ut) for 5 cycle	Mains power quality should be that of a typical commercial or hospital environment. If the user of the VCCM600 Power supply requires continued operation during power mains operation, it is recommended that the VCCM600 Power supply must be powered from an uninterruptible power supply or battery		
Power frequency (50/60 Hz) magnetic field IEC 61000-4-8 EN 61000-4-8: 2010 Note: Ut is the a.c.mains	30 A/m	30 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment		

Table 202 – Guidance and manufacturer's declaration – electromagnetic immunity – for all equipment and systems

Guidance and manufacturer's declaration – electromagnetic immunity

The VCCM600 Power supply is intended for use in the electromagnetic environment specified below. The customer or

Immunity test	O Power supply should assure IEC 60601 test level	Compliance	Electromagnetic environment
minute to the second	120 00001 1001 10101	level	- guidance
		ievei	Portable and mobile RF communications equipment should be used no closer to any part of the VCCM600 Power Supply, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Recommended separation distance
Conducted RF	3 Vrms outside industrial, scientific and medical	6 Vrms	d = [1.17]√P
	(ISM) and amateur radio bands. 6 Vrms in ISM and amateur radio bands	150 kHz to 80 MHz	
IEC 61000-4-6 EN 61000-4-6: 2014	150 kHz to 80 MHz		
Radiated RF	10 V/m	10 V/m	d = [1.17]√P80MHz to 800 MHz
IEC 61000-4-3 EN 61000-4-3: 2010	80 MHz to 2.7 GHz	80 MHz to 2.7 GHz	d = [2.33]√P800 MHz to 2.5GHz
	27 V/m, 18 Hz PM 385 MHz	27 V/m, 18 Hz PM 385 MHz	Where P is the maximum output power rating of the transmitter in Watts (W) according to the transmitter
	28 V/m, 50 %18 Hz PM 450 MHz	28 V/m, 50 %18 Hz PM 450 MHz	manufacturer and d is the recommended separation distance in metres (m)
	9 V/m, 217 Hz PM 710 MHz	9 V/m, 217 Hz PM 710 MHz	Field strengths from fixed RF transmitters, as determined by an
	9 V/m, 217 Hz PM 745 MHz	9 V/m, 217 Hz PM 745 MHz	electromagnetic site survey, ^a should be less than the compliance level in each frequency range. ^b
	9 V/m, 217 Hz PM 780 MHz	9 V/m, 217 Hz PM 780 MHz	Interference may occur in the vicinity of equipment marked with the following
	28V/m, 18 Hz PM 810 MHz 28 V/m, 18 Hz PM	28V/m, 18 Hz PM 810 MHz	$\left(\left(\left(\begin{smallmatrix}\bullet\\\bullet\end{smallmatrix}\right)\right)\right)$
	870 MHz	28 V/m, 18 Hz PM 870 MHz	
	28 V/m, 18 Hz PM 930 MHz	28 V/m, 18 Hz PM 930 MHz	
	28V/m, 217 Hz PM 1720 MHz	28V/m, 217 Hz PM 1720 MHz	
	28 V/m, 217 Hz PM 1845 MHz	28 V/m, 217 Hz PM 1845 MHz	
	28 V/m, 217 Hz PM 1970 MHz	28 V/m, 217 Hz PM 1970 MHz	
	27 V/m, 217 Hz PM	1070 1911 12	

Report Ref: 16E5939-4 Page 8 of 89

2450 MHz 9V/m, 217 Hz PM	27 V/m, 217 Hz PM 2450 MHz	
5240 MHz	9V/m, 217 Hz PM 5240 MHz	
9 V/m, 217 Hz PM		
5500 MHz	9 V/m, 217 Hz PM 5500 MHz	
9 V/m, 217 Hz PM		
5785 MHz	9 V/m, 217 Hz PM 5785 MHz	

Note 1: At 80 MHz and 800 MHz, the higher frequency range applies

Note 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

- a Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the VCCM600 Power Supply is used exceeds the applicable RF compliance level above, the VCCM600 Power Supply should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorientating or relocating the VCCM600 Power Supply.
- b Over the frequency range 150 kHz to 80 MHz, field strengths should be less than [V₁]V/m

Table 204 – Guidance and manufacturer's declaration – electromagnetic immunity – for equipment and systems that are not life-supporting

Report Ref: 16E5939-4 Page 9 of 89

Recommended separation distances between portable and mobile RF communication equipment and the VCCM600 Power Supply

The VCCM600 Power supply is intended for use in an electromagnetic environment specified in Table 201. The customer or the user of the VCCM600 Power supply can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the VCCM600 Power supply as recommended below, according to the maximum output power of the communications equipment.

Rated maximum output power of	Separation distance according to frequency of transmitter m			
transmitter W	150 kHz to 80 MHz	80 MHz to 800 MHz	800 MHz to 2.5GHz	
• •	d = [1.17]√P	d = [1.17]√P	d = [2.33]√P	
0.01	0.12	0.12	0.23	
0.1	0.37	0.37	0.75	
1	1.17	1.17	2.33	
10	3.70	3.70	7.36	
100	11.70	11.70	23.30	

For transmitters rated at a maximum output power not listed above, the recommended separation distance *d* in metres (m) can be estimated using the equation applicable to the frequency of the transmitter, where *P* is the maximum output power rating of the transmitter in watts (w) according to the transmitter manufacturer.

NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Table 206 – Recommended separation distances between portable and mobile RF communications equipment and the equipment and system – for equipment and systems that are not life supporting

Report Ref: 16E5939-4 Page 10 of 89

CONTENTS

Section 1: Equipment Under Test (E.U.T.)

Section 2: Test Specification, Methods and Procedures

Section 3: Deviations or Exclusions from the Test Specifications

Section 4: Operation of E.U.T. During Testing

Section 5: Results

Section 6: Analysis of Test Results, Conclusions

Appendix 1: Test Equipment Used Appendix 2: Test Configuration

Appendix 3: Full Compliance Radiated Emissions Test Results Appendix 4: Pre-Compliance Radiated Emissions Test Results

Appendix 5: Conducted Emissions Test Results Appendix 6: Harmonics & Flicker Test Results

Report Ref: 16E5939-4 Page 11 of 89

Test Of: VCCM600

1 Equipment Under Test (EUT)

1.1 Identification of EUT

Brand Name:	Vox Power
Description:	600W modular conduction cooled power supply
Model Number:	VCCM600M-XXXX, where X = A/B/C/D depending on configuration
Serial Number:	1627V0001
Country of Manufacture:	Ireland

1.2 Description of E.U.T.

Residential/Industrial/Laboratory) Modular PSU with 4 output module types A = 5V@25A, B = 12V @15A, C = 24V @7.5A, D = 48V@3.75A. Used for industrial and medical applications.

1.3 Modifications

The EUT was enclosed in Metal Box for RE102 scans between 2 and 30 MHz

1.4 Support Equipment List

600W Resistive load

1.5 Date of Test

Testing was carried out on 1 samples of the EUT between the 22nd April and the 25th June 2016.

Report Ref: 16E5939-4 Page 12 of 89

2 Test Specification, Methods and Procedures

2.1 Emissions Test Specification

Radiated Emissions Requirements

EN 55011: 2009 + A1: 2010 (CISPR 11)

Title:

Industrial, Scientific and Medical equipment– Radio disturbance characteristics – Limits and methods of measurement

EN 61000-3-2: 2014

Title:

Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)

EN 61000-3-3: 2013

Title:

Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

2.2 Immunity

Immunity was assessed to the parts of the following standard as requested by the manufacturer:

EN 60601-1-2: 2014 (4th Edition)

Title:

Medical Electrical Equipment

Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.

EN 60601-1-2: 2007 (3rd Edition)

Title:

Medical Electrical Equipment

Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.

Report Ref: 16E5939-4 Page 13 of 89

EN 61000-4-2: 2009	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section2: Electrostatic discharge immunity test
EN 61000-4-3: 2010	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section3: Radiated, radio-frequency, electromagnetic field
	immunity test
EN 61000-4-4: 2012	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section4: Electrical fast transient/burst immunity test
EN 61000-4-5: 2006	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 5: Surge immunity test.
EN 61000-4-6: 2014	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 6: Immunity to Conducted disturbances, induced by
	radio-frequency fields.
EN 61000-4-8: 2010	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section4: Power frequency magnetic field immunity test
EN 61000-4-11: 2004	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section11: Voltage dips, short interruptions and voltage
	variations immunity test.

2.3 Apparatus and Methods:

Measuring apparatus used during tests was designed and built to the requirements of: C.I.S.P.R. 16.

Report Ref: 16E5939-4 Page 14 of 89

<u>3</u> <u>Deviations or Exclusions from the Test Specifications</u>

3.1 Deviations

Up to date versions of the basic standards have been used in this test programme. Where necessary, we have verified that the requirements of any older basic standards as may be referred to in the product standard have been complied with.

3.2 Exclusions

There were no exclusions from the test specification.

Report Ref: 16E5939-4 Page 15 of 89

4 Operation of E.U.T. During Testing

4.1 Operating Environment

Supply Voltage: 230 Vac (50 Hz)

The following were the conditions at the time of immunity testing.

Temperature: 19-21°C Humidity: 49-52% RH

4.2 Operating Mode:

The EUT was configured as 24V output, unless stated otherwise.

5 Results

5.1 Conducted Emissions

Measurements of conducted emissions were carried out using the receiver analysis feature, which uses three detectors, peak, quasi peak and average. Using this mode the voltage emission spectrum could be scanned in peak detection mode and emissions, which exceeded a sub range margin relevant to the respective limits, could be further measured. The receiver bandwidth was set to 10 kHz.

The EUT complied with the Class B conducted emission specification of EN 55011. See Appendix 5 for results.

5.1.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the conducted emissions test was ±3.5 dB.

5.2 Radiated Emissions

Compliant measurements of radiated emissions were carried out in a semi anechoic chamber from 30 MHz to 1 GHz. The equipment and cable orientation were investigated to ensure that maximum emissions were obtained at critical frequencies. The antenna height was also adjusted through the range of 1m - 4m.

The receiver bandwidth was set to 120 kHz for frequencies between 30 MHz and 1 GHz.

The EUT complied with the Class B radiated emission specification of EN 55011.

5.2.1 Measurement Uncertainty

Report Ref: 16E5939-4 Page 16 of 89

The measurement uncertainty (with a 95% confidence level) for the radiated emissions test was ± 5.3 dB (from 30 to 100 MHz), ± 4.7 dB (from 100 to 300 MHz) and ± 3.9 dB (from 300 to 1000 MHz).

Report Ref: 16E5939-4 Page 17 of 89

5.3 Immunity to Radiated, Radio Frequency Electromagnetic Fields

a) Radiated RF EM fields

Port: Enclosure

Limit: 10 V/m (80% AM 1 kHz modulation)

Frequency range: 80-2700 MHz Dwell time: 3 second dwell

The EUT was placed in the anechoic chamber.

The step sizes from 80-2700MHz were in 1% steps. The dwell time at each frequency was 3 seconds. The test level was maintained at over 10 V/m at all frequencies in accordance with EN 60601-1-2.

The distance of the antenna from the EUT was 2.2 metres. The tests were carried out with the antenna oriented in horizontal and vertical polarisations for each side of the EUT.

The EUT was deemed to comply in accordance with the manufacturer's specification.

Radiated Immunity Tests

Frequency	Modulation	Polarisation	Level	Result
MHz	Frequency	(V/H)	(V/m)	
80-2700 MHz	1 kHz	V and H	10	Complied

Report Ref: 16E5939-4 Page 18 of 89

b) Proximity fields from RF wireless communications equipment

Port: Enclosure Dwell time: 3 second dwell

The EUT was placed in the anechoic chamber.

The testing was carried out on the spot frequencies as listed below. The dwell time at each frequency was at least 3 seconds.

A field sensor was placed in close proximity to the system. The tests were carried out with the antenna oriented in horizontal and vertical polarisations for each side of the EUT.

The EUT was deemed to comply with Performance Criteria A when tested in accordance with the manufacturer's specification.

Radiated Immunity Tests

Frequency	Modulation	Polarisation	Level	Result
MHz	Frequency	(V/H)	(V/m)	
385	18 Hz Pulse Modulation	V and H	27	Complied
450	50% 18 Hz Pulse Modulation	V and H	28	Complied
710	217 Hz Pulse Modulation	V and H	9	Complied
745	217 Hz Pulse Modulation	V and H	9	Complied
780	217 Hz Pulse Modulation	V and H	9	Complied
810	18 Hz Pulse Modulation	V and H	28	Complied
870	18 Hz Pulse Modulation	V and H	28	Complied
930	18 Hz Pulse Modulation	V and H	28	Complied
1720	217 Hz Pulse Modulation	V and H	28	Complied
1845	217 Hz Pulse Modulation	V and H	28	Complied
1970	217 Hz Pulse Modulation	V and H	28	Complied
2450	217 Hz Pulse Modulation	V and H	28	Complied
5240	217 Hz Pulse Modulation	V and H	9	Complied
5500	217 Hz Pulse Modulation	V and H	9	Complied
5785	217 Hz Pulse Modulation	V and H	9	Complied

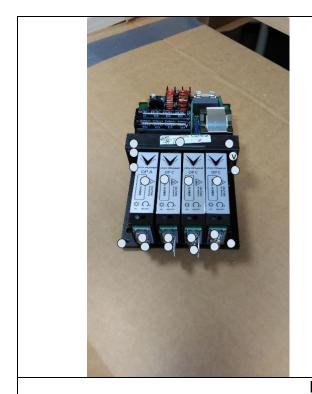
Report Ref: 16E5939-4 Page 19 of 89

5.4 Electrostatic Discharge Test

Port: Enclosure Basic Standard: EN 61000-4-2

Limit: $\pm 2, 4 \& 8 \text{ kV}$ contact discharges

±2, 4, 8 & 15 kV air discharges


EUT Tested: VCCM600M-ABCD

The ESD generator contained a discharge capacitor of 150pF and resistor of 330Ω in accordance with the requirements of EN 61000-4-2. The tests were carried out using both positive and negative discharges. Discharges were applied to the EUT to comply with EN 61000-4-2.

Only parts of the equipment that can be touched during normal operation were subjected to discharges.

Air discharges of ± 2 , 4, 8 & 15 kV, were applied to different points on the enclosure. Contact discharges of ± 2 , 4 & 8 kV, were applied to conductive points on the enclosure, in addition to the horizontal and vertical coupling planes. 10 discharges of each polarity were applied at each location.

The EUT while powered complied with Performance Criteria A during and after the application of discharges. Discharges were applied to chassis screws and chassis only.

ESD Discharge Points

Report Ref: 16E5939-4 Page 20 of 89

5.5 Conducted RF Immunity

Ports: AC mains Basic Standard: EN 61000-4-6

Limit: 10 Vemf, 80% AM 1 kHz modulation

Frequency range: 150 kHz to 80 MHz

The EUT was placed 0.1m above the ground plane and the mains cable was arranged 0.03m above the ground plane. All peripheral equipment was also placed 0.1m above the ground plane.

The current was injected on the mains cable in common mode. The EM Clamp was located at 0.1m from the EUT AC power port. Each surface of the EUT was more than 0.5m from other metal surfaces.

The test configuration used was the EM Clamp injection method. The system was calibrated to provide a current input level equivalent to an injected voltage level of 10 Vemf into a 150 ohm system.

The test was carried out at 230 Vac

The EUT functioned as normal during and after the testing.

Port	Disturbance type	Result
Mains	10 Vemf, 150 kHz – 80 MHz	Complied

Results of Conducted Immunity testing

Report Ref: 16E5939-4 Page 21 of 89

5.6 Electrical Fast Transient Test

Ports: AC Mains

Basic Standard: EN 61000-4-4

Limit: ± 0.5 , 1 & 2 kV mains power ports

±0.5 & 1 kV signal port

Repetition Rate: 5 kHz & 100 kHz

Positive and negative fast transient discharges of amplitude ± 0.5 , 1 & 2 kV were applied to the mains input & ± 0.5 & 1 kV to the signal port in accordance with the requirements of EN 61000-4-4.

The test was carried out at 230 Vac

The EUT functioned as normal during and after the testing.

.

Test port	Level	Result
Live	±0.5, 1 & 2 kV	Complied
Neutral	±0.5, 1 & 2 kV	Complied
Earth	±0.5, 1 & 2 kV	Complied
L-N-E	±0.5, 1 & 2 kV	Complied

Results of Fast transient testing

Report Ref: 16E5939-4 Page 22 of 89

5.7 **Surge Immunity Test**

Ports: AC Mains Basic Standard: EN 61000-4-5

Performance Criterion:

Limit. Line to Line: $\pm 0.5 \text{ kV } \& 1 \text{ kV}$

± 0.5 kV & ± 0.5 kV, 1 kV & 2 kV Line to Earth:

Positive and negative surges were applied to each of the mains inputs in accordance with the requirements of EN 61000-4-5.

Surges were applied to the mains conductors coupled line to line.

The tests were carried out with positive and negative surges. The test was repeated every 60 seconds for a total of 5 times in each polarity and in all coupling modes. The tests were performed at 0°, 90°, 180° and 270° phases for both polarities.

The test was carried out at 230 Vac

The EUT functioned as normal during and after the testing.

Port	Mode of conduction	Disturbance level	Result
PSU	L-N	± 0.5 kV & 1 kV	Complied
PSU	L-E	± 0.5 kV, 1 kV & 2 kV	Complied
PSU	N-E	± 0.5 kV, 1 kV & 2 kV	Complied

Results of Surge Immunity testing

Report Ref: 16E5939-4 Page 23 of 89

5.8 Voltage Dips & Interruptions Test

Ports: AC Mains

Basic Standard: EN 61000-4-11

Dips: Mains port - > 95% dip 0.5 cycles

Mains port - >95% dip 1 cycle Mains port - 30% dip 25 cycles Mains port - 60% dip 10 cycles

Interruption: Mains port – Interruption 250 cycles

Dips and interruptions were applied to the mains input in accordance with the requirements of EN 61000-4-11.

The test was carried out at 100 & 240 Vac

Data is recorded for the duration of the test and analysed after the test.

The EUT continued to operate throughout the duration of the test although with some degradation in performance. Degradation B was a momentary drop in output voltage to 0V.

Port	Disturbance type	Result
Mains supply	>95% dip 0.5 cycles	Complied
240 Vac		А
Mains supply	>95% dip 1 cycles	Complied
240 Vac		А
Mains supply	30% dip 25 cycles	Complied
240 Vac		А
Mains supply	60% dip 10 cycles	Complied
240 Vac		А
Mains supply	>95% interruption 250 cycles	Complied
240 Vac		В

Report Ref: 16E5939-4 Page 24 of 89

Port	Disturbance type	Result
Mains supply	>95% dip 0.5 cycles	Complied
100 Vac		A
Mains supply	>95% dip 1 cycles	Complied
100 Vac		Α
Mains supply	30% dip 25 cycles	Complied
100 Vac		В
Mains supply	60% dip 10 cycles	Complied
100 Vac		В
Mains supply	>95% interruption 250 cycles	Complied
100 Vac		В

Results of Voltage Dips & Interruptions testing

Report Ref: 16E5939-4 Page 25 of 89

5.9 Voltage Dips & Interruptions Test

Ports: AC Mains Basic Standard: SEMI F47

Dips: Mains port - >95% dip 1 cycle

Mains port - 50% dip 50 cycle Mains port - 70% dip 25 cycles Mains port - 80% dip 50 cycles Mains port - 90% Continuous

Interruption: Mains port – Interruption 250 cycles

Dips and interruptions were applied to the mains input in accordance with the requirements of EN 61000-4-11.

The test was carried out at 100 & 240 Vac

Data is recorded for the duration of the test and analysed after the test.

The EUT continued to operate throughout the duration of the test although with some degradation in performance. Degradation B was a momentary drop in output voltage to 0V.

Port	Disturbance type	Result
Mains supply	>95% dip 1 cycle	Complied
240 Vac		Α
Mains supply	50% dip 50 cycle	Complied
240 Vac		Α
Mains supply	70% dip 25 cycles	Complied
240 Vac		Α
Mains supply	80% dip 50 cycles	Complied
240 Vac		Α
Mains supply	90% Continuous	Complied
240 Vac		Α

Port	Disturbance type	Result
Mains supply	>95% dip 1 cycle	Complied
100 Vac		Α
Mains supply	50% dip 50 cycle	Complied
100 Vac		В

Report Ref: 16E5939-4

Page 26 of 89

Mains supply	70% dip 25 cycles	Complied
100 Vac		A
Mains supply	80% dip 50 cycles	Complied
100 Vac		Α
Mains supply	90% Continuous	Complied
100 Vac		Α

Results of Voltage Dips & Interruptions testing

5.10 Power Frequency Magnetic Field Immunity Test

Basic Standard: EN 61000-4-8

Level: 30 A/m (50 Hz & 60 Hz)

The unit was placed on a non-conductive table of 0.8 meter height from the ground plane.

The current level was set to 30 A/m and the unit was centred in the middle of the loop. The EUT was tested with the loop in both horizontal and vertical positions for one minute. The test was carried out at 230 Vac. The test was performed at 50 & 60 Hz.

The level of any interference seen was checked to ensure it remained within specified limits.

The EUT operated as normal for the duration of the test.

5.11 Fluctuating Harmonics

Ports: AC mains Basic Standard: EN 61000-3-2

Class: A

The test measures the current at each of the harmonic frequencies from the second harmonic up to the fortieth harmonic.

A 50 Hertz, 230 Volt AC source was used to power the unit in compliance with EN 61000-3-2. The current harmonic levels were measured and compared with the limit levels for Class A waveforms. See Appendix 6 for results.

5.12 Flicker

Ports: AC mains Basic Standard: EN 61000-3-3

The E.U.T. was connected to an impedance network and a 50 Hertz, 230 Volt AC source to power the unit in compliance with EN 61000-3-3.

The mains voltage flicker test was performed for 120 minutes. The E.U.T. flicker levels were significantly below the limit. See Appendix 6 for results.

Report Ref: 16E5939-4 Page 27 of 89

6 RESULTS. Mil Std 461F SUSCEPTIBILITY TESTS

Throughout the Mil Std 461F susceptibility tests the equipment was operated and monitored by the Compliance Engineering Ireland Ltd. Engineer present for any malfunctions or degradation in performance.

6.1 RS103. RF Radiated Susceptibility, Electric Field

The equipment was set up in accordance with the requirements of RS103-1 of Mil Std 461F. The E-field sensor procedure was used for the tests between 2 MHz-6 GHz.

All fields levelling was performed on the peak of the modulated signal

The output voltage of the EUT were monitored during test to determine susceptibility

6.1.1 RS103. RF Radiated Susceptibility. Electric Field (2MHz to 6 GHz)

The system was then subjected to 1kHz 50 % pulse modulated radiated electric fields via aerials spaced 1m from the system at levels shown in the tables below:-

Frequency MHz	Polarity	Level V/m RS103 Space Limits
2	H/V	20
4	H/V	20
6	H/V	20
8	H/V	20
10	H/V	20
20	H/V	20
40	H/V	20
60	H/V	20
80	H/V	20
100	H/V	20
200	H/V	20
400	H/V	20
600	H/V	20
800	H/V	20
1000	H/V	20

Report Ref: 16E5939-4 Page 28 of 89

2000	H/V	20
3000	H/V	20
4000	H/V	20
5000	H/V	20
6000	H/V	20

<u>RESULTS</u> No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 29 of 89

6.2 RS101, Radiated Susceptibility, Magnetic Fields, (30 Hz to 100 kHz)

The equipment was set up in accordance with RS 101.

The pre-calibration test procedures were performed with the RS-101 specified Radiating Loop and the RS-101 specified loop sensor.

The EUT was subjected to radiated Magnetic fields at frequencies according to the table below. The radiated level was at least 10dB higher than specified in the table. The surfaces of the EUT sides and connectors were subjected to the Magnetic field at a distance of 5cm from the surfaces.

Frequency Range	Field strength RS101 Army Limits	Antenna
30 Hz to 60 Hz	180dBpT	RE101 Radiating loop
60 Hz to 100 kHz	180 dBpT to 116 dBpT	RE101 Radiating loop

RESULTS No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 30 of 89

6.3 <u>CS101, Conducted Susceptibility, Power Leads, (30 Hz to 150 kHz)</u>

The equipment was set up in accordance with CS101. The secondary winding of the coupling transformer was placed in series with the power cable at the closest point feasible to the EUT.

The pre-calibration test procedure was performed with using a $0.5~\Omega$ resistor using the Power limit specified in CS101-2 and data recorded according to the table below,

The EUT Mains cable was subjected to Conducted Electrical Interference at frequencies specified in Table III STD461F from 30 Hz to 150 kHZ and levels according to the table below. The frequencies were modulated at 1 kHz at 50% modulation.

Frequency Hz	Limit Vrms (0.5Ω) CS101 above 28V Supply limits
30	6.32
51	6.32
62	6.32
102	6.32
201	6.32
398	6.32
588	6.32
789	6.32
1,006	6.32
2,092	6.32
3,945	6.32
6,120	4.74
8,201	4.47
10,467	3.16
20,725	2.23
49,876	0.89
81,243	0.46
98,752	0.20
153,196	0.10

The output voltage of the EUT were monitored during test to determine susceptibility

Report Ref: 16E5939-4 Page 31 of 89

RESULTS No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 32 of 89

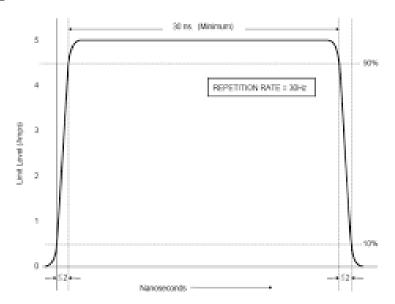
6.4 CS114, Conducted Susceptibility, Bulk Cable Injection, (10kHz to 200 MHz)

The equipment was set up in accordance with CS114. The Current probe was placed 5 cm from the Mains entry point on the EUT. The Current Injection probe was placed 5 cm from the Current probe.

The pre-calibration test procedures were performed with the Current injection and Current probes.

The EUT Mains cable was subjected to Conducted Electrical Interference at frequencies according to the table below. The frequencies were modulated at 1kHz at 50% modulation.

Frequency Range	Conducted Level CS114 Ground Limits
10 kHz to 1 MHz	49 dΒμΑ to 89 dΒμΑ
1 MHz to 30 MHz	97 dBμA
30 MHz to 200 MHz	97 dBμA to 89 dBμA


<u>RESULTS</u> Minor ripple was identified on output at 45 MHz and 140 MHz but No malfunctions or degradations of performance occurred.

6.5 CS115, Conducted Susceptibility, Bulk Cable Injection, (10 kHz to 400 MHz)

The equipment was set up in accordance with CS115. The Current probe was placed as close to the EUT as feasible. The Current Injection probe was placed 5 cm from the Current probe.

The pre-calibration test procedures were performed with the Current injection and Current probes.

The EUT Mains cable was subjected to the following Conducted Electrical Impulses according to CS115-1

The output voltage of the EUT were monitored during test to determine susceptibility

<u>RESULTS</u> No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 34 of 89

6.6 <u>CS116, Conducted Susceptibility, Damped Sinusoid Transients, Cables and Power</u> Leads, (10kHz to 100 MHz)

The equipment was set up in accordance with CS116. The Current probe was placed as close to the EUT as feasible. The Current Injection probe was placed 5 cm from the Current probe.

The pre-calibration test procedures were performed with the Current injection and Current probes.

The EUT Mains cable was subjected to the following Conducted Damped Sinusoid Transients according to CS116-2

Transient Frequency	Conducted Level
100 kHz	10 mA (pk)
1 MHz	10 A (pk)
10 MHz	10 A (pk)
20 MHz	10 A (pk)

The output voltage of the EUT were monitored during test to determine susceptibility

<u>RESULTS</u> No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 35 of 89

6.7 MIL-STD-1399, SECTION 300A, Shipboard Electric Power. Voltage and Frequency Tolerance

The equipment was set up in accordance with MIL-STD-1399, 300A for type I 60Hz Power supply. The voltage and frequency were varied in accordance to requirements specified in 5.1 Table II

Power Supply Type	Voltage Tolerance	Frequency Tolerance
Type I, 1 Phase	Voltage Tolerance	58.2 to 61.8
	Frequency Tolerance	418 to 462
	Frequency Modulation	0.5%
	Frequency Transient	4%
	Voltage Modulation	2%
	Voltage Transient	16%

RESULTS No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 36 of 89

6.8 MIL-STD-704F, SECTION 2, SECTION 6, AIRCRAFT ELECTRIC POWER CHARACTERISTICS.

The equipment was exposed to the test characteristics described with MIL-STD-704F, SECTION 2, SECTION 6 according to MIL-HDBK-704-2 and MIL-HDBK-704-6. The voltage and frequency were varied in accordance to requirements specified in the MIL-STD-704F.

		Test Description
Power Supply Type	Test Suite	·
212	102	Steady State Limits for Voltage and Frequency
SAC		
SAC	104	Voltage Modulation
SAC	105	Frequency Modulation
SAC	109	Normal Voltage Transients
SAC	110	Normal Frequency Transients
SXF	102	Steady State Limits for Voltage and Frequency
SXF	104	Voltage Modulation
SXF	105	Frequency Modulation
SXF	109	Normal Voltage Transients
SXF	110	Normal Frequency Transients

<u>RESULTS</u> No malfunctions or degradations of performance occurred.

Report Ref: 16E5939-4 Page 37 of 89

7 Analysis of Test Results, Conclusions

7.1 Measurement Uncertainties

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4 with a confidence level of 95%.

7.2 Radiated Emissions

The EUT complied with the Class B radiated emission specification of EN 55011 and the Navy, Fixed and Air Force Limits of MIL-STD-704F RE102 when mounted in enclosure

7.3 Conducted Emissions

The EUT complied with the Class B conducted emission specification of EN 55011 and the 115V Curve Limit of MIL-STD-704F CE102.

7.4 Immunity

The EUT complied with the immunity tests carried out to demonstrate compliance with EN 60601-1-2.

The EUT also complied with the selected tests from MIL-STD-461F, MIL-STD-704F and MIL-STD 1399 300A

7.5 Fluctuating Harmonics

The E.U.T. complied with the tests carried out to demonstrate compliance with EN 61000-3-2.

7.6 Flicker

The E.U.T. complied with the tests carried out to demonstrate compliance with EN 61000-3-3.

Report Ref: 16E5939-4 Page 38 of 89

Appendix 1 Test Equipment Used:

Instrument	Mftr.	Model	Serial No.	Cal Due.
Measuring Receiver	Rohde and Schwarz	ESVS30	607	16/04/17
Measuring Receiver	Rohde and Schwarz	ESHS30	605	28/04/17
LISN	Rohde and Schwarz	ESH3-Z5	604	13/12/16
Bilog Antenna	Schwarzbeck	VULB 9160	889	29/07/16
Signal Generator	Rohde and Schwarz	SME 03	765	03/07/16
Signal Generator	Rohde and Schwarz	SME 03	782	03/07/16
Power Amplifier	Schaffner	CBA 9433	-	-
Power Amplifier	Milmega	AS0825-125	-	-
Power Amplifier	Amplifier Research	150L	-	-
Transient Simulator	Schaffner	Best emc	822	20/11/18
EM Clamp	Schaffner	KEMZ 801	727	11/11/16
Directional Coupler	Lab Plant	RX 1026	738	21/06/16
Magnetic Loop	CEI	-	-	-
Electrostatic Discharge Simulator	Schaffner	NSG435	611	07/08/16
Signal Generator	Rohde and Schwarz	SME 06	912	03/07/16
Power Metre	Rohde and Schwarz	NRVS-Z5	619	21/06/16
Power Metre	Rohde and Schwarz	NRVS-Z5	842	21/06/16

Appendix 2 Test Configurations

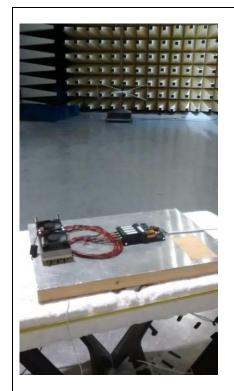


Figure 2: Radiated Immunity Test Set up

Figure 3: Radiated Immunity Test Set up

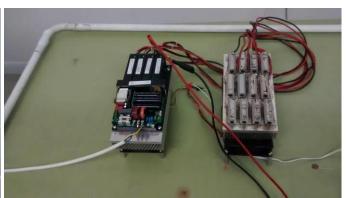


Figure 4: Magnetic Field Test Set up

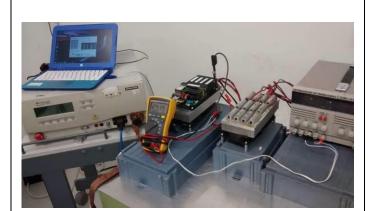


Figure 5: Conducted Immunity Test Set up

Figure 6: Fast Transient Test Set up



Figure 8: ESD Test Set up

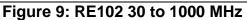


Figure 10: RE102 2 to 30 MHz

Figure 11: CS115

Figure 12: CS101

Figure 13: CS114



Figure 14: RS101

Figure 15: 704F and 1399 Testing

Figure 16: RS103 200 MHz to 1000 MHz

Report Ref: 16E5939-4 Page 42 of 89

Figure 18; RS103 2 MHz to 200 MHz

Appendix 3: Full Compliance Radiated Emissions Test Results

22. Apr 16 13:52

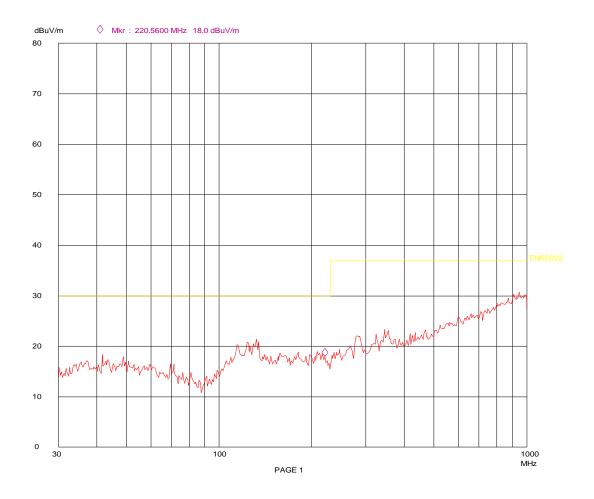


Figure 1: Radiated Emissions A Configuration, Horizontal

22. Apr 16 13:44

| Scan Settings (1 Range) | |------- Frequencies --------| | | Receiver Settings -------| | | Start | Stop | Step | IF BW Detector M-Time Atten Preamp OpRge | 30M | 1000M | 120k | 120k | PK | 5ms | 0dBLD OFF | 60dB

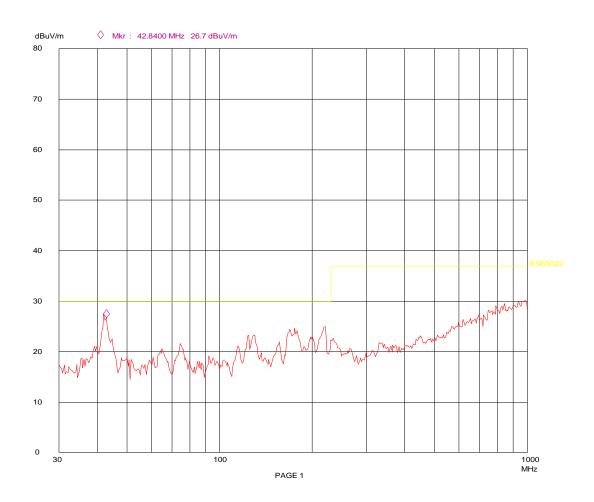


Figure 2: Radiated Emissions A Configuration, Vertical

Report Ref: 16E5939-4 Page 45 of 89

Freq (MHz)	Q.P. Level dB(μV/m)	EN 55011 Class B dB(µV/m)	Antenna Pol. Vertical/ Horizontal	Antenna Height (m)	Pass / Fail
42.164	24.3	30	Vertical	1	Pass
220.800	21.0	30	Vertical	1	Pass

Table 1: Radiated Emissions, A Configuration, Class B Limits – Anechoic Chamber at 10 metres

22. Apr 16 14:37

| Scan Settings (1 Range) | |------- Frequencies -------| Receiver Settings -------| Start Stop Step IF BW Detector M-Time Atten Preamp OpRge 30M 1000M 120k 120k PK 5ms 0dBLD OFF 60dB

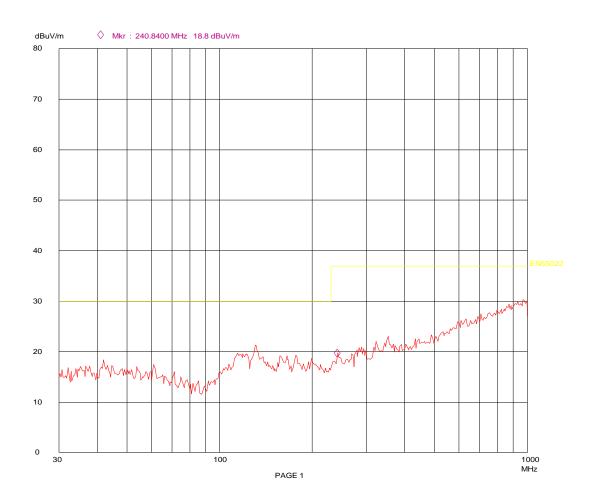


Figure 3: Radiated Emissions B Configuration, Horizontal

22. Apr 16 14:22

| Scan Settings (1 Range) | |------- Frequencies -------| Receiver Settings -------| Start Stop Step IF BW Detector M-Time Atten Preamp OpRge 30M 1000M 120k 120k PK 5ms 0dBLD OFF 60dB

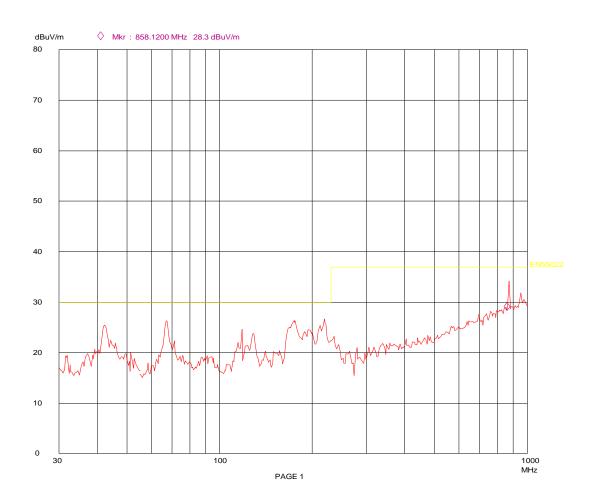


Figure 4: Radiated Emissions B Configuration, Vertical

Report Ref: 16E5939-4 Page 48 of 89

Freq (MHz)	Q.P. Level dB(μV/m)	EN 55011 Class B dB(µV/m)	Antenna Pol. Vertical/ Horizontal	Antenna Height (m)	Pass / Fail
67.244	26.9	30	Vertical	2	Pass
42.276	24.5	30	Vertical	1	Pass
176.732	23.5	30	Vertical	1	Pass
219.620	22.7	30	Vertical	1	Pass

Table 2: Radiated Emissions, B Configuration, Class B Limits – Anechoic Chamber at 10 metres

14. Jun 16 12:20

Scan Se	Scan Settings (1 Range)										
F	requenci	es		Rece	iver Se	ttings					
Start	Stop	Step	IF BW	Detector	M-Tim	e Atten Prean	np OpRge				
30M	1000M	120k	120)k PK	5ms	0dBLD OFF	60dB				

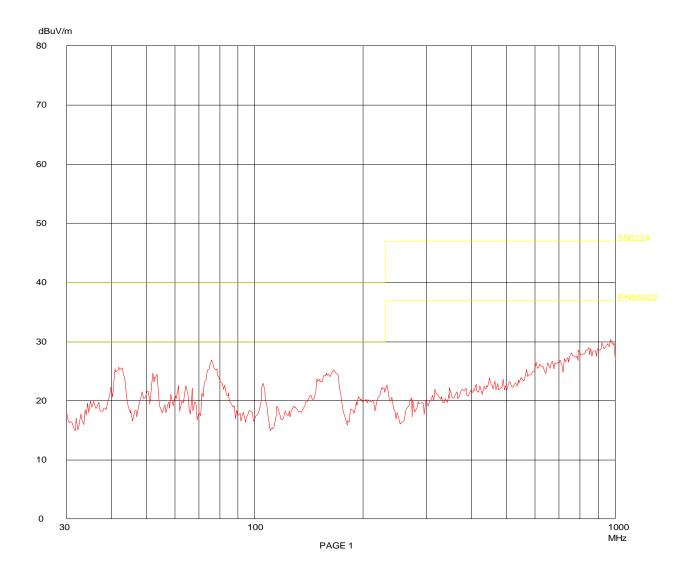


Figure 5: Radiated Emissions C Configuration, Vertical

14. Jun 16 12:37

Scan Se	ettings (1 F	Range)					
F	requenci	es		Rece	iver Se	ttings	-
Start	Stop	Step	IF BW I	Detector	M-Tim	e Atten Prean	np OpRge
30M	1000M	120k	120	< PK	5ms	OdBLD OFF	60dB

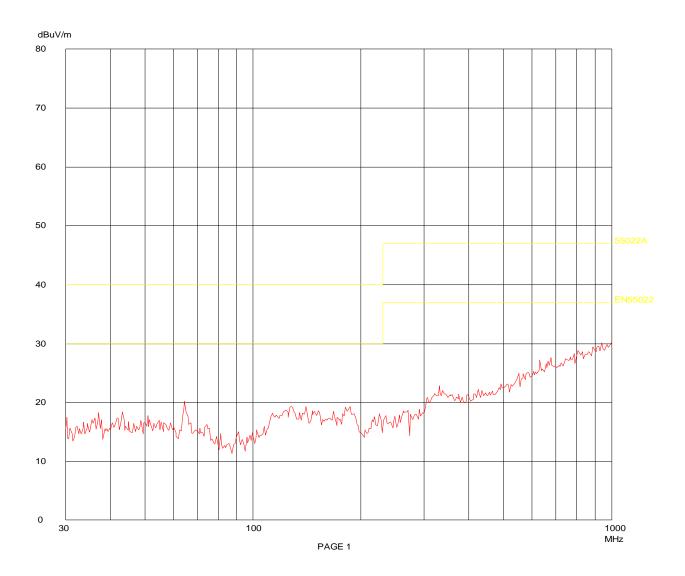


Figure 6: Radiated Emissions C Configuration, Horizontal

Freq (MHz)	Q.P. Level dB(μV/m)	EN 55011 Class B dB(µV/m)	Antenna Pol. Vertical/ Horizontal	Antenna Height (m)	Pass / Fail
77.5200	23.5	30	Vertical	1	Pass
52.332	23.1	30	Vertical	1	Pass
41.352	27.6	30	Vertical	1	Pass
65.396	27.2	30	Vertical	2	Pass
106.076	21.2	30	Vertical	1.2	Pass
164.988	20.7	30	Vertical	1	Pass
64.132	16.1	20	Horizontal	3	Pass

Table 3: Radiated Emissions, C Configuration, Class B Limits – Anechoic Chamber at 10 metres

22. Apr 16 13:14

| Scan Settings (1 Range) | |------- Frequencies -------| Receiver Settings -------| Start Stop Step IF BW Detector M-Time Atten Preamp OpRge 30M 1000M 120k 120k PK 5ms 0dBLD OFF 60dB

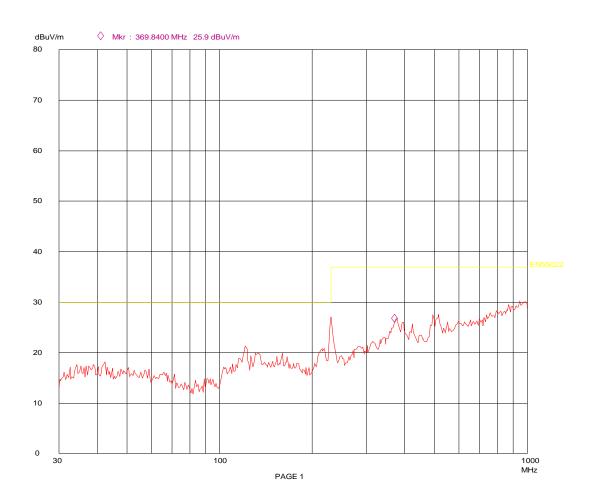


Figure 7: Radiated Emissions D Configuration, Horizontal

22. Apr 16 12:59

| Scan Settings (1 Range) | |------- Frequencies -------| Receiver Settings -------| Start Stop Step IF BW Detector M-Time Atten Preamp OpRge 30M 1000M 120k 120k PK 5ms 0dBLD OFF 60dB

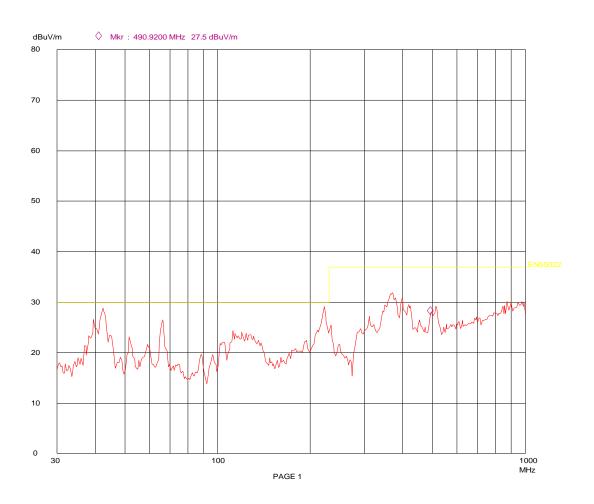


Figure 8: Radiated Emissions D Configuration, Vertical

Report Ref: 16E5939-4 Page 54 of 89

Freq (MHz)	Q.P. Level dB(μV/m)	EN 55011 Class B dB(µV/m)	Antenna Pol. Vertical/ Horizontal	Antenna Height (m)	Pass / Fail
222.270	26.3	30	Vertical	1	Pass
42.461	28.7	30	Vertical	1	Pass
39.644	26.5	30	Vertical	1	Pass
67.232	20.1	30	Vertical	1	Pass
113.880	21.0	30	Vertical	1	Pass
369.168	28.7	37	Vertical	1	Pass
230.460	27.9	37	Horizontal	4	Pass

Table 4: Radiated Emissions, D Configuration, Class B Limits – Anechoic Chamber at 10 metres

Report Ref: 16E5939-4 Page 55 of 89

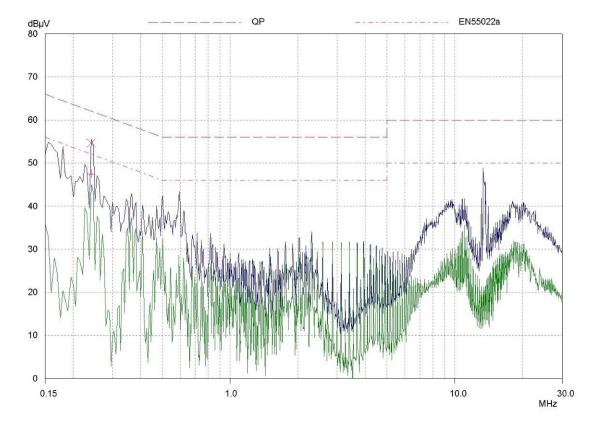
Appendix 5: Conducted Emissions Test Results

14 Jun 2016 10:38

Conducted Emissions

 EUT:
 VCCM-AAAA

 Manuf:
 Vox


 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Live

Scan Settings	(1 —— Fr	Range)		_		Receiver Se	ettings —		
Start 150kHz		op MHz	Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	9kHz	30MHz		LISN				
Final Measurem	nent:	Detectors:	х	QP / + AV					
		Meas Time:	1se	ec					
		Subranges:	25						
		Acc Margin:	20	dB					

Compliance Engineering Ireland Itd Conducted Emissions

14 Jun 2016 10:38

 EUT:
 VCCM-AAAA

 Manuf:
 Vox

 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Live

Scan Settings	(1 Rar —— Frequer			1		Receiver Se	ttings —		
Start 150kHz	Stop 30MHz		Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
10011112	00111112		O. I. I.		1.114.714	20111000	7 1010		5542
Transducer	No.	Start	Stop		Name				
	1	9kHz	3	0MHz	LISN				
Final Measuren	nent:	Detectors:	X QI	⊃/+ AV					
		Meas Time:	1sec	9					
		Subranges:	25						
		Acc Margin:	20 d	В					
Final Measuren	nent Results								
Frequency	QP Level	QP Lim	it C	QP Delta	Phase	PE			
MHz	dΒμV	dΒμV	d	В	-	-			
0.24	54.60	62.10	7	.50	N	gnd			
Frequency	AV Level	AV Lim	it A	V Delta	Phase	PE			
MHz	dΒμV	dΒμV	d	В	-	-			
0.24	47.46	52.10	4	.64	N	gnd			

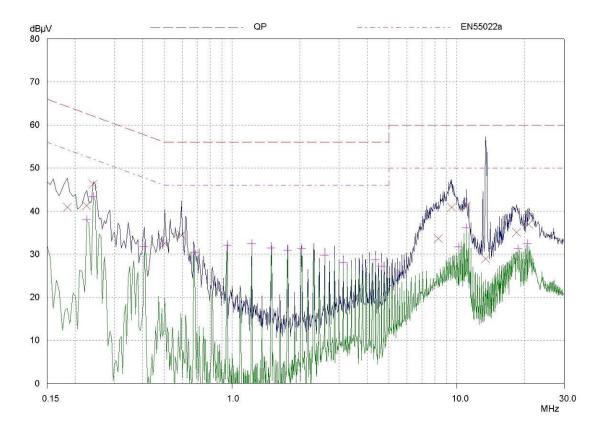
^{*} limit exceeded

14 Jun 2016 10:52

Conducted Emissions
EUT: VCCM-AAAA
Manuf: Vox

 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald


 Test Spec:
 EN 55022 Class B

Comment: Neutral

Scan Settings (1 Range) Frequencies Receiver Settings Start IF BW Stop Step M-Time Detector Atten Preamp OpRge 150kHz 30MHz 5kHz 10kHz PK+AV 20msec Auto 60dB Transducer No. Name 30MHz LISN 9kHz

Final Measurement: Detectors: X QP / + AV

Meas Time: 1sec Subranges: 25 Acc Margin: 20 dB

Compliance Engineering Ireland Itd **Conducted Emissions**

14 Jun 2016 10:52

EUT: VCCM-AAAA Manuf: Vox Op Cond: 230V, 600W
Operator: Brian McDonald
Test Spec: EN 55022 Class B
Comment: Neutral

Scan Settings			Di C-	Receiver Settings					
Stort	50 12 Oct 10 4 1 1 1 1	encies ———	Cton	IE DW	Dotostar		21 CONT.	Droomn	OnBas
Start 150kHz	Stop 30MH:	z	Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
Transacto.	1	9kHz	5.00	30MHz	LISN				
Final Measuren	nent:	Detectors:	Х	QP/+ AV					
		Meas Time:	1s	ec					
		Subranges:	25						
		Acc Margin:	20	dB					
Final Measuren	nent Results								
Frequency	QP Level	QP Lim	it	QP Delta	Phase	PE			
MHz	dBµV	dΒμV		dB	-	=			
0.185	40.90	64.26		23.36	N	gnd			
0.225	41.30	62.63		21.33	N	gnd			
0.24	46.22	62.10		15.88	N	gnd			
0.5	32.49	56.00		23.51	N	gnd			
0.595	34.42	56.00		21.58	N	gnd			
8.24	33.66	60.00		26.34	N	gnd			
9.455	40.87	60.00		19.13	Ν	gnd			
10.99	41.22	60.00		18.78	N	gnd			
13.425	28.91	60.00		31.09	N	gnd			
18.4	35.09	60.00		24.91	N	gnd			
20.89	36.96	60.00		23.04	N	gnd			
					- MANAGEME				
Frequency	AV Level	AV Limi	t	AV Delta	Phase	PE			
MHz	dΒμV	dBµV		dB	-	-			
0.225	38.01	52.63		14.62	N	gnd			
0.24	43.35	52.10		8.75	N	gnd			
0.405	31.83	47.75		15.92	N	gnd			
0.68	30.54	46.00		15.46	N	gnd			
0.95	31.99	46.00		14.01	N	gnd			
1.22	32.44	46.00		13.56	N	gnd			
1.49	31.42	46.00		14.58	N	gnd			
1.765	30.94	46.00		15.06	N	gnd			
2.035	31.25	46.00		14.75	N	gnd			
2.575	29.77	46.00		16.23	N	gnd			

^{*} limit exceeded

Indicated Phase/PE shows Configuration of max. Emission

Final Measurement Results (continued)

14 Jun 2016 10:52

Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dΒμV	dΒμV	dB	-	₹.
3.12	28.08	46.00	17.92	N	gnd
4.34	28.75	46.00	17.25	N	gnd
4.61	27.17	46.00	18.83	N	gnd
10.175	31.70	50.00	18.30	N	gnd
10.985	36.12	50.00	13.88	N	gnd
18.72	31.20	50.00	18.80	N	gnd
20.62	32.43	50.00	17.57	N	gnd

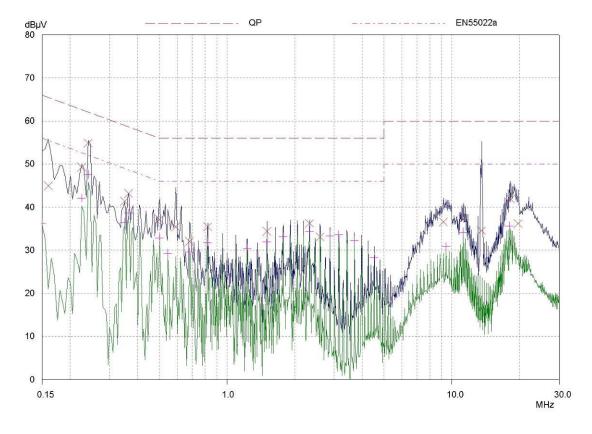
^{*} limit exceeded

14 Jun 2016 09:23

Conducted Emissions

 EUT:
 VCCM-BBBB

 Manuf:
 Vox


 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Live

Scan Settings		Range) quencies ———				Receiver Se	ettings —		
Start 150kHz	Sto 301	op MHz	Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	9kHz		30MHz	LISN				
Final Measuren	nent:	Detectors:	X	QP/+ AV					
		Meas Time:	1se	ec					
		Subranges:	25						
		Acc Margin	20	dB					

Compliance Engineering Ireland Itd **Conducted Emissions**

14 Jun 2016 09:23

EUT: VCCM-BBBB Vox Manuf: Op Cond: 230V, 600W
Operator: Brian McDonald
Test Spec: EN 55022 Class B

Comment: Live

Freque		encies ————			 Receiver Se 	Receiver Settings				
Start Stop			Step IF BW Dete 5kHz 10kHz PK+		M-Time	Atten	Preamp	OpRge		
150kHz	30MH;	30MHz 5kHz		PK+AV	20msec	Auto	OFF	60dB		
Transducer	No.	Start	Stop	Name						
	1	9kHz	30MHz	LISN						
Final Measurer	ment:	Detectors:	X QP / + AV							
		Meas Time:	1sec							
		Subranges:	25							
		Acc Margin:	20 dB							
Final Measurer	ment Results									
Frequency	QP Level	QP Limit	QP Delta	Phase	PE					
MHz	dBµV	dΒμV	dB	-	=					
0.16	44.91	65.46	20.55	N	gnd					
0.225	49.24	62.63	13.39	N	gnd					
0.24	54.80	62.10	7.30	N	gnd					
0.35	41.36	58.96	17.60	N	gnd					
0.365	43.19	58.61	15.42	N	gnd					
0.5	37.14	56.00	18.86	N	gnd					
0.59	35.43	56.00	20.57	N	gnd					
0.68	32.02	56.00	23.98	N	gnd					
0.82	35.44	56.00	20.56	N	gnd					
1.5	34.40	56.00	21.60	N	gnd					
2.32	36.24	56.00	19.76	N	gnd					
2.59	33.05	56.00	22.95	N	gnd					
9.15	36.53	60.00	23.47	N	gnd					
11.19	37.21	60.00	22.79	N	gnd					
13.55	34.54	60.00	25.46	Ν	gnd					
18.29	41.81	60.00	18.19	N	gnd					
19.655	36.21	60.00	23.79	N	gnd					
Frequency	AV Level	AV Limit	AV Delta	Phase	PE					
MHz	dΒμV	dΒμV	dB	-	-					
0.15	36.22	56.00	19.78	N	gnd					
0.225	42.08	52.63	10.55	N	gnd					
0.24	47.54	52.10	4.56	N	gnd					
0.35	36.46	48.96	12.50	N	gnd					

^{*} limit exceeded

Indicated Phase/PE shows Configuration of max. Emission

Final Measurement Results (continued)

14 Jun 2016 09:23

Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBµV	dBµV	dB	-	=
0.365	38.55	48.61	10.06	N	
					gnd
0.5	32.82	46.00	13.18	N	gnd
0.545	29.29	46.00	16.71	N	gnd
0.68	29.51	46.00	16.49	N	gnd
0.82	31.69	46.00	14.31	N	gnd
1.23	30.44	46.00	15.56	N	gnd
1.5	31.92	46.00	14.08	N	gnd
1.775	33.09	46.00	12.91	N	gnd
2.32	34.39	46.00	11.61	N	gnd
2.865	33.34	46.00	12.66	N	gnd
3.14	33.58	46.00	12.42	N	gnd
3.685	32.28	46.00	13.72	N	gnd
4.505	28.37	46.00	17.63	N	gnd
9.42	30.86	50.00	19.14	N	gnd
11.195	34.21	50.00	15.79	N	gnd
18.02	35.60	50.00	14.40	N	and

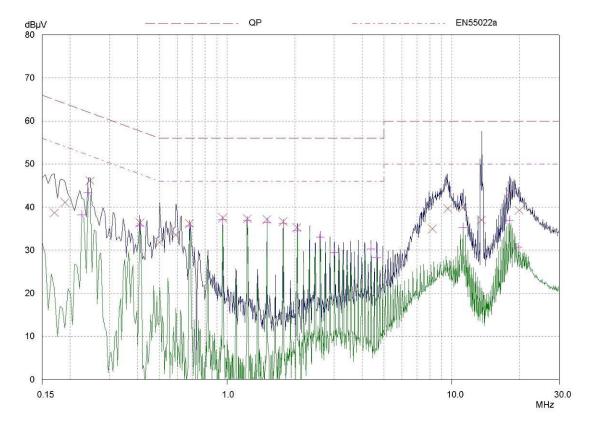
^{*} limit exceeded

14 Jun 2016 09:38

Conducted Emissions

 EUT:
 VCCM-BBBB

 Manuf:
 Vox


 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Neutral

Scan Settings		Range) quencies ———				Receiver Se	ttings —		
Start 150kHz	Sto 301	op MHz	Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	9kHz		30MHz	LISN				
Final Measurement:		Detectors:	X	QP/+ AV					
		Meas Time:	1s	ec					
		Subranges:	25						
		Acc Margin	20	dB					

Compliance Engineering Ireland Itd **Conducted Emissions**

14 Jun 2016 09:38

EUT: VCCM-BBBB Vox Manuf: Manut:
Op Cond: 230V, 600W
Operator: Brian McDonald
Test Spec: EN 55022 Class B
Neutral

Frequ		encies ————		7300 MA CO	Receiver Settings					
Start	Stop Step				M-Time	Atten	Preamp	OpRge		
150kHz	30MHz	z 51	kHz 10kHz	PK+AV	20msec	Auto	OFF	60dB		
Transducer	No.	Start	Stop	Name						
	1	9kHz	30MHz	LISN						
Final Measuren	nent:	Detectors:	X QP / + AV							
		Meas Time:	1sec							
		Subranges:	25							
		Acc Margin:	20 dB							
Final Measuren	nent Results									
Frequency	QP Level	QP Limit	QP Delta	Phase	PE					
MHz	dΒμV	dΒμV	dB	-	-					
0.17	38.68	64.96	26.28	N	gnd					
0.19	41.04	64.04	23.00	N	gnd					
0.245	46.12	61.92	15.80	N	gnd					
0.41	36.35	57.65	21.30	N	gnd					
0.5	31.87	56.00	24.13	N	gnd					
0.59	33.54	56.00	22.46	N	gnd					
0.68	36.16	56.00	19.84	Ν	gnd					
0.955	37.50	56.00	18.50	N	gnd					
1.23	37.32	56.00	18.68	Ν	gnd					
1.5	37.14	56.00	18.86	N	gnd					
1.775	36.68	56.00	19.32	N	gnd					
2.045	35.24	56.00	20.76	N	gnd					
8.19999	34.98	60.00	25.02	N	gnd					
9.58	39.70	60.00	20.30	N	gnd					
11.195	39.87	60.00	20.13	Ν	gnd					
13.55	37.01	60.00	22.99	N	gnd					
18.02	43.34	60.00	16.66	N	gnd					
19.935	39.24	60.00	20.76	N	gnd					
Frequency	AV Level	AV Limit	AV Delta	Phase	PE					
MHz	dBµV	dBµV	dB	-	-					
0.225	38.25	52.63	14.38	N	gnd					
U.ZZJ	30.23	32.03	14.30							
0.24	43.42	52.10	8.68	N	gnd					

^{*} limit exceeded

Indicated Phase/PE shows Configuration of max. Emission

Final Measurement Results (continued)

14 Jun 2016 09:38

Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBµV	dBµV	dB	-	=
0.00	05.50	10.00	10.11		
0.68	35.59	46.00	10.41	N	gnd
0.955	37.05	46.00	8.95	N	gnd
1.23	36.85	46.00	9.15	N	gnd
1.5	36.41	46.00	9.59	N	gnd
1.775	36.20	46.00	9.80	N	gnd
2.04999	34.56	46.00	11.44	N	gnd
2.595	33.04	46.00	12.96	N	gnd
3.005	29.49	46.00	16.51	N	gnd
4.37	30.34	46.00	15.66	N	gnd
4.64	28.30	46.00	17.70	N	gnd
11.195	35.32	50.00	14.68	N	gnd
18.025	36.94	50.00	13.06	N	gnd
19.665	30.67	50.00	19.33	N	gnd

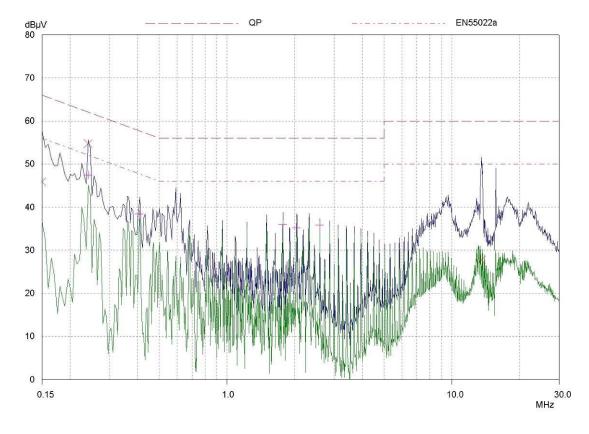
^{*} limit exceeded

14 Jun 2016 08:46

Conducted Emissions

 EUT:
 VCCM-CCCC

 Manuf:
 Vox


 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Live

Scan Settings		Range)				PER 17 (200 MIN 15) (1844)			
Start 150kHz	Stop		Step 5kHz	IF BW 10kHz	Detector PK+AV	Receiver SeM-Time20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	9kHz		30MHz	LISN				
Final Measurem	nent:	Detectors:	х	QP / + AV					
		Meas Time:	1se	ЭС					
		Subranges:	25						
		Acc Margin:	20	dB					

Compliance Engineering Ireland Itd **Conducted Emissions**

14 Jun 2016 08:46

EUT: VCCM-CCCC Vox Manuf: Op Cond: 230V, 600W
Operator: Brian McDonald
Test Spec: EN 55022 Class B
Comment: Live

Scan Settings	(1 Ra —— Freque		Receiver Se	Receiver Settings				
Start	Stop	St	ep IFBW	Detector	M-Time	Atten	Preamp	OpRge
150kHz	30MHz	z 5k	Hz 10kHz	PK+AV	20msec	Auto	OFF	60dB
Transducer	No.	Start	Stop	Name				
	1	9kHz	30MHz	LISN				
Final Measurer	ment:	Detectors:	X QP / + AV					
		Meas Time:	1sec					
		Subranges:	25					
		Acc Margin:	20 dB					
Final Measurer	ment Results							
Frequency	QP Level	QP Limit	QP Delta	Phase	PE			
MHz	dBµV	dΒμV	dB	=	-			
0.15	45.87	66.00	20.13	N	gnd			
0.24	54.72	62.10	7.38	N	gnd			
13.535	27.75	60.00	32.25	N	gnd			
F	AV (1	A) (1 ! !)	01 / D - H -	Diversi	DE.			
Frequency	AV Level	AV Limit	AV Delta	Phase	PE			
MHz	dΒμV	dBµV	dB		-			
0.24	47.44	52.10	4.66	N	gnd			
0.405	38.38	47.75	9.37	N	gnd			
1.765	35.99	46.00	10.01	N	gnd			
2.035	35.23	46.00	10.77	N	gnd			
2.58	35.86	46.00	10.14	N	gnd			

^{*} limit exceeded

Final Measurement Results (continued)

14 Jun 2016 09:03

Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBµV	dBµV	dB	=	=
0.68	36.63	46.00	9.37	N	gnd
0.95	38.17	46.00	7.83	N	gnd
1.22	37.31	46.00	8.69	N	gnd
1.495	37.48	46.00	8.52	N	gnd
1.765	36.46	46.00	9.54	N	gnd
2.04	33.78	46.00	12.22	N	gnd
2.445	32.17	46.00	13.83	N	gnd
2.99	31.74	46.00	14.26	N	gnd
3.805	30.65	46.00	15.35	N	gnd
4.755	30.73	46.00	15.27	N	gnd
6.385	32.25	50.00	17.75	N	gnd
7.2	32.73	50.00	17.27	N	gnd
8.83	30.54	50.00	19.46	N	gnd
18.61	26.78	50.00	23.22	N	gnd

^{*} limit exceeded

14 Jun 2016 09:03

Conducted Emissions

 EUT:
 VCCM-CCCC

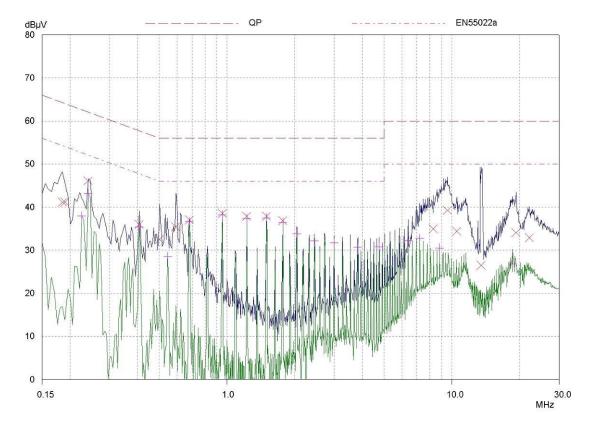
 Manuf:
 Vox

 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

 Comment:
 Neutral


Scan Settings (1 Range) Frequencies Receiver Settings Start IF BW Stop Step M-Time OpRge Detector Atten Preamp 150kHz 30MHz 5kHz 10kHz PK+AV 20msec Auto 60dB

Transducer No. Start Stop Name

1 9kHz 30MHz LISN

Final Measurement: Detectors: X QP / + AV Meas Time: 1sec

Subranges: 25
Acc Margin: 20 dB

Compliance Engineering Ireland Itd Conducted Emissions

14 Jun 2016 09:03

 EUT:
 VCCM-CCC

 Manuf:
 Vox

 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Neutral

Frequer		encies ————			Receiver Settings				
Start Stop			Step IF BW		M-Time	Atten	Preamp	OpRge	
150kHz	30MHz	z 5l	kHz 10kHz	PK+AV	20msec	Auto	OFF	60dB	
Transducer	No.	Start	Stop	Name					
	1	9kHz	30MHz	LISN					
Final Measurer	ment:	Detectors:	X QP / + AV						
		Meas Time:	1sec						
		Subranges:	25						
		Acc Margin:	20 dB						
Final Measurer	ment Results								
Frequency	QP Level	QP Limit	QP Delta	Phase	PE				
MHz	dBµV	dΒμV	dB	=	-				
0.185	41.14	64.26	23.12	N	gnd				
0.19	41.20	64.04	22.84	N	gnd				
0.24	46.12	62.10	15.98	N	gnd				
0.405	35.99	57.75	21.76	N	gnd				
0.5	32.51	56.00	23.49	N	gnd				
0.59	35.45	56.00	20.55	N	gnd				
0.68	37.05	56.00	18.95	N	gnd				
0.95	38.52	56.00	17.48	N	gnd				
1.22	37.90	56.00	18.10	N	gnd				
1.495	37.90	56.00	18.10	N	gnd				
1.765	36.86	56.00	19.14	N	gnd				
8.25	34.98	60.00	25.02	N	gnd				
9.565	39.24	60.00	20.76	N	gnd				
10.485	34.37	60.00	25.63	N	gnd				
13.475	26.52	60.00	33.48	N	gnd				
19.29	34.08	60.00	25.92	N	gnd				
22.07	32.93	60.00	27.07	N	gnd				
Frequency	AV Level	AV Limit	AV Delta	Phase	PE				
MHz	dBµV	dBµV	dB	-	-				
0.225	37.96	52.63	14.67	N	gnd				
0.24	43.23	52.10	8.87	N	gnd				
0.405	35.42	47.75	12.33	N	gnd				
0.545	28.53	46.00	17.47	N	gnd				

^{*} limit exceeded

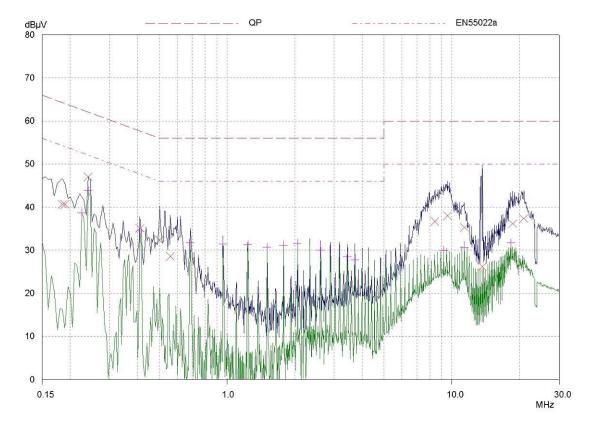
Indicated Phase/PE shows Configuration of max. Emission

14 Jun 2016 10:23

Conducted Emissions

 EUT:
 VCCM-DDDD

 Manuf:
 Vox


 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Neutral

Scan Settings		(1 Range) Frequencies ——		_		 Receiver Se 	ttinas —		
Start 150kHz		Stop 30MHz	Step 5kHz	IF BW 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	9kHz		30MHz	LISN				
Final Measuren	nent:	Detectors:	X	QP/+ AV					
		Meas Time	: 1s	ec					
		Subranges:	25						
		Acc Margin	: 20	dB					

Compliance Engineering Ireland Itd **Conducted Emissions**

14 Jun 2016 10:23

EUT: VCCM-DDDD Manuf: Vox Op Cond: 230V, 600W
Operator: Brian McDonald
Test Spec: EN 55022 Class B
Comment: Neutral

Scan Settings		(1 Range) Frequencies				Receiver Settings			
Chard	55 X C. 10 4 X X 20 C		Otan IE DVA(Detector		21 CONT. 2000	D	O=D==	
Start 150kHz	Stop 30MHz		Step IF BW 5kHz 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB	
Transducer	No.	Start	Stop	Name					
Transducei	1	9kHz	30MHz	LISN					
Final Measurer	ment:	Detectors:	X QP / + AV						
i iliai Moasaroi	none.	Meas Time:	1sec						
		Subranges:	25						
		Acc Margin:	20 dB						
Final Measurer	ment Results								
Frequency	QP Level	QP Limi	QP Delta	Phase	PE				
MHz	dBµV	dΒμV	dB	-	=				
0.185	40.65	64.26	23.61	N	gnd				
0.19	40.61	64.04	23.43	N	gnd				
0.24	46.98	62.10	15.12	N	gnd				
0.41	35.11	57.65	22.54	N	gnd				
0.5	32.35	56.00	23.65	N	gnd				
0.56	28.53	56.00	27.47	N	gnd				
8.385	36.65	60.00	23.35	N	gnd				
9.545	37.99	60.00	22.01	N	gnd				
11.38	35.29	60.00	24.71	N	gnd				
13.635	26.22	60.00	33.78	N	gnd				
18.655	36.15	60.00	23.85	N	gnd				
20.835	37.36	60.00	22.64	N	gnd				
Frequency	AV Level	AV Limit	AV Delta	Phase	PE				
MHz	dBµV	dΒμV	dB	=	2				
0.225	38.67	52.63	13.96	N	gnd				
0.24	43.82	52.10	8.28	N	gnd				
0.41	34.42	47.65	13.23	N	gnd				
0.685	31.69	46.00	14.31	N	gnd				
0.96	31.48	46.00	14.52	N	gnd				
1.235	31.26	46.00	14.74	N	gnd				
1.505	30.65	46.00	15.35	N	gnd				
1.78	31.10	46.00	14.90	N	gnd				
2.055	31.56	46.00	14.44	N	gnd				

^{*} limit exceeded

Indicated Phase/PE shows Configuration of max. Emission

Final Measurement Results (continued)

14 Jun 2016 10:23

Frequency MHz	AV Level dΒμV	AV Limit dBµV	AV Delta dB	Phase -	PE -
2.605	30.06	46.00	15.94	N	gnd
3.425	28.54	46.00	17.46	N	gnd
3.7	27.72	46.00	18.28	N	gnd
9.185	29.96	50.00	20.04	N	gnd
11.375	30.57	50.00	19.43	N	gnd
18.365	31.68	50.00	18.32	N	gnd

^{*} limit exceeded

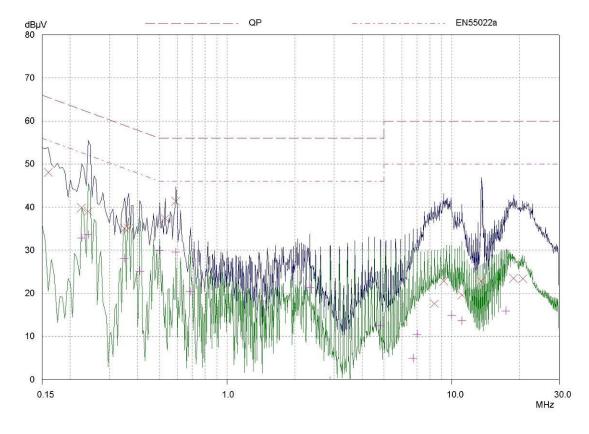
Compliance Engineering Ireland Itd

14 Jun 2016 09:56

Conducted Emissions

 EUT:
 VCCM-DDDD

 Manuf:
 Vox


 Op Cond:
 230V, 600W

 Operator:
 Brian McDonald

 Test Spec:
 EN 55022 Class B

Comment: Live

Scan Settings		Range)				D			
Start 150kHz	Sto	quencies ——— p MHz	Step 5kHz	IF BW 10kHz	Detector PK+AV	Receiver SeM-Time20msec	Atten Auto	Preamp OFF	OpRge 60dB
Transducer	No.	Start	Stop		Name				
	1	9kHz		30MHz	LISN				
Final Measuren	nent:	Detectors:	X	QP/+ AV					
		Meas Time:	1s	ec					
		Subranges:	25						
		Acc Margin:	20	dB					

Compliance Engineering Ireland Itd **Conducted Emissions**

14 Jun 2016 09:56

EUT: VCCM-DDDD Manuf: Vox Op Cond:
Operator:
Test Spec: 230V, 600W Brian McDonald EN 55022 Class B

Comment: Live

Scan Settings	(1 Ra	/700/000	D : 0 !!!					
8	— Freque		IE BW	211	Receiver Se	CANCEL TO SECURE		
Start 150kHz	Stop 30MHz		ep IF BW Hz 10kHz	Detector PK+AV	M-Time 20msec	Atten Auto	Preamp OFF	OpRge 60dB
TOURHZ	SUMHZ	2 56	HZ TUKHZ	PK+AV	Zumsec	Auto	OFF	buab
Transducer	No.	Start	Stop	Name				
	1	9kHz	30MHz	LISN				
Final Measurer	ment:	Detectors:	X QP / + AV					
		Meas Time:	1sec					
		Subranges:	25					
		Acc Margin:	20 dB					
Final Measurer	ment Results							
Frequency	QP Level	QP Limit	QP Delta	Phase	PE			
MHz	dBµV	dΒμV	dB	-	=			
0.16	48.07	65.46	17.39	N	gnd			
0.225	39.85	62.63	22.78	N	gnd			
0.24	38.97	62.10	23.13	N	gnd			
0.35	35.05	58.96	23.91	N	gnd			
0.365	35.03	58.61	23.58	N	gnd			
0.53	37.36	56.00	18.64	N	gnd			
0.59	41.40	56.00	14.60	N	gnd			
8.365	17.59	60.00	42.41	N	gnd			
9.185	22.81	60.00	37.19	N	gnd			
11.1	19.58	60.00	40.42	N	gnd			
13.465	22.84	60.00	37.16	N	gnd			
18.795	23.47	60.00	36.53	N	gnd			
20.69	23.39	60.00	36.61	N	gnd			
<u></u>		***************************************	W-1					
Frequency	AV Level	AV Limit	AV Delta	Phase	PE			
MHz	dBµV	dΒμV	dB	-	Ξ			
0.225	32.81	52.63	19.82	N	gnd			
0.24	33.61	52.10	18.49	N	gnd			
0.35	28.07	48.96	20.89	N	gnd			
0.41	25.17	47.65	22.48	N	gnd			
0.5	29.98	46.00	16.02	N	gnd			
0.59	29.55	46.00	16.45	N	gnd			
0.685	20.47	46.00	25.53	N	gnd			
2.33	21.37	46.00	24.63	N	gnd			

^{*} limit exceeded

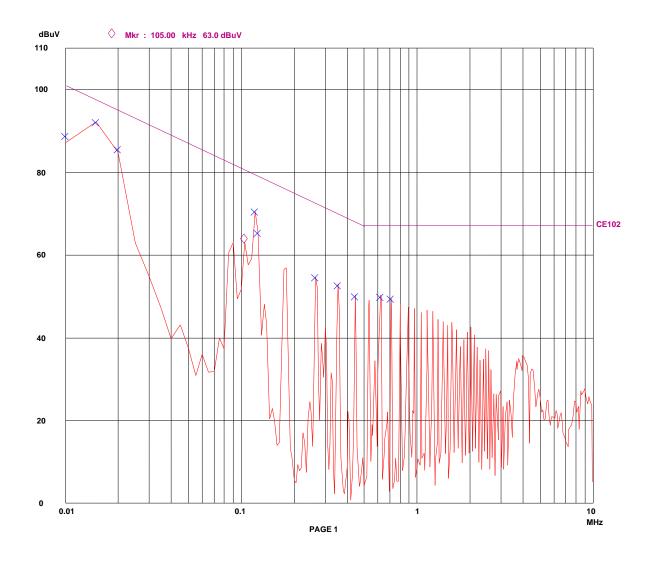
Indicated Phase/PE shows Configuration of max. Emission

Final Measurement Results (continued)

14 Jun 2016 09:56

Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dΒμV	dΒμV	dB	-	₹.
2.875	-0.31	46.00	46.31	N	gnd
3.425	-1.04	46.00	47.04	N	gnd
3.7	-2.10	46.00	48.10	N	gnd
4.795	12.54	46.00	33.46	N	gnd
6.715	4.91	50.00	45.09	N	gnd
6.99	10.48	50.00	39.52	N	gnd
10.005	14.90	50.00	35.10	N	gnd
11.1	13.62	50.00	36.38	N	gnd
17.405	15.95	50.00	34.05	N	and

^{*} limit exceeded

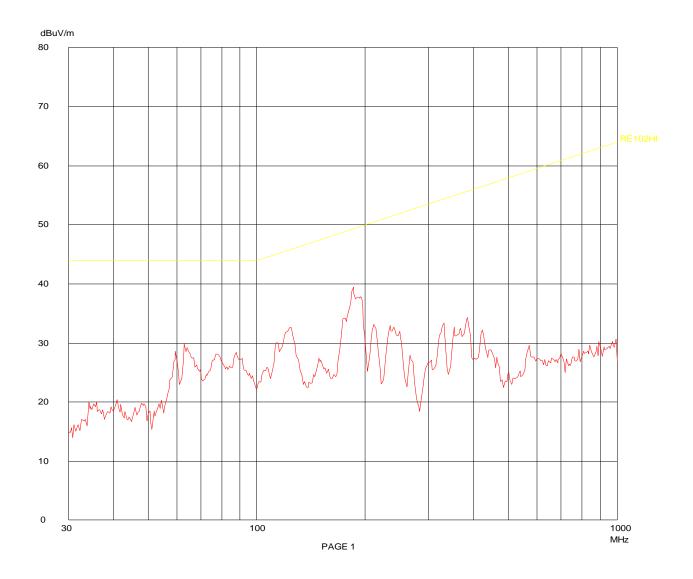

Compliance Engineering Ireland Itd Conducted Emissions

25. Jul 16 13:03

Manuf: Vox Power
Op Cond: Normal
Operator: L Brien
Test Spec: MIL-STD
Comment: Neutral

Final Measurement: x AV Transducer No. Start Stop Name
Meas Time: 1 s 1 9k 30M LISN

Meas Time: 1 s
Subranges: 25
Acc Margin: 20dB

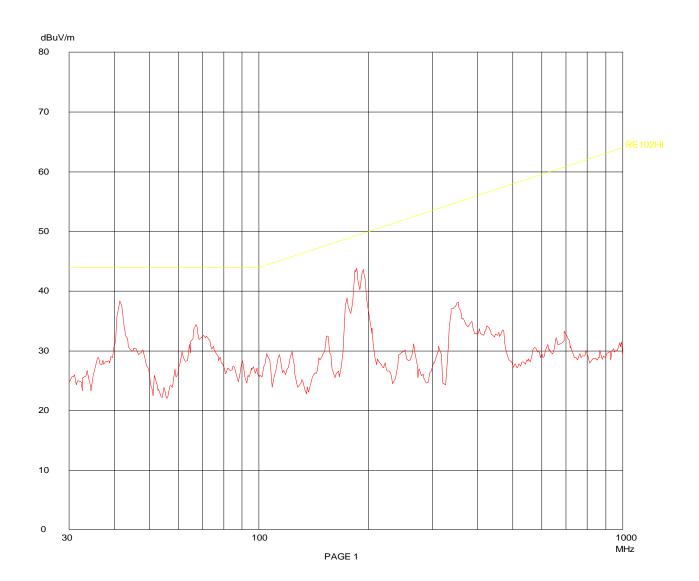


CE102 10 kHz to 10 MHz

15. Jul 16 10:43

Scan Se	ettings (1 F	Range)					
F	requenci	es		Rece	eiver Se	ttings	-
Start	Stop	Step	IF BW	Detector	M-Tim	e Atten Pream	np OpRge
30M	1000M	120k	120	N PK	5me	Odbi D OFF	60dB

Transducer No. Start Stop Name
1 9 20M 1000M CEIL615
21 30M 1000M BILOG889



RE102 30 to 1000 MHz: Radiated Emissions Horizontal

15. Jul 16 10:35

Scan Settings (1 Range)							
F	requenci	es		Rece	iver Se	ttings	-
Start	Stop	Step	IF BW	Detector	M-Tim	e Atten Pream	np OpRge
30M	1000M	120k	120	k PK	5ms	0dBLD OFF	60dB

Transducer No. Start Stop Name
1 9 20M 1000M CEIL615
21 30M 1000M BILOG889

RE102 30 to 1000 MHz: Radiated Emissions Vertical

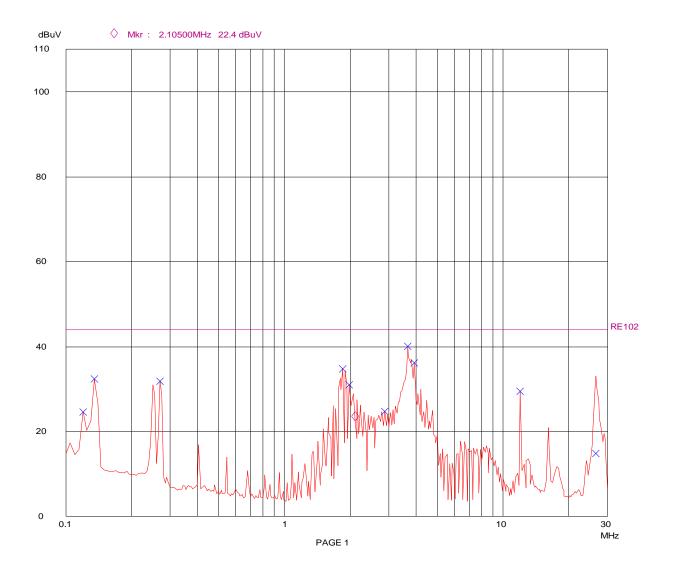
Compliance Engineering Ireland Itd Conducted Emissions

25. Jul 16 13:21

Manuf: Nortev Op Cond: Normal

Operator: Grace Monahan & Darren Dunne

Test Spec: EN 55022 Class B


Comment: Neutral

Scan Settings (1 Range)

|------ Frequencies -------|----- Receiver Settings ------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
100k 30M 5k 10k AV 20ms AUTO LN OFF 60dB

Final Measurement: x AV

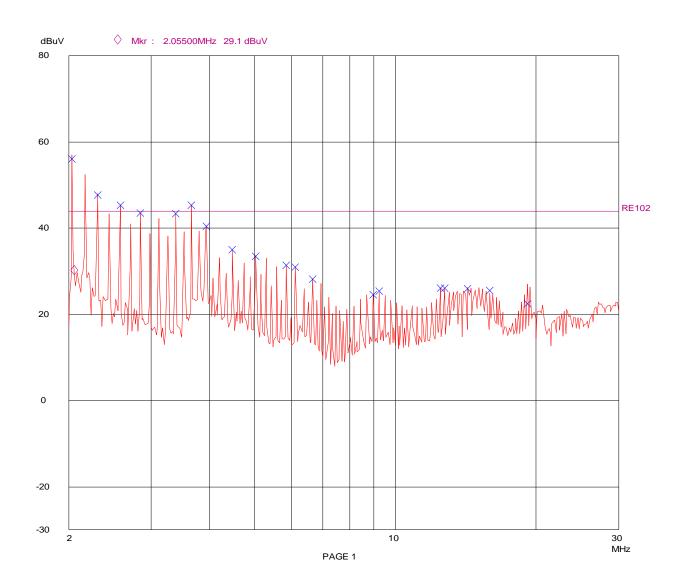
Meas Time: 1 s Subranges: 25 Acc Margin: 20dB Transducer No. Start Stop Name 7 10k 30M ROD

RE102 2 to 30MHz: Radiated Emissions Enclosed

Compliance Engineering Ireland Itd Conducted Emissions

15. Jul 16 12:19

EUT: GSM MODEM Manuf: Vanderbilt


Operator: D Dunne / G Monahan Test Spec: EN 55022 Class B

Comment: outputs

Scan Settings (1 Range)

|------ Frequencies ------||------- Receiver Settings ------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
2M 30M 5k 10k AV 20ms AUTO LN ON 60dB

Meas Time: 1 s Subranges: 25 Acc Margin: 20dB

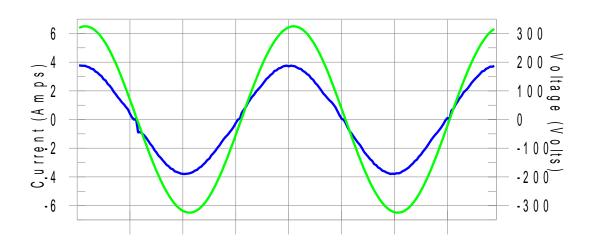
RE102 2 to 30MHz: Radiated Emissions No Enclosure

Report Ref: 16E5939-4 Page 83 of 89

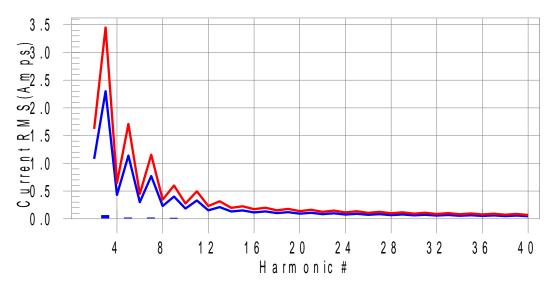
Appendix 6: Harmonics & Flicker Test Results Harmonics - Class-A per Ed. 3.0 (2005-11)(Run time)

EUT: VCCM 600 M-CCCC Tested by: L B

Test category: Class-A per Ed. 3.0 (2005-11) (European limits)
Test date: 18/04/2016 Start time: 10:23:00 E Test Margin: 100


End time: 10:33:21 Data file name: H-002331.cts data

Test duration (min): 10 **Comment: Comment**


Customer: Vox

Source qualification: Normal Test Result: Pass

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Test result: Pass Worst harmonic was #39 with 13.96% of the limit.

Report Ref: 16E5939-4 Page 84 of 89

Current Test Result Summary (Run time)

EUT: VCCM 600 M-CCCC Tested by: L B

Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test date: 18/04/2016 Start time: 10:23:00 E Test Margin: 100 End time: 10:33:21

Data file name: H-002331.cts_data Test duration (min): 10

Comment: Comment Customer: Vox

Test Result: Pass Source qualification: Normal

I-THD(%): 2.83 THC(A): 0.07 POHC(A): 0.029 POHC Limit(A): 0.251

Highest parameter values during test:

V_RMS (Volts): 229.92

I_Peak (Amps): 3.869

I_Fund (Amps): 2.616

Power (Watts): 598.2 Frequency(Hz): 50.00 I_RMS (Amps): 2.620 1.480 Crest Factor: **Power Factor:** 0.993

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.001	1.080	0.1	0.001	1.620	0.08	Pass
3	0.060	2.300	2.6	0.062	3.450	1.79	Pass
4	0.001	0.430	0.2	0.001	0.645	0.16	Pass
5	0.017	1.140	1.5	0.018	1.710	1.05	Pass
3 4 5 6	0.000	0.300	0.1	0.001	0.450	0.13	Pass
7	0.019	0.770	2.4	0.019	1.155	1.63	Pass
8	0.000	0.230	0.1	0.000	0.345	0.13	Pass
9	0.012	0.400	3.0	0.012	0.600	2.06	Pass
10	0.000	0.184	0.1	0.000	0.276	0.12	Pass
11	0.004	0.330	1.3	0.004	0.495	0.90	Pass
12	0.000	0.153	0.1	0.000	0.230	0.15	Pass
13	0.002	0.210	1.0	0.002	0.315	0.76	Pass
14	0.000	0.131	0.2	0.000	0.197	0.21	Pass
15	0.006	0.150	3.8	0.006	0.225	2.63	Pass
16	0.000	0.115	0.2	0.000	0.173	0.23	Pass
17	0.008	0.132	5.8	0.008	0.199	3.93	Pass
18	0.000	0.102	0.2	0.000	0.153	0.19	Pass
19	0.009	0.118	7.5	0.009	0.178	5.16	Pass
20	0.000	0.092	0.2	0.000	0.138	0.24	Pass
21	0.010	0.107	9.0	0.010	0.161	6.17	Pass
22	0.000	0.084	0.3	0.000	0.125	0.34	Pass
23	0.010	0.098	10.0	0.010	0.147	6.81	Pass
24	0.000	0.077	0.3	0.000	0.115	0.30	Pass
25	0.010	0.090	10.7	0.010	0.135	7.31	Pass
26	0.000	0.071	0.5	0.000	0.106	0.47	Pass
27	0.009	0.083	11.3	0.010	0.125	7.98	Pass
28	0.001	0.066	1.0	0.001	0.099	1.00	Pass
29	0.009	0.078	11.9	0.009	0.116	8.16	Pass
30	0.000	0.061	0.6	0.000	0.092	0.52	Pass
31	0.009	0.073	12.7	0.009	0.109	8.63	Pass
32	0.000	0.058	0.8	0.001	0.086	0.69	Pass
33	0.009	0.068	13.3	0.009	0.102	9.14	Pass
34	0.000	0.054	0.4	0.000	0.081	0.41	Pass
35	0.009	0.064	13.5	0.009	0.096	9.27	Pass
36	0.000	0.051	0.4	0.000	0.077	0.39	Pass
37	0.008	0.061	13.7	0.009	0.091	9.40	Pass
38	0.000	0.048	0.4	0.000	0.073	0.44	Pass
39	0.008	0.058	14.0	0.008	0.087	9.51	Pass
40	0.000	0.046	0.6	0.000	0.069	0.63	Pass

Report Ref: 16E5939-4 Page 85 of 89

Voltage Source Verification Data (Run time)

EUT: VCCM 600 M-CCCC Tested by: L B

Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test Margin: 100 Test date: 18/04/2016 Start time: 10:23:00 End time: 10:33:21

Test duration (min): 10 Data file name: H-002331.cts_data

Comment: Comment Customer: Vox

Test Result: Pass Source qualification: Normal

Highest parameter values during test:

 Voltage (Vrms):
 229.92
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 3.869
 I_RMS (Amps):
 2.620

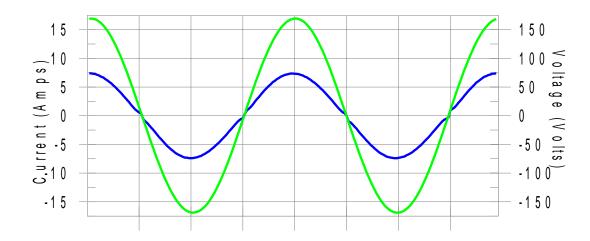
 I_Fund (Amps):
 2.616
 Crest Factor:
 1.480

 Power (Watts):
 598.2
 Power Factor:
 0.993

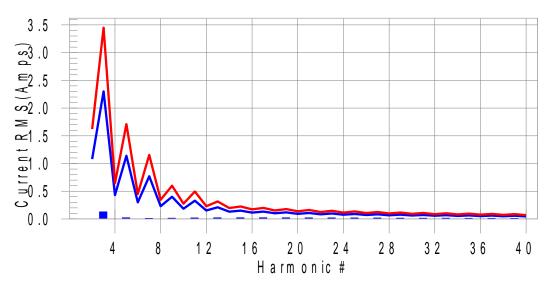
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.078	0.460	16.93	ОК
3	0.607	2.068	29.36	OK
2 3 4 5 6	0.075	0.460	16.25	OK
5	0.047	0.919	5.09	OK
6	0.043	0.460	9.30	OK
7	0.038	0.689	5.47	OK
8	0.026	0.460	5.63	OK
9	0.031	0.460	6.70	OK
10	0.015	0.460	3.16	OK
11	0.014	0.230	5.97	OK
12	0.012	0.230	5.37	OK
13	0.021	0.230	9.21	OK
14	0.019	0.230	8.13	OK
15	0.019	0.230	8.28	OK
16	0.013	0.230	5.84	OK
17	0.013	0.230	5.82	OK
18	0.010	0.230	4.41	OK
19	0.015	0.230	6.45	OK
20	0.008	0.230	3.50	OK
21	0.020	0.230	8.58 5.44	OK OK
22 23	0.012 0.021	0.230 0.230	5.41 9.18	OK OK
23 24	0.021	0.230 0.230	3.83	OK
24 25	0.009	0.230	3.63 8.33	OK
26 26	0.013	0.230	5.48	OK
20 27	0.013	0.230	7.48	OK OK
28	0.009	0.230	4.00	OK OK
29	0.012	0.230	5.10	OK OK
30	0.008	0.230	3.33	OK OK
31	0.013	0.230	5.73	OK
32	0.007	0.230	3.09	οκ
33	0.017	0.230	7.19	OK
34	0.004	0.230	1.85	ΟK
35	0.018	0.230	7.90	ΟK
36	0.004	0.230	1.88	OK
37	0.021	0.230	9.22	ΟK
38	0.004	0.230	1.79	OK
39	0.018	0.230	7.74	OK
40	0.007	0.230	2.83	OK

Report Ref: 16E5939-4 Page 86 of 89

EUT: VCCM 600M=CCCC


Tested by: L B s) Test Margin: 100 Test category: Class-A per Ed. 3.0 (2005-11) (European limits)
Test date: 18/04/2016 Start time: 10:36:48 E Test date: 18/04/2016 Test duration (min): 10 Comment: Comments End time: 10:47:09

Data file name: H-002332.cts_data


Customer: Vox

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Test result: Pass Worst harmonic was #31 with 22.66% of the limit.

Report Ref: 16E5939-4 Page 87 of 89

Current Test Result Summary (Run time)

EUT: VCCM 600M=CCCC Tested by: L B

Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test date: 18/04/2016 Start time: 10:36:48 E Test Margin: 100 End time: 10:47:09

Data file name: H-002332.cts_data Test duration (min): 10

Comment: Comments Customer: Vox

Test Result: Pass Source qualification: Normal

THC(A): 0.15 I-THD(%): 2.98 POHC(A): 0.055 POHC Limit(A): 0.251

Highest parameter values during test:

V_RMS (Volts): 119.65

I_Peak (Amps): 7.472

I_Fund (Amps): 5.117

Power (Watts): 611.7 Frequency(Hz): 50.00 I_RMS (Amps): 5.120 1.460 Crest Factor: **Power Factor:** 0.999

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.003	1.080	0.3	0.004	1.620	0.23	Pass
3	0.128	2.300	5.6	0.130	3.450	3.77	Pass
4	0.001	0.430	0.1	0.001	0.645	0.17	Pass
5	0.024	1.140	2.1	0.024	1.710	1.43	Pass
6	0.000	0.300	0.1	0.001	0.450	0.12	Pass
7	0.012	0.770	1.6	0.012	1.155	1.07	Pass
8	0.000	0.230	0.2	0.001	0.345	0.18	Pass
9	0.016	0.400	4.0	0.017	0.600	2.75	Pass
10	0.000	0.184	0.1	0.000	0.276	0.15	Pass
11	0.021	0.330	6.2	0.021	0.495	4.17	Pass
12	0.000	0.153	0.1	0.000	0.230	0.14	Pass
13	0.023	0.210	10.9	0.023	0.315	7.37	Pass
14	0.000	0.131	0.2	0.001	0.197	0.26	Pass
15	0.024	0.150	16.0	0.024	0.225	10.77	Pass
16	0.000	0.115	0.2	0.001	0.173	0.35	Pass
17	0.024	0.132	18.1	0.024	0.199	12.12	Pass
18	0.000	0.102	0.2	0.000	0.153	0.22	Pass
19	0.023	0.118	19.7	0.024	0.178	13.23	Pass
20	0.000	0.092	0.2	0.000	0.138	0.27	Pass
21	0.022	0.107	20.7	0.022	0.161	13.89	Pass
22	0.000	0.084	0.3	0.000	0.125	0.28	Pass
23	0.021	0.098	21.4	0.021	0.147	14.38	Pass
24	0.000	0.077	0.3	0.000	0.115	0.25	Pass
25	0.020	0.090	22.1	0.020	0.135	14.84	Pass
26	0.000	0.071	0.4	0.000	0.106	0.39	Pass
27	0.019	0.083	22.3	0.019	0.125	15.09	Pass
28	0.000	0.066	0.5	0.000	0.099	0.47	Pass
29	0.017	0.078	22.3	0.017	0.116	15.07	Pass
30	0.000	0.061	0.7	0.001	0.092	0.58	Pass
31	0.016	0.073	22.7	0.017	0.109	15.22	Pass
32	0.000	0.058	0.6 22.6	0.000	0.086	0.55 15.29	Pass
33	0.015 0.000	0.068 0.054		0.016	0.102	0.35	Pass
34 35			0.3 22.1	0.000	0.081	14.96	Pass
35 36	0.014 0.000	0.064 0.051	0.5	0.014 0.000	0.096 0.077	0.49	Pass
36 37	0.000	0.051	21.9	0.000	0.077	14.79	Pass Pass
3 <i>1</i> 38	0.000	0.061	0.5	0.000	0.091	0.63	Pass
39	0.000	0.048	21.9	0.000	0.073	14.77	Pass
40	0.000	0.036	0.5	0.000	0.067	0.58	Pass
-							

Report Ref: 16E5939-4 Page 88 of 89

Voltage Source Verification Data (Run time)

EUT: VCCM 600M=CCCC Tested by: L B

Test category: Class-A per Ed. 3.0 (2005-11) (European limits) Test Margin: 100 Test date: 18/04/2016 Start time: 10:36:48 End time: 10:47:09

Test duration (min): 10 Data file name: H-002332.cts_data

Comment: Comments

Customer: Vox

Test Result: Pass Source qualification: Normal

Highest parameter values during test:

 Voltage (Vrms):
 119.65
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 7.472
 I_RMS (Amps):
 5.120

 I_Fund (Amps):
 5.117
 Crest Factor:
 1.460

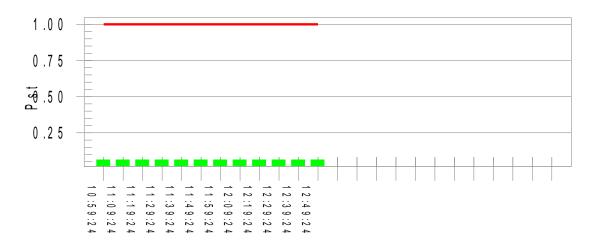
 Power (Watts):
 611.7
 Power Factor:
 0.999

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.105	0.239	43.75	ОК
3	0.171	1.076	15.91	OK
4	0.041	0.239	17.28	OK
5	0.041	0.478	8.60	OK
3 4 5 6 7	0.014	0.239	6.03	OK
7	0.026	0.359	7.28	OK
8	0.018	0.239	7.62	OK
9	0.025	0.239	10.58	OK
10	0.014	0.239	5.67	OK
11	0.023	0.120	18.89	OK
12	0.007	0.120	5.90	OK
13	0.019	0.120	16.11	OK
14	0.009	0.120	7.32	OK
15	0.014	0.120	12.09	OK
16	0.006	0.120	4.96	OK
17	0.021	0.120	17.41	OK
18	0.005	0.120	4.49	OK
19	0.023	0.120	19.25	OK
20	0.007	0.120	5.74	OK
21	0.020	0.120	16.93	OK
22	0.006	0.120	4.68	OK
23	0.018	0.120	14.80	OK
24	0.004	0.120	3.48	OK
25	0.023	0.120	19.18	OK
26	0.006	0.120	4.79	OK
27	0.021	0.120	17.70	OK
28	0.005	0.120	3.79	OK
29	0.020	0.120	16.75	OK
30	0.004	0.120	3.00	OK
31	0.021	0.120	17.52	OK
32	0.004	0.120	3.61	OK
33	0.021	0.120	17.54	OK
34	0.003	0.120	2.21	OK
35	0.018	0.120	15.41	ok
36	0.003	0.120	2.10	oĸ
37	0.019	0.120	15.63	oĸ
38	0.003	0.120	2.29	oĸ
39	0.020	0.120	16.31	oĸ
40	0.005	0.120	3.77	ОК

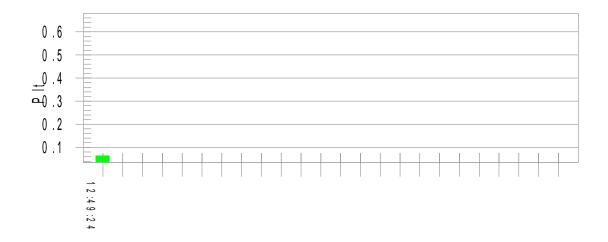
Report Ref: 16E5939-4

Page 89 of 89

Tested by: LB Test Margin: 100 End time: 12:49:25 **EUT: VCCM 600M-CCCC** Test category: All parameters (European limits)
Test date: 18/04/2016 Start time: 10:49:0
Test duration (min): 120 Data file name: F-Start time: 10:49:04


Data file name: F-002333.cts_data

Comment: Comments


Customer: Vox

Test Result: Pass Status: Test Completed

Pst_i and limit line **European Limits**

Plt and limit line

Parameter values recorded during the test:

vrms at the end of test (voit):	229.24			
Highest dt (%):	0.00	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (̇%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit: \('	1.000	Pass
Highest Plt (2 hr. period):	0.064	Test limit:	0.650	Pass