
 

Standalone AVR Chip Programmer

Created by lady ada

 

https://learn.adafruit.com/standalone-avr-chip-programmer

Last updated on 2023-04-04 01:12:03 PM EDT

©Adafruit Industries Page 1 of 10



3

4

9

Table of Contents

Overview

Assembly

• Program the Arduino

• Using the Programmer

Changing the Code

©Adafruit Industries Page 2 of 10



Overview 

We previously showed how to use an Arduino + protoshield + ZIF socket to make a

programmer that can burn a lot of Arduino bootloaders (). In our blog comments a

user commented that he had written a stand-alone program for the Arduino called

Optiloader () that is similar and might be worth checking out.

What Optiloader does is kinda of neat. () Instead of having a computer that talks thru

the Arduino to a chip for programming, instead the Arduino itself programs the chip.

This means you can program chips without having a computer involved. The good

news about this technique is that it is incredibly fast, you can program chips 10x faster

than with a computer and without having to type anything in. The only downside is

that its very specialized, once you set it up the programmer can only do one chip (in

general) with one HEX file. If you want to update it, it can be a little effort to

reconfigure.

However, if you are burning a lot of chips, this can be a real blessing. We can program

and burn an Arduino bootloader chip in about 5 seconds. Normally with a computer

you're talking 40 seconds or so. Another nice thing is that you can make it very clear

when a failure has occured. Instead of reading text on a computer screen - a piezo

will beep once on success. We've found that audio feedback is way more likely to be

noticed than visual feedback.

We adapted Optiloader to be more flexible - so it can program any AVR with any HEX

file. () While you don't need to use an Arduino for this, we have a lot of Arduino's

kicking around here so they make a handy base. 

This code can be adapted for programming any AVR that can be ISP programmed

(this is like 99% of AVRs) but in this example the wiring will be for the

Atmega8/48/88/168/328 series and the code will be the Adaboot bootloader. If you

©Adafruit Industries Page 3 of 10

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduinoisp
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduinoisp
http://www.adafruit.com/blog/2011/08/25/tutorial-arduino-hacks-burning-bootloader-chips-using-an-arduino/
http://www.adafruit.com/blog/2011/08/25/tutorial-arduino-hacks-burning-bootloader-chips-using-an-arduino/
http://www.adafruit.com/blog/2011/08/25/tutorial-arduino-hacks-burning-bootloader-chips-using-an-arduino/
http://www.youtube.com/watch?v=YBFUGre0hY4
https://github.com/adafruit/Standalone-Arduino-AVR-ISP-programmer
https://github.com/adafruit/Standalone-Arduino-AVR-ISP-programmer


have other chips you are programming, check the datasheet for how to wire VCC,

Gnd, MISO, MOSI, SCK, RST and XTAL1 (if you need external clocking). 

Assembly 

To complete this tutorial you will need…

An Arduino (http://adafru.it/50) 

A proto shield kit (http://adafru.it/51) 

28-pin ZIF (zero-insertion force) socket (http://adafru.it/382) 

A piezo (http://adafru.it/160) 

Some wire (http://adafru.it/289) 

Blank ATmega328P () (that you will program)

First up, place the ZIF socket on the proto shield like so:

Solder all 28 pins for a solid connection! 

We have a report that this procedure does not work with Arduino 1.5.2. Use the 

latest mainstream Arduino release instead! 

• 

• 

• 

• 

• 

• 

 

©Adafruit Industries Page 4 of 10

http://www.adafruit.com/products/50
https://www.adafruit.com/products/51
https://www.adafruit.com/products/382
https://www.adafruit.com/products/160
https://www.adafruit.com/products/289
http://www.adafruit.com/partfinder/microcontroller?s%5B%5D=atmega328p


Solder the following wires to the ZIF socket

Pin 1 to digital 10 - Blue (this wire connects underneath to the ZIF socket so

make sure to 'jumper it so it solders directly to the ZIF pin, see the photos

below)

Pin 7 to 5V - Red

Pin 8 to Ground - Black

Pin 9 to digital 9 - Gray

Pin 17 to digital 11 - Brown

Pin 18 to digital 12 - Orange

Pin 19 to digital 13 - Yellow

Pin 20 to +5V - Red

Pin 22 to Ground - Black

 

• 

• 

• 

• 

• 

• 

• 

• 

• 

 

©Adafruit Industries Page 5 of 10



Follow the protoshield tutorial to solder in the Red LED into LED1 position, Green LED

into LED2 position. Also solder in the two 1.0K resistors next to the LEDs. We'll use the

LEDs as indicators. Then solder a wire from the LED2 breakout (white) to analog 0

and a wire from LED1 breakout (white) to digital 8. 

Next add S1switch which you will press to start the programming process. You can just

solder a wire (yellow) from the breakout near S1 to Analog 1.

We also soldered in a Piezo beeper, to give us feedback. One side is soldered into An

alog 3 the other side is soldered to the ground rail right next to the analog breakouts.

 

 

©Adafruit Industries Page 6 of 10



Finally, you'll need to solder on the header to allow the shield to be placed on, break

the 0.1" male header and place it into the Arduino sockets. Then place the shield

above on top to solder it in place. 

If you need to see what the bottom looks like, it will be something like this. Except

ours has a ton of rosin on it because we ended up moving the socket for this

prototype, so that brown rosin stuff probably wont be on yours! 

Thats it!

 

 

©Adafruit Industries Page 7 of 10



Program the Arduino

Next, install the AVRProg Library () which will be used to build the programmer

firmware. It can be installed via the Arduino IDE's Library Manager.

In the Arduino IDE, open the Library Manager:

Tools -> Manage Libraries...

Then search for Adafruit AVRProg. The library should be found in the listing. Then

click the Install button.

Once the library is installed, open the atmega328_optiboot example in the Arduino

IDE:

File -> Examples -> Adafruit AVRProg -> atmega328_optiboot

Upload this example to your Arduino board.

 

We have one report that the IDE v1.0.1 does not work with this sketch. Please try 

v23 or v1.0 if you have problems. You only need to use that version for uploading 

the sketch to the programmer Arduino, the chips will work with any version of the 

IDE 

We also have a report that this procedure does not work with Arduino 1.5.2. Use 

the latest mainstream Arduino release instead! 

©Adafruit Industries Page 8 of 10

https://github.com/adafruit/Adafruit_AVRProg


Using the Programmer 

Once the programmer sketch has been uploaded to the Arduino board, programming

chips is easy:

Insert the chip into ZIF socket.

Lock it down via lever on ZIF socket.

Press the button on the shield.

While programming, the green LED is lit. When done, the piezo will beep once. If

the red LED is lit, a problem occurred.

Once you have programmed the chip with our default code you can use it in an

existing Arduino board, compatible, or breadboard style. You will need a 16 MHz

crystal on the clock pins, so don't forget it! 

Changing the Code 

Unlike the specialized Optiloader, this program can be adapted to any AVR and any

size HEX file as long as you can fit the HEX into the flash of the microcontroller. Since

HEX files are ascii, they basically 2x the size of the code itself. So if you have a 500

byte program, the HEX will be 1K. The sketch itself takes about 10KB so you have

approximately 20KB left for the HEX which is good for about 10KB of flash to burn.

This isn't tons but I suppose if you wanted to port the program to the Mega then you

could fit up to 128KB of flash for massive chips.

1. 

2. 

3. 

4. 

The standalone sketch will only program ATmega328P chips and it will program 

them with our "adaBoot" Bootloader not Optiboot! Select Duemilanove with 328 

when uploading to Arduinos that use the bootloaded chip, even if you are using 

it in an UNO branded Arduino! 

©Adafruit Industries Page 9 of 10



You can paste your new HEX into images.cpp () . You'll need also to set the bottom

two bytes of the signature (third entry), and the fuses you want to set before you start

programming, and the fuses you want to set after programming (in case the lock bits

have changed). The fuse mask is used because not all fuse bits are used so if you

write a zero to an unused bit (as avrdude prefers to do) it may be read back as a 1

which can cause verification errors. Next is the size of the chip flash in bytes and the

size of a flash page for the chip (you may need to research the datasheet for this

number). The first two arguments (name of flash and name of chip) are for your

records, they arent really used by the program itself.

Please note that while this tutorial works and we're very confident that this project

can be adapted to other chips making sure that you have all the above set correctly is

not trivial and will take some trial and error as well as expertise in reading datasheets

and the avrdude.conf file so we can't provide one-on-one technical support in helping

you adapt the tutorial to your particular chip and code. Please endeavor to work it out

on your own!

Of course, after you load a new firmware in, be sure to check that it did in fact burn it

correctly using a known good programmer.

©Adafruit Industries Page 10 of 10

https://github.com/adafruit/Standalone-Arduino-AVR-ISP-programmer/blob/master/images.cpp

	Standalone AVR Chip Programmer
	Table of Contents
	Overview
	Assembly
	Changing the Code


	Overview
	Assembly
	Program the Arduino
	Using the Programmer

	Changing the Code

