

Trusted RF Solutions[™]

GPS RF Front End

Transmit: 1626.5 to 1675 MHz Receive: 1518 to 1559 MHz

20 Watts CW Transmit Power

47 dB Receive Gain

P/N: NW-RF-GPS-FF

(Includes NW-PA-ACC-CB09MC interface cable)

The NuWaves Satellite Terminal RF Front End is a highly efficient, high gain RF transmit/ receive module that provides 20 watts of RF power to boost performance of data links.

This high performance RF front end is a powerful combination of our NuPower 13G05A RF power amplifier, low noise figure LNAs, a high isolation diplexer between the transmit and receive paths, and band-reject filters. This module accepts a nominal 0 dBm (1 mW) RF input and provides 43 dB of gain from 1626.5 to 1675 MHz, and provides 47 dB of gain from 1518 to 1559 MHz. It supports both constant envelope and complex waveforms such as APSK, QAM, DVB-T, etc.

Extend your operational communication range with a custom RF & Microwave Solution from NuWaves Engineering.

Features

- 20 Watts RF Output Power
- 47 dB Receive Gain
- Transmit: 1626.5 to 1675 MHz
- Receive: 1518 to 1559 MHz
- · High-Efficiency GaN Technology
- 0 dBm Nominal RF Input
- Over-Voltage Protection
- External Transmit Control

Benefits

- Extended Range
- Improved Link Margin
- · Reduced Load on DC Power Budget Due to High Efficiency Operation
- Requires Less Volume on Space-Constrained **Platforms**

Applications

- RF Telemetry
- RF Communication Systems
- Unmanned Aircraft Systems (UAS)
- Unmanned Ground Vehicles (UGV)
- Satellite Terminals
- Software Defined Radios

Specifications

Absolute Maximums

Parameter	Rating	Unit
Max Device Voltage	32	V
Max Device Current	4.75	A
Max RF Input Power, $Z_L = 50 \Omega$	12	dBm
Max Operating Temperature (ambient)	60	°C
Max Operating Temperature (baseplate)	85	°C
Max Storage Temperature	85	°C

Export Classification EAR99

Electrical Specifications - Operational @ 28 VDC, 25 °C, Z_S=Z_L=50 Ω

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Operating Frequency	BW	1626.5		1675	MHz	
Switching Speed	TX _{ON/OFF}			2	μS	10% control voltage to 90% output power
Operating Voltage	VDC	27	28	32	V	
Operating Current	I _{DD}		3.25		A	Pin = 0 dBm
Module Efficiency			35		%	CW, $Pin = +5 dBm$

Electrical Specifications - Transmit @ 28 VDC, 25 °C, Z₅=Z₁=50 Ω

Parameter	Symbol	Min	Тур	Max	Unit	Condition
RF Output Power	P _{SAT}	20			W	1626.5 to 1675 MHz Pin = 0 dBm
			33			1626.5 MHz
Output Power @ 1dB Compression	P1dB		31		dBm	1650.75 MHz
			30			1675 MHz
			57			1626.5 MHz, Pin = -30 dBm
Small Signal Gain	G		57		dB	1650.75 MHz, Pin = -30 dBm
			56			1675 MHz, Pin = -30 dBm
Small Signal Gain Flatness	ΔG		2		dB	Pin = -30 dBm
Input VSWR	VSWR		1.5			
Nominal Input Drive Level	P _{IN}		0		dBm	
Quiescent Current	I _{DQ}		0.08		А	
Quiescent Bias Current	I _{DQ}		0.75		А	
Third Order Intercept Point			TBR			1626.5 MHz
(Two tone test at 1 MHz spacing,	OIP3		TBR		dBm	1650.75 MHz
Pout = 20 dBm / tone)			TBR			1675 MHz
Hama and an	2nd		-70		JD.	
Harmonics	3rd		-45		- dBc	
Output Mismatch (No Damage)				10:1		

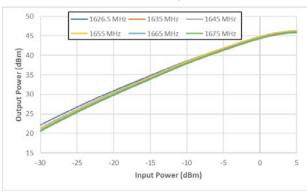
Specifications (cont.)

Electrical Specifications - Receive @28VDC, 25°C, Z₅=Z₁=50 \Omega

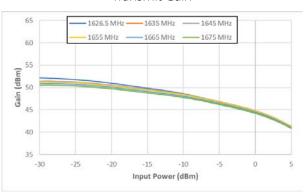
Ere der redr d de en redrere		C	, .			
Parameter	Symbol	Min	Тур	Max	Unit	Condition
Receive Gain	G		47		dB	1518 to 1559 MHz
Receive Gain Flatness	ΔG		TBR		dB	Any 2 MHz
Receive Current	I _{RX}		80		mA	
Receive Noise Figure	NF		1.7			
Receive P1dB	P1dB				dBm	
Receive OIP ³	OIP3				dBm	

Mechanical Specifications

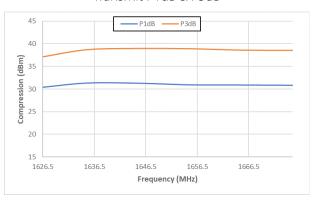
Parameter	Value	Unit	Limits
Dimensions	10.25"x 6.00 x 0.80	in	Max
Weight	47	0Z	Max
RF Connectors, Input/Output	SMA Female		
Interface Connector	Micro-D, 9-pin Socket		

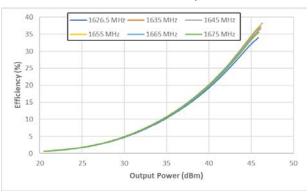

Environmental Specifications

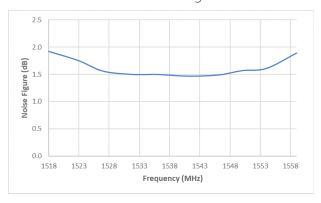
Parameter	Symbol	Min	Тур	Max	Unit
Operating Temperature (ambient)	T _A	-40		+60	°C
Operating Temperature (baseplate)	Tc	-40		+85	°C
Storage Temperature	T _{STG}	-55		+85	°C
Relative Humidity (non-condensing)	RH			95	%
Altitude MIL-STD-810F - Method 500.4	ectral	*3 dBlocta	0.04 g	P/Hz	¹⁸ /octave
Vibration Profile (Random profile in x,y, z axis, as per Figure for 15 minute duration in each axis)	Power Spectral Density, g ² /Hz	20	80 Frequen	350	2000

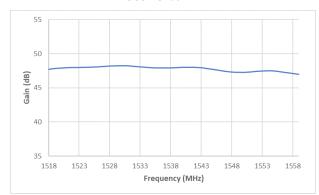

Performance Plots

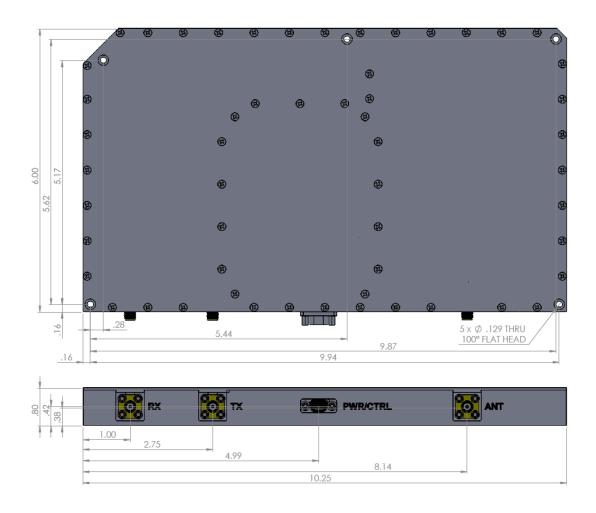
Test Conditions: +28 VDC, +25 °C, Z_S = Z_L =50 Ω


Transmit RF Output Power


Transmit Gain


Transmit P1dB & P3dB


Transmit Efficiency


Receive Noise Figure

Receive Gain

Mechanical Outline

Accessory Part Numbers

Part Number	Description
NW-PA-ACC-CB09MC	Standard Interface Cable Assembly – Flying Leads (included with module)

For information on product disposal (end-of-life), please refer to this document: https://nuwaves.com/wp-content/uploads/Product-Disposal-End-of-Life.pdf

Contact NuWaves

NuWaves Engineering 132 Edison Drive Middletown, OH 45044

www.nuwaves.com sales@nuwaves.com 513.360.0800

Trusted RF Solutions[™]