

Product / Process Change Notification (PCN)

909 N Sepulveda Blvd., Suite 230, El Segundo, CA 90245

Notification Date: April 20, 2022

PCN Number: PCN220401

PCN Title: Material and Process Change

Product Identification:

The following released to sales part numbers will be impacted by this change:

EPC Part Number
EPC2218

Description of Change:

As part of continuous improvement efforts, EPC has made process modifications to the manufacturing steps that have improved the process control and manufacturability of the listed impacted devices. These changes will have no impact to form, fit, or function of the devices. However, there are minor changes to the datasheet specification as detailed below. Please consult EPC for applications support if needed.

This change will be in effect for devices shipping with date code of D2225 or later.

Comparison of Original Datasheet Specification vs. New Process Datasheet:

	Maximum Ratings			Change from original datasheet
\	Drain-to-Source Voltage (Continuous)	100	V	No change
V_{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150 °C)	120	V	No change
	Continuous (T _A = 25 °C)	60	_	No change
ID	Pulsed (25 °C, T _{PULSE} = 300 μs)	231	Α	No change
\	Gate-to-Source Voltage	6	V	No change
V_{GS}	Gate-to-Source Voltage	-4	T * [No change
T_J	Operating Temperature	-40 to 150	٥,	No change
T_{STG}	Storage Temperature	-40 to 150)	No change

Static Characteristics							Change from original detechant
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Change from original datasheet
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 0.1 \text{ mA}$	100			>	test condition was 0.4 mA
I _{DSS}	Drain Source Leakage	V_{DS} = 80 V, V_{GS} = 0 V, T_{J} = 25 °C		0.002	0.08		typical was 0.08 mA, max was 0.35 mA
	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V, } T_J = 25 \text{ °C}$		0.007	0.5	mA	typical was 0.02 mA, max was 0.5 mA
I _{GSS}	Gate-to-Source Forward Leakage [#]	$V_{GS} = 5 \text{ V, T}_{J} = 125 ^{\circ}\text{C}$		1	9	IIIA	typical was 0.6 mA, no change to max
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 \text{ V, T}_{J} = 25 \text{ °C}$		0.01	0.2		typical was 0.06 mA, max was 0.4 mA
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	8.0	1.3	2.5	V	typical was 1.1 V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 25 \text{ A}$		2.4	3.2	mΩ	No change
V_{SD}	Source-to-Drain Forward Voltage	$I_S = 0.5 A$, $V_{GS} = 0 V$		1.5		V	No change
# Define	# Defined by design. Not subject to production test.						

Telephone: 310.615.0280; Fax: 310.615.0284 Page 1

Product / Process Change Notification (PCN)

909 N Sepulveda Blvd., Suite 230, El Segundo, CA 90245

Dynamic Characteristics#							Change from original datasheet	
	PARAMETER	TEST CONDITIONS		MIN TYP N		UNIT	Change from original datasneet	
C _{ISS}	Input Capacitance			1864	2703		typical was 1189 pF, max was 1570 pF	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		3.6			typical was 4.3 pF	
Coss	Output Capacitance			557	658		typical was 562 pF, max was 843 pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 1)	V 04-50VV 0V		694		pF	typical was 740 pF	
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 2)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		944			typical was 925 pF	
R_G	Gate Resistance			0.4		Ω	No change	
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 25 \text{ A}$		12.5	16.3		typical was 10.5 nC, max was 13.6 nC	
Q_{GS}	Gate to Source Charge			4.4			typical was 3.2 nC	
Q_{GD}	Gate to Drain Charge	V _{DS} = 50 V, I _D = 25 A		1.4		nC	typical was 1.5 nC	
Q _{G(TH)}	Gate Charge at Threshold			3.2		IIC	typical was 1.9 nC	
Qoss	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		47	54		typical was 46 nC, max was 69 nC	
Q_{RR}	Source-Drain Recovery Charge			0			No change	

[#] Defined by design. Not subject to production test.

Last	Time	Buy	/ :
------	-------------	-----	------------

N/A

Samples

Contact EPC

Information Request

If there are any questions, comments or information required regarding this PCN please contact your local EPC Sales Representative.

EPC CONSIDERS THIS CHANGE APPROVED IF WE DO NOT RECEIVE ANY WRITTEN OBJECTION WITHIN 30 DAYS FROM NOTIFICATION DATE OF THIS PCN LETTER.

EPC Approval:

This PCN has been reviewed and approved by EPC's Quality & Reliability department:

Quality Director:	Yanping Ma	
Date:	04/20/2022	

Telephone: 310.615.0280; Fax: 310.615.0284 Page 2