
 MiWi™
 MiWi™ Software Design Guide

Introduction

The MiWi is Microchip’s proprietary wireless networking stack designed to support Low Rate Personal
Area Networks (LRPANs). This guide describes the MiWi applications implemented on the MiWi protocol
available in the SAM platforms (SAMR21 and SAMR30).

The MiWi supports the following three network topologies:

• Peer-to-Peer (P2P)
• Star
• Mesh

Features

Earlier versions of the MiWi Mesh networking stack (until version 2.10), released in the MiWi protocol
v5.30 of Microchip Libraries for Applications (MLA) v2017-03-06, supports a library-based Mesh
networking stack. However, this is redesigned with the following changes:

1. Optimization of current APIs to improve simplicity.
2. Redesign of the MiWi Mesh with additional features for next generation platforms.
3. A new commissioning procedure to improve the secured inclusion of devices to the network.
4. Dynamic switching between device types in the MiWi Mesh.
5. Network secure feature for all network messages.
6. Over-The-Air Upgrade to upgrade all the nodes in the network.

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 1

Table of Contents

Introduction..1

Features.. 1

1. MiWi Architecture.. 5

2. MiWi Mesh Device Types.. 6

3. MiWi Mesh Frame Format... 7
3.1. MAC Header – Frame Control Field...7
3.2. Network Header... 9

4. MiWi Mesh – Device Addressing Mechanism... 12

5. Network Freezer.. 13
5.1. Interface... 13
5.2. Additional Notes... 13

6. Sleep Mode... 14
6.1. Interface... 14

7. Over-The-Air Upgrade... 15
7.1. OTAU Server.. 15
7.2. OTAU Client... 15
7.3. Domains of OTAU.. 15
7.4. Compiler Switches for OTAU..16

8. MiWi Mesh – Networking...17
8.1. Network Commissioning...17
8.2. Start and Join Network...17
8.3. Routing in Network...18

9. Macros for MiWi Mesh...19
9.1. CHANNEL_MAP.. 19
9.2. KEEP_ALIVE_COORDINATOR_SEND_INTERVAL..19
9.3. KEEP_ALIVE_COORDINATOR_TIMEOUT_IN_SEC..19
9.4. KEEP_ALIVE_RXONENDDEVICE_SEND_INTERVAL...20
9.5. KEEP_ALIVE_RXONENDDEVICE_TIMEOUT_IN_SEC... 20
9.6. DATA_REQUEST_SEND_INTERVAL..20
9.7. RXOFF_DEVICE_TIMEOUT_IN_SEC...21
9.8. MAXIMUM_DATA_REQUEST_SEND_INTERVAL.. 21
9.9. MAX_NUMBER_OF_DEVICES_IN_NETWORK... 21
9.10. JOIN_WISH..22
9.11. ROLE_UPGRADE_INTERVAL_IN_SEC..22
9.12. CONNECTION_RESPONSE_WAIT_IN_SEC... 22

 MiWi™

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 2

9.13. NUM_OF_COORDINATORS... 23
9.14. NUM_OF_NONSLEEPING_ENDDEVICES...23
9.15. NUM_OF_SLEEPING_ENDDEVICES...23
9.16. ROUTE_UPDATE_INTERVAL... 23
9.17. ROUTE_REQ_WAIT_INTERVAL...24
9.18. INDIRECT_DATA_WAIT_INTERVAL... 24
9.19. ED_LINK_FAILURE_ATTEMPTS.. 24
9.20. FRAME_RETRY...25
9.21. REBROADCAST_TABLE_SIZE...25
9.22. REBROADCAST_TIMEOUT..25
9.23. DUPLICATE_REJECTION_TABLE_SIZE..25
9.24. MAX_BEACON_RESULTS.. 26
9.25. MESH_SECURITY_LEVEL..26
9.26. PUBLIC_KEY_DEFAULT... 26
9.27. NETWORK_KEY_DEFAULT..26

10. Recommendation for Macros.. 28
10.1. Extending Battery Life for Sleeping End-device...28

11. MiApp API..29

12. MiApp API Description...31
12.1. MiApp_ProtocolInit... 31
12.2. MiApp_Set..31
12.3. MiApp_StartConnection... 32
12.4. MiApp_SearchConnection..32
12.5. MiApp_EstablishConnection.. 33
12.6. MiApp_RemoveConnection..34
12.7. MiApp_ConnectionMode..34
12.8. MiApp_SendData... 35
12.9. MiApp_SubscribeDataIndicationCallback.. 36
12.10. MiApp_NoiseDetection...36
12.11. MiApp_TransceiverPowerState..37
12.12. MiApp_Get... 37
12.13. MiApp_RoleUpgradeNotification_Subscribe..38
12.14. MiApp_Commissioning_AddNewDevice..38
12.15. MiApp_SubscribeReConnectionCallback.. 38
12.16. MiApp_ResetToFactoryNew...39
12.17. MiApp_ReadyToSleep..39
12.18. MiApp_ManuSpecSendData..39
12.19. MiApp_SubscribeManuSpecDataIndicationCallback...40
12.20. MiApp_IsConnected...40
12.21. MiApp_MeshGetNextHopAddr...41

13. Limitations... 42

14. Document Revision History... 43

 MiWi™

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 3

The Microchip Web Site.. 44

Customer Change Notification Service..44

Customer Support... 44

Microchip Devices Code Protection Feature... 44

Legal Notice...45

Trademarks... 45

Quality Management System Certified by DNV...46

Worldwide Sales and Service..47

 MiWi™

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 4

1. MiWi Architecture
The following is the MiWi protocol architecture on Advanced Software Framework (ASF) which allows the
user to obtain required components, services and drivers from ASF Wizard. For more details, refer to the
ASF Wizard section at the Atmel Software Framework web page.

Figure 1-1. MiWi™ Architecture

MiWiTM Stack

MiApp

SYSTEM
(MiWiTM

Tick -
Symbol
timer…)

(MiWiTM

ASF SW Framework

Hardware Platform (i.e., Microcontroller, Board, Configuration)

Services/Drivers
TRx access –SPI,

GPIO, IRQ Timers RTC
More
peripherals

Interchangeable RF Transceivers - MiPhy

SAMR21-RF233 Transceiver

SAMR30-RF212B Transceiver

Future Microchip RF Transceivers…

MiWiTM P2P

User Application

MiWiTM Mesh

Future Microchip proprietary
wireless Protocols

MiMac

Interchangeable Wireless Communication Protocols

 MiWi™
MiWi Architecture

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 5

http://www.microchip.com/webdoc/asf/asf.ModuleExplorerView.html

2. MiWi Mesh Device Types
The MiWi Mesh protocol supports the following device types:

1. PAN Coordinator
1.1. Starts the network
1.2. Assigns and maintains the coordinators and its end-devices addresses
1.3. Behaves as coordinator for routing frames
1.4. Controls the devices which can be included into the network through commissioning

2. Coordinator
2.1. Joins a network as an end-device
2.2. Requests PAN coordinator for role upgrade to become a coordinator
2.3. Supports routing of frames within the network
2.4. Stores the commissioning information from PAN coordinator and allows only the

commissioned devices to participate in the network
2.5. Maintains its end-devices and their addresses
2.6. Maintains data for sleeping end-devices

3. End-Device
3.1. Joins to network though available coordinators
3.2. Supports Rx-On end-device and Sleeping end-device for battery operated devices
3.3. Supports dynamic switching between Rx-On to Sleeping end-device and vice versa

 MiWi™
MiWi Mesh Device Types

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 6

3. MiWi Mesh Frame Format
The network header and application payload of the MiWi Mesh are encapsulated inside the standard
IEEE® 805.15.4 data frame payload, but the stack does not adhere to the standard. Therefore, the MiWi
Mesh does not receive and process IEEE 805.15.4 command frames. The following figure illustrates a
general frame format composed of an IEEE 805.15.4 MAC header, network header, application payload,
optional message integrity code (MIC), and a check sum (CRC).

Figure 3-1. General MiWi™ Frame Format

Frame
Control

Sequence
number

Dest.
PANID

Dest.
Address

Source
PANID

Source
Address Hops

Frame
Control

Sequence
number

Dest.
PANID

Dest.
Address

Source
Address

Auxiliary
Security
Header

Payload

Variable

Payload
Network
Footer

MIC CRC

MAC Header Network Header

2 2 2/81 2 0/2/8 1 1 1 0/2/80/2 0/2 0/5 0/4 2

3.1 MAC Header – Frame Control Field
The following figure illustrates the Frame Control field of the MAC header.
Figure 3-2. MAC Header – Frame Control Field

Frame
Type

Security
Enabled

Frame
Pending

Ack.
Request

PAN ID
Compression Reserved

Dest.
Address
Mode

Frame
Version

Source
Address
Mode

Bits:0-2 4 53 6 7:9 10:11 12:13 14:15

This is the fixed MAC Frame control field settings used in MiWi Mesh. The following table lists the settings
used for a Frame Control field of the MAC header.

Table 3-1. MAC Frame Control Field Settings

Field Name Settings

Frame Type Data

Security Enabled False

Frame Pending True if pending data available for sleeping end
device, otherwise false

Acknowledgment Request True for unicast frames and false for broadcast
frames

PAN ID Compression True

Destination Addressing Mode 0 for no address fields, 2 for 16-bit short address
and 3 for 64-bit extended address

Frame Version 0

Source Addressing Mode 0 for no address fields, 2 for 16-bit short address
and 3 for 64-bit extended address

 MiWi™
MiWi Mesh Frame Format

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 7

3.1.1 Frame Type
The Frame Type subfield is 3 bits in length and shall be set to one of the non-reserved values (see Table
3-2).

3.1.2 Security Enabled
The Security Enabled subfield is 1 bit in length, and it shall be set to one if the frame is protected by the
MAC sublayer and shall be set to zero otherwise. The Auxiliary Security Header field of the MHR shall be
present only if the Security Enabled subfield is set to one.

Table 3-2. Values of the Frame Type Subfield

Frame Type Value
b2 b1 b0

Description

000 Beacon

001 Data

010 Acknowledgment

011 MAC command

100–111 Reserved

3.1.3 Frame Pending
The Frame Pending subfield is 1 bit in length and shall be set to one if the device sending the frame has
more data for the recipient. This subfield shall be set to zero otherwise.

The Frame Pending subfield shall be used only in beacon frames or frames transmitted either during the
CAP by devices operating on a beacon-enabled PAN or at any time by devices operating on a non-
beacon enabled PAN. At all other times, it shall be set to zero on transmission and ignored on reception.

3.1.4 Acknowledgment Request
The Acknowledgment Request subfield is 1 bit in length and specifies whether an acknowledgment is
required from the recipient device on receipt of a data or MAC command frame. If this subfield is set to
one, the recipient device shall send an acknowledgment frame only if, upon reception, the frame passes
the third level of filtering. If this subfield is set to zero, the recipient device shall not send an
acknowledgment frame.

3.1.5 PAN ID Compression
The PAN ID Compression subfield is 1 bit in length and specifies whether the MAC frame is to be sent
containing only one of the PAN identifier fields when both source and destination addresses are present.
If this subfield is set to one and both the source and destination addresses are present, the frame shall
contain only the Destination PAN Identifier field and the Source PAN Identifier field shall be assumed
equal to that of the destination. If this subfield is set to zero and both the source and destination
addresses are present, the frame shall contain both the Source PAN Identifier and Destination PAN
Identifier fields. If only one of the addresses is present, this subfield shall be set to zero, and the frame
shall contain the PAN Identifier field corresponding to the address. If neither address is present, this
subfield shall be set to zero, and the frame shall not contain either PAN Identifier field.

3.1.6 Destination Addressing Mode
The Destination Addressing Mode subfield is 2 bits in length and shall be set to one of the nonreserved
values as listed in the following table. If this subfield is equal to zero and the Frame Type subfield does

 MiWi™
MiWi Mesh Frame Format

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 8

not specify that this frame is an acknowledgment or beacon frame, the Source Addressing Mode subfield
shall be nonzero, implying that the frame is directed to the PAN coordinator with the PAN identifier as
specified in the Source PAN Identifier field.

Table 3-3. Possible values of the Destination Addressing Mode and Source Addressing Mode
subfields

Addressing Mode Value
b1b0

Description

00 PAN Identifier and address fields are not present

01 Reserved

10 Address field contains a 16-bit short address

11 Address field contains a 64-bit extended address

3.1.7 Frame Version
The Frame Version subfield is 2 bits in length and specifies the version number corresponding to the
frame. This subfield shall be set to 0x00 to indicate a frame compatible with IEEE Std 802.15.4-2003 and
0x01 to indicate an IEEE 802.15.4 frame. All other subfield values shall be reserved for future use.

3.1.8 Source Addressing Mode
The Source Addressing Mode subfield is 2 bits in length and shall be set to one of the nonreserved
values listed in Table 3-3. If this subfield is equal to zero and the Frame Type subfield does not specify
that this frame is an acknowledgment frame, the Destination Addressing Mode subfield shall be nonzero,
implying that the frame has originated from the PAN coordinator with the PAN identifier as specified in the
Destination PAN Identifier field.

3.2 Network Header

3.2.1 Hops Field
The Hops field provides the number of hops the packet is allowed to be retransmitted. For example, 00h
indicates that the packet is not retransmitted. Maximum possible hop is 0xFF.

3.2.2 Frame Control Field
The Frame Control field is a bitmap which defines the behavior of a packet as shown in the following
figure.

Figure 3-3. Network Header – Frame Control Field

Frame
Type

Security
Enabled

Ack.
Request ReservedAddress

same as MAC

Bits:0-1 4 53 6-72

Infra
Cluster

The following table details the Frame Control field of the Network Header.

 MiWi™
MiWi Mesh Frame Format

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 9

Table 3-4. Network Header Frame Control Field Description

Bit Number Field Name Description

6-7 Reserved Set the bit as ‘0’ for this implementation.

5 Address same as MAC This bit is set when the MAC Address fields and
Network Address fields are same. This is useful
when the sleeping end-device polls the parent for
data, with relatively less bytes over-the-air for
single hop from the network layer.

4 Acknowledgment Request This bit is set when the source device requests an
Network layer acknowledgment of receipt from
the destination device.

3 Intra Cluster Reserved in this implementation. Set the bit as
‘1’.

2 Security Enabled This bit is set when data packet is encrypted at
the application level.

0-1 Frame Type These bits indicate as following:
• 00 – Data
• 01 – Command
• 10 – Manufacturer specific
• 11 – Reserved

3.2.3 Sequence Number Field
The Sequence Number field is 1 byte in length and specifies the sequence identifier for the frame. The
Sequence Number field shall be increased by 1 for every outgoing frame, originating on the node and it
must not be changed for routed frames.

3.2.4 Destination PANID Field
The Destination PANID field is 2 bytes in length, specifies the PAN identifier of the intended recipient of
the frame. This field will be present only if Address is same as MAC bit which is set to 0.

3.2.5 Source Address Field
The Source Address field is 2 bytes in length and specifies the network address of the node originating
the frame.

3.2.6 Destination Address Field
The Destination Address field is 2 bytes in length and specifies the network address of the destination
node. The Destination Address field can be set as per the following table for other frames except unicast
to a node. Data transmission using long address is not supported.

Table 3-5. Network Header Destination Address Field Description

Destination Address Value Description

0xFFFF Broadcast to every device

0xFFFE Multicast to all FFD’s

 MiWi™
MiWi Mesh Frame Format

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 10

...........continued
Destination Address Value Description

0xFFFD Multicast to all Coordinators

3.2.7 Auxiliary Security Header Field
The Auxiliary Security Header field specifies information required for security processing, including how
the frame is protected (security level) and frame counter. This field shall be present only if the Security
Enabled sub-field in Frame control field is set to one.

Table 3-6. Auxiliary Security Header Field

Bytes: 1 4 8

Security Level Frame Counter Source long address

3.2.7.1 Security Level
The supported security level are:

• 0 (No Security)
• 1 (Authentication - 4 bytes MIC)
• 4 (Encryption only)
• 5 (Encryption with Authentication - 4 bytes MIC)

 MiWi™
MiWi Mesh Frame Format

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 11

4. MiWi Mesh – Device Addressing Mechanism
The MiWi Mesh uses a 2 bytes short address to specify nodes in the network when performing routing
across the network. The address is allocated during the joining process. The lower byte is used to identify
the end-devices. The higher byte is used to identify the coordinators.

Bit 15:8 Bit 7 Bit 6:0

Coordinator identifier RxOnWhenIdle End-device identifier

 MiWi™
MiWi Mesh – Device Addressing Mechanism

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 12

5. Network Freezer
The Network Freezer feature saves critical network information into the Nonvolatile Memory (NVM) and
restores them after power cycle. In this way, the application supports the power cycle scenario and the
network can be restored to the previous state of the power cycle without many message exchanges after
the power cycle.

Additionally, wear-leveling implementation reduces the number of “backup-erase-re-write” cycles and
thereby improves the Flash lifetime. Refer to the miwi_mesh_pds.c file which specifies information
about the parameters stored in the NVM.

5.1 Interface
The Network Freezer feature is enabled by defining ENABLE_NETWORK_FREEZER API in the
configuration file of the application project. This feature is invoked by calling the MiApp function
MiApp_ProtocolInit. When Network Freezer is enabled in the application, the network information is
restored from NVM; otherwise, the wireless node starts from initial stage. If Network Freezer is disabled,
the node always starts as a factory new device.

5.2 Additional Notes
The Network Freezer feature requires NVM to store the critical network information. The NVM used for
this implementation is the internal Flash.

 MiWi™
Network Freezer

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 13

6. Sleep Mode
For most of the applications, it is critical to provide long battery life for the sleeping devices. A device can
be in either the Active mode or Sleep mode. After being powered-up, a node always starts in the Active
mode, with its MCU fully turned on. An application can check whether the stack is allowing it to sleep or
not using the ENABLE_SLEEP_FEATURE API. If it allows, the application can go to sleep at a maximum of
allowable time by stack for proper operation.

In the Sleep mode, the RF chip and the MCU are in Low-Power state and only the functionality required
for MCU wake up remains active. Thus, in Sleep mode, the application cannot perform any radio Tx/Rx
operations or communicate with the external periphery.

Major power is consumed during the Active mode, requesting for and sending data in the duty cycle.
Therefore, for a device to be active is based on its polling period. This can be controlled using a
configuration option. Among all nodes, only end-devices can sleep.

6.1 Interface
The Sleep mode can be enabled by defining ENABLE_SLEEP_FEATURE API in the configuration file of
the application project. For more details, see MiApp API Description.

 MiWi™
Sleep Mode

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 14

7. Over-The-Air Upgrade
The following figure shows the firmware architecture of the Over-The-Air Upgrade (OTAU).

Figure 7-1. OTAU Firmware Architecture

Application OTAU Server

MiWi Mesh Stack

Drivers (HAL) Physical

Application OTAU Client

MiWi Mesh Stack

Drivers (HAL) Physical

OTAU Server Side OTAU Client Side

7.1 OTAU Server
The OTAU server receives or transmits the command from or to the PC through UART or USB. To
upgrade, transmit required frames through MiWi Mesh stack layer to reach the clients. The server acts as
a bridge between the clients and an OTAU tool running in the PC; that is, there is no additional
intelligence in OTAU module on the server end.

7.2 OTAU Client
The OTAU client receives or transmits the proprietary commands over-the-air to communicate with the
OTAU server.

7.3 Domains of OTAU
The following sections describe the Notify and Upgrade domains of the OTAU server and client.

7.3.1 Notify
1. Provides basic information about the client such as, IEEE address, short address, and next hop

address to reach the OTAU server for plotting network topology.
2. Commands to power LED on clients to identify visually on large network.
3. Provision for user to fetch additional information related to the application such as, firmware name,

firmware version, board name, and board version.

7.3.2 Upgrade
• Supports OTAU of each client through proprietary protocol exchange.
• Provides support to switch to an new image individually when all the nodes are upgraded.

 MiWi™
Over-The-Air Upgrade

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 15

7.4 Compiler Switches for OTAU

OTAU_ENABLED
OTAU_ENABLED switch must be included in project symbols to enable the upgrade support.

OTAU_SERVER
When OTAU_SERVER switch is enabled on the project symbols, the node acts as the OTAU server. If
this symbol is not enabled, then the node acts as a Client for OTAU.

 MiWi™
Over-The-Air Upgrade

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 16

8. MiWi Mesh – Networking
The MiWi Mesh network features are categorized as follows:

1. Network commissioning
2. Start and join network
3. Routing in network

8.1 Network Commissioning
The network commissioning controls the devices which can participate in the network.

1. Application on PAN coordinator reads the IEEE address (for example, it can be improved to read
from bar code) from one or more devices.

2. PAN coordinator calculates the 64 byte bloom filter value with the read information.
3. Calculated bloom filter value is sent to all the coordinators in the network.
4. Coordinators provide beacon only to the devices which have its IEEE address in the bloom filter.

8.2 Start and Join Network
1. Only the PAN coordinator can start a network.
2. Joining device sends a beacon request to obtain information about the available networks in its

personal operating space.
3. The PAN coordinator or coordinator evaluates the beacon request by parsing the given IEEE

address with the bloom filter value. If found, it sends a beacon frame with a beacon payload which
includes PAN coordinator hop count and bloom filter value (64 bytes). If not found, it discards the
packet.

4. Upon receiving the beacon frames, the joining device parses it and checks its own address in the
bloom filter value and then decides its parent based on associate permit, children capacity and Link
Quality Indicator (LQI) of the received beacons. After choosing the parent, it unicasts Mesh
Connection Request packet (includes its capability and JoinWish field) to the selected parent.
The JoinWish field has 2-bits C and ED, and remaining bits are reserved.

– If both bits are set in JoinWish, then the particular device joins as an end-device if the
coordinator capacity is currently unavailable in the network.

– If only the C bit is set, then the device joins as a Coordinator only.
– If only the ED bit is set, then the device joins as an end-device only.

5. If the parent is the PAN coordinator and the JoinWish field is set with C and ED or C only, then the
PAN coordinator checks whether it has a new coordinator address. If available, it sends the Mesh
Connection Response with device address as allocated new coordinator address. If address is
unavailable or JoinWish field has only ED set, then it allocates the end-device address and sends
the Mesh connection Response.

6. If the parent is the coordinator, then it allocates end-device address and sends Mesh Connection
Response with device address as allocated end-device address.

7. The joining device parses the Mesh Connection Response and uses the received network address
along with the received network key for further communications in the network.

 MiWi™
MiWi Mesh – Networking

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 17

8. The joining device which is coordinator capable, receives an end-device address, and based on
Role Upgrade Timeout (configurable), the device sends a role upgrade request packet to the PAN
coordinator in order to upgrade its role from an end-device to the coordinator.

9. When the PAN coordinator receives a role upgrade request, it checks whether coordinator address
is available. If the address is available, it allocates a new coordinator address and sends the role
upgrade response with the allocated address and status as success. If an address is unavailable,
then it sends a role upgrade response with failure status.

8.3 Routing in Network
1. During the joining procedure and role upgrade, the route table is updated in all the coordinators.
2. The route table in coordinators is used to route the packet to the destination device.
3. When the device does not have the next hop address for the destination, it will trigger a broadcast

for a route request to the destination.
4. Unlike the legacy route request in AODV routing protocols, the reply is generated from any node

which has the next hop information in its routing table.
5. The source device (which initiated the route request) selects the route reply for the destination

based on the fewer hops and best LQI.
6. However, to establish and synchronize the network periodically, the route table update is

broadcasted to a single hop based on pre-configured intervals.
7. This ensures that the coordinators in the network share the neighbor’s information with its

neighbors.

 MiWi™
MiWi Mesh – Networking

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 18

9. Macros for MiWi Mesh
This section describes the macros for the MiWi Mesh.

9.1 CHANNEL_MAP

Description Channel map is a bit map used to select appropriate channels for starting or
establishing connection in the network.

Default Value • For SAMR21 - (1<<25)
• For SAMR30 - (1<<2)

Range Bit map based on the physical layer. Set or clear of any bits in the below range is
valid.

• For 2.4GHz (SAMR21) – 0x07FFF800
• For SubGHz (SAMR30) – 0x000007FF

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks For SAMR30, only channels 1-10 can be changed using this Macro. To use Channel

0, PHY_Init() must be modified to include TX Power and PHY Mode setting as per
the recommendation from the data sheet for European band.

9.2 KEEP_ALIVE_COORDINATOR_SEND_INTERVAL

Description Time interval in seconds on which a coordinator capable device sends keep alive
frame to PAN coordinator. Upon reception of this frame, PAN coordinator refreshes
the timeout for that particular coordinator.

Default Value 120

Range 1 – 65535

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks KEEP_ALIVE_COORDINATOR_TIMEOUT_IN_SEC is based on this value.

9.3 KEEP_ALIVE_COORDINATOR_TIMEOUT_IN_SEC

Description Timeout in seconds for which the PAN coordinator maintains the entry of coordinator,
for holding its address. Each coordinator is expected to send at least one keep alive
frame to PANC within this timeout.

Default Value KEEP_ALIVE_COORDINATOR_SEND_INTERVAL *10
The default value is 1200 when KEEP_ALIVE_COORDINATOR_SEND_INTERVAL is
set as 120.

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 19

Range 1 – 65535

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.4 KEEP_ALIVE_RXONENDDEVICE_SEND_INTERVAL

Description Time interval in seconds on which an end-device sends keep alive frame to its
coordinator. Upon reception of this frame, coordinator refreshes the timeout for that
particular end-device.

Default Value 120

Range 1 – 65535

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks KEEP_ALIVE_RXONENDDEVICE_TIMEOUT_IN_SEC is based on this value.

9.5 KEEP_ALIVE_RXONENDDEVICE_TIMEOUT_IN_SEC

Description Timeout in seconds for which the coordinator maintains the entry of end-device, for
holding its address. Each end-device is expected to send at least one keep alive
frame to coordinator within this timeout.

Default Value KEEP_ALIVE_RXONENDDEVICE_SEND_INTERVAL *10 (that is, 1200)
The default value is 1200 when KEEP_ALIVE_COORDINATOR_SEND_INTERVAL is
set as 120.

Range 1 – 65535

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.6 DATA_REQUEST_SEND_INTERVAL

Description Time interval in seconds on which a sleeping end-device sends Data Request frame
to its coordinator. Upon reception of this frame, coordinator refreshes the timeout for
that particular sleeping end-device and sends any data cached in indirect queue.

Default Value 3

Range 1 – 254

Memory Usage None

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 20

Configurable in miwi_config_mesh.h
Remarks RXOFF_DEVICE_TIMEOUT_IN_SEC and

MAXIMUM_DATA_REQUEST_SEND_INTERVAL is based on this value

9.7 RXOFF_DEVICE_TIMEOUT_IN_SEC

Description Timeout in seconds for which the coordinator maintains the entry of sleeping end-
device, to hold its address. Each sleeping end-device is expected to send at least one
Data Request to coordinator within this timeout.

Default Value DATA_REQUEST_SEND_INTERVAL * 20 (that is, 60)
The default value is 60 when DATA_REQUEST_SEND_INTERVAL is set as 3.

Range 1 – 65535

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.8 MAXIMUM_DATA_REQUEST_SEND_INTERVAL

Description Maximum time interval in seconds for Data Request of end-device in the network.

Default Value DATA_REQUEST_SEND_INTERVAL * 2 (that is, 6)

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.9 MAX_NUMBER_OF_DEVICES_IN_NETWORK

Description This macro is used to configure the number of device’s IEEE addresses to be stored
for commissioning.

Default Value 32

Range 1 – 255

Memory Usage 256 bytes of RAM for 32 entries, that is, 8 bytes per entry

Configurable in miwi_config_mesh.h
Remarks None

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 21

9.10 JOIN_WISH

Description Configuration to join the network based on defined roles. For more information, see
8.2 Start and Join Network.

Default Value • For Coordinator – JOINWISH_ANY
• For End-device – JOINWISH_ENDEVICE

Range • JOINWISH_ENDEVICE - 0x01
• JOINWISH_COORD_ALONE - 0x02
• JOINWISH_ANY - 0x03

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.11 ROLE_UPGRADE_INTERVAL_IN_SEC

Description Time interval in seconds on which a coordinator capable end-device requests the
PANC to upgrade its role to coordinator. For more information on Role Upgrade, see
8.2 Start and Join Network.

Default Value 25

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.12 CONNECTION_RESPONSE_WAIT_IN_SEC

Description Time interval in seconds to wait for Connection Response after sending Connection
Request to any coordinator in the network.

Default Value 5

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 22

9.13 NUM_OF_COORDINATORS

Description This macro is used to configure the number of coordinators in the network. Also used
to allocate the coordinator table on PANC to maintain the IEEE addresses and
timeout for each coordinator.

Default Value 64

Range 1 – 200

Memory Usage 768 bytes of RAM for 64 entries, that is, 12 bytes per entry

Configurable in miwi_config_mesh.h
Remarks None

9.14 NUM_OF_NONSLEEPING_ENDDEVICES

Description This macro is used to configure the number of non-sleeping end-devices in the
network. Also used to allocate the device table on each coordinator to maintain the
IEEE addresses and timeout for each non-sleeping end-device.

Default Value 5

Range 1 – 127

Memory Usage 80 bytes of RAM for 5 entries, that is, 16 bytes per entry

Configurable in miwi_config_mesh.h
Remarks None

9.15 NUM_OF_SLEEPING_ENDDEVICES

Description This macro is used to configure the number of sleeping end-devices in the network.
Also used to allocate the sleeping device table on each coordinator to maintain the
IEEE addresses and timeout for each sleeping end-device.

Default Value 5

Range 1 – 128

Memory Usage 100 bytes of RAM for 5 entries, that is, 20 bytes per entry

Configurable in miwi_config_mesh.h
Remarks None

9.16 ROUTE_UPDATE_INTERVAL

Description Periodic time interval in seconds to send route update for neighboring devices after
joining the network.

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 23

Default Value 60

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.17 ROUTE_REQ_WAIT_INTERVAL

Description Timeout in seconds to wait for route replies after sending route request to discover
route for a specific coordinator.

Default Value 5

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.18 INDIRECT_DATA_WAIT_INTERVAL

Description Timeout in seconds to hold indirect data to its sleeping end-devices. This must be
maintained at least more than twice the Data Request interval to ensure reliable data
transfer.

Default Value 25

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.19 ED_LINK_FAILURE_ATTEMPTS

Description Number of consecutive attempts on end-device made with the parent before
confirming link failure.

Default Value 15

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 24

9.20 FRAME_RETRY

Description Defines the number of retries to be performed during failure to reach the destination.

Default Value 3

Range 0 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks This configuration to retry is apart from the basic MAC level retries.

Note:  Any frame going out of the device is retried three times at MAC layer.

9.21 REBROADCAST_TABLE_SIZE

Description This macro is used to configure the number of entries to be stored to avoid duplicate
rebroadcast for every broadcast in the network.

Default Value 10

Range 1 – 255

Memory Usage 40 bytes of RAM for 10 entries, that is, 4 bytes per entry.

Configurable in miwi_config_mesh.h
Remarks None

9.22 REBROADCAST_TIMEOUT

Description Timeout in seconds to hold the broadcasted data in rebroadcast table to avoid
rebroadcasting again.

Default Value 5

Range 1 – 254

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.23 DUPLICATE_REJECTION_TABLE_SIZE

Description Size of duplicate rejection table used to avoid multiple data indication to the
application.

Default Value 10

Range 1 – 255

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 25

Memory Usage 40 bytes of RAM for 10 entries, that is, 4 bytes per entry.

Configurable in miwi_config_mesh.h
Remarks None

9.24 MAX_BEACON_RESULTS

Description Number of entries allocated to receive beacon response during active scan.

Default Value 5

Range 1 – 255

Memory Usage 90 bytes of RAM for 5 entries, that is, 18 bytes per entry.

Configurable in miwi_config_mesh.h
Remarks None

9.25 MESH_SECURITY_LEVEL

Description Security levels for CCM* as defined in IEEE 802.15.4.

Default Value 5

Range 0 – 7

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.26 PUBLIC_KEY_DEFAULT

Description Public key is the initial key stored in all devices, the initial communications use this
key until it gets the network key.

Default Value {0x00,0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C,
0x0D, 0x0E, 0x0F}

Range Any 16 bytes value

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

9.27 NETWORK_KEY_DEFAULT

Description Network key used to transact after successful join to the network.

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 26

Default Value {0x00,0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC,
0xDD, 0xEE, 0xFF}

Range Any 16 bytes value

Memory Usage None

Configurable in miwi_config_mesh.h
Remarks None

 MiWi™
Macros for MiWi Mesh

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 27

10. Recommendation for Macros
For example, consider the default tested network (with WSN Demo application) which has following
considerations.

1. Network size as 1 PAN coordinator, 50 coordinators, and 30 end-devices.
2. All the devices in network must report to PAN Coordinator at a periodic interval.
3. Data flow is mostly unidirectional (that is, uplink requires more bandwidth).
4. Report from all the devices are monitored using WSNMonitor.

This network is programmed with default values (see 9. Macros for MiWi Mesh), and tested to be working
for more than 48 hours.

By default, in the WSN Demo application, each end-device joins to a coordinator based on its available
end-device capacity. Since the number of coordinators are greater than end-devices, most end-devices
join to coordinators with 100% end-device capacity.

The following macros must be proportionally modified (that is, when the number of coordinators
increases, configuration values must be increased and vice versa) based on the change in number of
coordinators in the network.

1. NUM_OF_COORDINATORS
2. KEEP_ALIVE_COORDINATOR_SEND_INTERVAL
3. KEEP_ALIVE_COORDINATOR_TIMEOUT_IN_SEC
4. ROUTE_UPDATE_INTERVAL
5. ROLE_UPGRADE_INTERVAL_IN_SEC

The following macros must be proportionally modified (that is, when the number of coordinators
increases, configuration values must be increased and vice versa) based on the change in number of
end-devices in the network.

• For sleeping end-device:
1. NUM_OF_SLEEPING_ENDDEVICES
2. DATA_REQUEST_SEND_INTERVAL
3. RXOFF_DEVICE_TIMEOUT_IN_SEC
4. MAXIMUM_DATA_REQUEST_SEND_INTERVAL
5. INDIRECT_DATA_WAIT_INTERVAL

• For non-sleeping (that is, RXON end-device) end-device:
1. NUM_OF_NONSLEEPING_ENDDEVICES
2. KEEP_ALIVE_RXONENDDEVICE_SEND_INTERVAL
3. KEEP_ALIVE_RXONENDDEVICE_TIMEOUT_IN_SEC

Note:  This recommendation of macros is tested on SAMR21 (that is, 2.4 GHz); therefore, for the same
network size in SAMR30 (that is, Sub-GHz) the values must be increased to compensate on the
reduction in data rate.

10.1 Extending Battery Life for Sleeping End-device
Apart from the Sleep mode supported by the controller, DATA_REQUEST_SEND_INTERVAL
configuration directly impacts the frequency of wake up from sleep and the consumption of battery.

 MiWi™
Recommendation for Macros

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 28

11. MiApp API
The following table lists the supported APIs.

Table 11-1. MiApp API

S.
No. Supported APIs Topology

Supported

1 miwi_status_t MiApp_ProtocolInit (defaultParametersRomOrRam_t
*defaultRomOrRamParams, defaultParametersRamOnly_t
*defaultRamOnlyParams)

P2P/Star/
Mesh

2 bool MiApp_Set(enum id, uint8_t value) P2P/Star/
Mesh

3 bool MiApp_StartNetwork(uint8_t Mode, uint8_t ScanDuration,
uint32_t ChannelMap, FUNC ConfCallback)

P2P/Star/
Mesh

4 uint8_t MiApp_SearchConnection(uint8_t ScanDuration, uint32_t
ChannelMap, FUNC ConfCallback)

P2P/Star/
Mesh

5 uint8_t MiApp_EstablishConnection(uint8_t Channel, uint8_t
addr_len, uint8_t addr, uint8_t Capability_info, FUNC
ConfCallback)

P2P/Star/
Mesh

6 void MiApp_RemoveConnection(uint8_t ConnectionIndex) P2P/Star/
Mesh

7 void MiApp_ConnectionMode(uint8_t Mode) P2P/Star/
Mesh

8 MiApp_SendData(uint8_t addr_len, uint8_t addr, uint8_t len,
uint8_t pointer, FUNC ConfCallback)

P2P/Star/
Mesh

9 MiApp_SubscribeDataIndicationCallback(FUNC callback) P2P/Star/
Mesh

10 uint8_t MiApp_NoiseDetection(uint32_t ChannelMap, uint8_t
ScanDuration, uint8_t DetectionMode, OUTPUT uint8_t NoiseLevel)

P2P/Star/
Mesh

11 uint8_t MiApp_TransceiverPowerState(uint8_t Mode) P2P/Star/
Mesh

12 bool MiApp_InitChannelHopping(uint32_t ChannelMap) P2P/Star/
Mesh

13 bool MiApp_ResyncConnection(uint8_t ConnectionIndex, uint32_t
ChannelMap)

P2P/Star/
Mesh

14 uint8_t Total_Connections(void) P2P/Star/
Mesh

15 void MiApp_BroadcastConnectionTable() Star

16 bool SW_Ack_SrED(uint8_t) Star

 MiWi™
MiApp API

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 29

...........continued
S.

No. Supported APIs Topology
Supported

17 void send_link_status(void) Star

18 void Find_InActiveDevices(void) Star

19 void MiApp_leave_network(void) Star

20 bool MiApp_UnicastStar (bool SecEn) Star

21 bool MiApp_Set(enum id, uint8_t value) Mesh

22 bool MiApp_IsMemberOfNetwork(void) Mesh

23 bool MiApp_Get(enum id, uint8_t value) Mesh

24 bool MiApp_Set(enum id, uint8_t value) Mesh

25 bool MiApp_SubscribeReConnectionCallback(ReconnectionCallback_t
callback)

P2P/Star/
Mesh

26 bool MiApp_ResetToFactoryNew(void) P2P/Star/
Mesh

27 bool MiApp_ReadyToSleep(uint32_t* sleepTime) Mesh

28 bool MiApp_ManuSpecSendData(uint8_t addr_len, uint8_t *addr,
uint8_t msglen, uint8_t *msgpointer, uint8_t msghandle, bool
ackReq, DataConf_callback_t ConfCallback)

Mesh

29 bool
MiApp_SubscribeManuSpecDataIndicationCallback(PacketIndCallback_t
callback)

Mesh

30 bool MiApp_IsConnected(void) Mesh

31 uint16_t MiApp_MeshGetNextHopAddr(uint16_t destAddress) Mesh

 MiWi™
MiApp API

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 30

12. MiApp API Description
This section describes the MiApp APIs.

12.1 MiApp_ProtocolInit

API miwi_status_t MiApp_ProtocolInit(defaultParametersRomOrRam_t
*defaultRomOrRamParams, defaultParametersRamOnly_t
*defaultRamOnlyParams)

Description This is the primary user interface function to initialize the Microchip proprietary wireless
protocol, which is chosen by the application layer. Usually, this function must be called
after the hardware initialization, before any other MiApp interface can be called.

Pre-Condition Hardware initialization must be done.

Parameters • defaultParametersRomOrRam_t defaultRomOrRamParams – Default
parameters for MiWiTM Mesh.

• defaultParametersRamOnly_t defaultRamOnlyParams – Default
parameters for MiWiTM Mesh.

• Ignored in case of P2P / Star

Returns Status of Initialization

Example <code>
HardwareInit();
MiApp_ProtocolInit();
</code>

Remarks If RECONNECTION_IN_PROGRESS status is received, then application needs to wait
for reconnection callback before proceeding to call further MiApp API’s.

12.2 MiApp_Set

API bool MiApp_Set(set_params id, uint8_t *value)

Description This is the primary user interface function to set the different values in the MiWiTM

stack.

Pre-Condition Protocol initialization must be done.

Parameters • set_params id – The identifier of the value to be set
• value – The value to be set

Returns A boolean to indicate if set operation is performed successfully.

Example <code>
if(true == MiApp_Set(CHANNEL, 15))
{
// channel changes successfully
}
</code>

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 31

Remarks None

12.3 MiApp_StartConnection

API bool MiApp_StartConnection(uint8_t Mode, uint8_t ScanDuration,
uint32_t ChannelMap,connectionConf_callback_t ConfCallback)

Description This is the primary user interface function for the application layer to start PAN. Usually,
this function is called by the PAN coordinator which is the first in the PAN. The PAN
coordinator may start the PAN after a noise scan if specified in the input mode.

Pre-
Condition

Protocol initialization must be done.

Parameters • uint8_t Mode – whether to start a PAN after a noise scan. Possible modes are
as follows.

– START_CONN_DIRECT – starts PAN directly without noise scan.
– START_CONN_ENERGY_SCN – performs an energy scan first, then starts

the PAN on the channel with least noise.
– START_CONN_CS_SCN – performs a carrier-sense scan first, then starts the

PAN on the channel with least noise.
• uint8_t ScanDuration – maximum time to perform scan on single channel.

The value is from 5 to 14. The real time to perform scan can be calculated in
following formula from IEEE 802.15.4 specification:
960 x (2^ScanDuration + 1) x 10^(-6) second

ScanDuration is discarded if the connection mode is START_CONN_DIRECT.
• uint32_t ChannelMap – bit map of channels to perform noise scan. The 32-bit

double word parameter uses one bit to represent corresponding channels from 0 to
31. For instance, 0x00000003 represent to scan channel 0 and channel 1.
ChannelMap is discarded if the connection mode is START_CONN_DIRECT.

• connectionConf_callback_t ConfCallback – callback routine which is
called upon the initiated connection procedure is performed.

Returns A boolean to indicate if PAN is started successfully.

Example <code>
// start the PAN on the least noisy channel after scanning all possible
channels.
MiApp_StartConnection(START_CONN_ENERGY_SCN, 10, 0x07FFF800, callback);
</code>

Remarks None

12.4 MiApp_SearchConnection

API uint8_t MiApp_SearchConnection(uint8_t ScanDuartion, uint32_t ChannelMap,
SearchConnectionConf_callback_t ConfCallback)

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 32

Description This is the primary user interface function for the application layer to perform an active
scan. After this function call, all active scan response is stored in the global variable
ActiveScanResults in the format of structure ACTIVE_SCAN_RESULT. The return
value indicates the total number of valid active scan response in the active scan result
array.

Pre-Condition Protocol initialization is done.

Parameters uint8_t ScanDuration – maximum time to perform scan on single channel. The
value is from 5 to 14. The real time to perform scan can be calculated with the following
formula from the IEEE 802.15.4 specification:

960 x (2^ScanDuration + 1) x 10^(-6) second.

uint32_t ChannelMap – bit map of channels to perform noise scan. The 32-bit
double word parameter uses one bit to represent corresponding channels from 0 to 31.
For instance, 0x00000003 represents to scan channel 0 and channel 1.

SearchConnectionConf_callback_t ConfCallback – callback routine which is
called when the initiated connection procedure is performed.

Returns The number of valid active scan response stored in the global variable
ActiveScanResults.

Example <code>
// Perform an active scan on all possible channels
NumOfActiveScanResponse = MiApp_SearchConnection(10, 0xFFFFFFFF, callback);
</code>

Remarks None

12.5 MiApp_EstablishConnection

API uint8_t MiApp_EstablishConnection(uint8_t Channel, uint8_t addr_len,
uint8_t *addr, uint8_t Capability_info, connectionConf_callback_t
ConfCallback)

Description This is the primary user interface function for the application layer to start
communication with an existing PAN. For P2P protocol, this function call can establish
one or more connections. For network protocol, this function can be used to join the
network, or establish a virtual socket connection with a node out of the radio range.

Pre-Condition Protocol initialization is done. If only to establish connection with a predefined device,
an active scan must be performed before and valid active scan result must be saved.

Parameters • uint8_t channel – selected channel to invoke join procedure.
• uint8_t addr_len – address length
• uint8_t *addr – address of the parent
• uint8_t Capability_info – capability information of the device
• connectionConf_callback_t ConfCallback – callback routine which will be

called upon the initiated connection procedure is performed

Returns The index of the peer device on the connection table.

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 33

Example <code>
// Establish one or more connections with any device
PeerIndex = MiApp_EstablishConnection(14, 8, 0x12345678901234567,0x80,
callback);
</code>

Remarks If more than one connections is established through this function call, the return value
points to the index of one of the peer devices.

12.6 MiApp_RemoveConnection

API void MiApp_RemoveConnection(uint8_t ConnectionIndex)

Description This is the primary user interface function to disconnect connection(s). For a P2P
protocol, it removes the connection. For a network protocol, if the device referred by the
input parameter is the parent of the device calling this function, the calling device gets
out of network along with its children. If the device referred by the input parameter is
children of the device calling this function, the target device gets out of network.

Pre-Condition Transceiver is initialized. Node establishes one or more connections.

Parameters uint8_t ConnectionIndex – index of the connection in the connection table to be
removed.

Returns None

Example <code>
MiApp_RemoveConnection(0x00);
</code>

Remarks None

12.7 MiApp_ConnectionMode

API void MiApp_ConnectionMode(uint8_t Mode)

Description This is the primary user interface function for the application layer to configure the way
that the host device accepts the connection request.

Pre-Condition Protocol initialization is done.

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 34

Parameters uint8_t Mode - mode to accept the connection request. The privilege for those
modes decreases gradually as defined. The higher privilege mode has all the rights of
the lower privilege modes.

The possible modes are as follows:
• ENABLE_ALL_CONN – enables response to all connection request
• ENABLE_PREV_CONN – enables response to connection request from device

already in the connection table
• ENABLE_ACTIVE_SCAN_RSP – enables response to active scan only
• DISABLE_ALL_CONN – disables response to the connection request, including an

active scan request

Returns None

Example <code>
// Enable all connection request
MiApp_ConnectionMode(ENABLE_ALL_CONN);
</code>

Remarks None

12.8 MiApp_SendData

API bool MiApp_SendData(uint8_t addr_len, uint8_t *addr,
uint8_t msglen, uint8_t *msgpointer,uint8_t msghandle,
bool ackReq, DataConf_callback_t ConfCallback)

Description This is one of the primary user interface functions for the application layer to unicast a
message. The destination device is specified by the input parameter
DestinationAddress. The application payload is filled using msgpointer.

Pre-Condition Protocol initialization is done.

Parameters • uint8_t addr_len – destination address length
• uint8_t *addr – destination address
• uint8_t msglen – length of the message
• uint8_t *msgpointer – message/frame pointer
• uint8_t msghandle – message handle
• bool ackReq – set to receive network level acknowledgment

Note:  Discarded for broadcast data.
• DataConf_callback_t ConfCallback – callback routine which is called when

the initiated data procedure is performed.

Returns A boolean to indicate if the unicast procedure is successful.

Example <code>
// Secure and then broadcast the message stored in msgpointer to the
permanent address
// specified in the input parameter.
MiApp_SendData(SHORT_ADDR_LEN, 0x0004, 5, “hello”,1, callback);
</code>

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 35

Remarks None

12.9 MiApp_SubscribeDataIndicationCallback

API bool MiApp_SubscribeDataIndicationCallback(PacketIndCallback_t callback)

Description This is the primary user interface functions for the application layer to call the Microchip
proprietary protocol stack to register the message indication callback to the application.
The function calls the protocol stack state machine to keep the stack running.

Pre-Condition Protocol initialization is done.

Parameters None

Returns A boolean to indicate if the subscription operation is successful or not.

Example <code>
if(true == MiApp_SubscribeDataIndicationCallback(ind))
{
}
</code\>

Remarks None

12.10 MiApp_NoiseDetection

API uint8_t MiApp_NoiseDetection(uint32_t ChannelMap, uint8_t ScanDuration,
uint8_t DetectionMode, uint8_t NoiseLevel)

Description This is the primary user interface function for the application layer to perform noise
detection on multiple channels.

Pre-Condition Protocol initialization is done.

Parameters • uint32_t ChannelMap – bit map of channels to perform a noise scan. The 32-
bit double word parameter uses one bit to represent corresponding channels from
0 to 31. For example, 0x00000003 represents to scan channel 0 and channel 1.

• uint8_t ScanDuration – maximum time to perform a scan on a single channel.
The valid value is from 5 to 14. The real time to perform a scan can be calculated
in the following formula from IEEE 802.15.4 specification:
960 x (2^ScanDuration + 1) x 10^(-6) second

• uint8_t DetectionMode – the noise detection mode to perform the scan. The
two possible scan modes are as following.

– NOISE_DETECT_ENERGY – Energy detection scan mode
– NOISE_DETECT_CS – Carrier sense detection scan mode

• uint8_t NoiseLevel - noise level at the channel with least noise level

Returns The channel that has the lowest noise level.

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 36

Example <code>
uint8_t NoiseLevel;
OptimalChannel = MiApp_NoiseDetection(0xFFFFFFFF, 10, NOISE_DETECT_ENERGY,
&NoiseLevel);
</code>

Remarks None

12.11 MiApp_TransceiverPowerState

API uint8_t MiApp_TransceiverPowerState(uint8_t Mode)

Description This is the primary user interface function for the application layer to set the RF
transceiver into sleep or wake up. This function is only available to those wireless nodes
that have to disable the transceiver to save battery power.

Pre-
Condition

Protocol initialization is done.

Parameters uint8_t Mode – mode of the power state for the RF transceiver to be set. The
possible power states are following.

• POWER_STATE_SLEEP – deep sleep mode for the RF transceiver
• POWER_STATE_WAKEUP – Wake-Up state, or operating state for the RF transceiver
• POWER_STATE_WAKEUP_DR – Set the device into the Wake-Up mode and transmit

the data request to the device's associated device

Returns The status of the operation. The following are the possible status.
• SUCCESS – operation is successful.
• ERR_TRX_FAIL – Transceiver fails to go to the Sleep or Wake-Up mode.
• ERR_TX_FAIL – transmission of Data Request command failed. Only available if

the input mode is POWER_STATE_WAKEUP_DR.
• ERR_RX_FAIL – failed to receive any response to Data Request command. Only

available if the input mode is POWER_STATE_WAKEUP_DR.
• ERR_INVLAID_INPUT – invalid input mode.

Example <code>
// put RF transceiver into sleep
MiApp_TransceiverPowerState(POWER_STATE_SLEEP;
// Put the MCU into sleep
Sleep();
// wakes up the MCU by WDT, external interrupt or any other means
// make sure that RF transceiver to wake up and send out Data Request
MiApp_TransceiverPowerState(POWER_STATE_WAKEUP_DR);
</code>

Remarks None

12.12 MiApp_Get

API bool MiApp_Get(set_params id, uint8_t *value)

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 37

Description This is the primary user interface function to get the different values in the MiWiTM stack

Pre-Condition Protocol initialization is done

Parameters get_params id – identifier of the value to be set

Returns A boolean to indicate if the get operation is performed successfully

Example <code>
value = MiApp_get(CHANNEL)
</code>

Remarks None

12.13 MiApp_RoleUpgradeNotification_Subscribe

API bool MiApp_RoleUpgradeNotification_Subscribe (roleUpgrade_callback_t callback)

This is applicable only for coordinator.

Description This API subscribes to notify the role upgrade. Upon successful role upgrade, callback
is called with new short address.

Pre-Condition Protocol initialization is done.

Parameters roleUpgrade_callback_t callback – callback routine which is called upon the
role upgrade completion

Returns A boolean to indicate if the subscription is success or not

12.14 MiApp_Commissioning_AddNewDevice

API bool MiApp_Commissioning_AddNewDevice(uint64_t joinerAddress, bool
triggerBloomUpdate)

Description This is used to add a device to bloom filter on the PAN coordinator. This function is
applicable only for the PAN coordinator.

Pre-Condition Protocol initialization is done.

Parameters • uint8_t joinerAddress – the IEEE address to be added
• bool triggerBloomUpdate – if set to true then bloom update is sent

Returns True if successfully added, false otherwise.

12.15 MiApp_SubscribeReConnectionCallback

API bool MiApp_SubscribeReConnectionCallback(ReconnectionCallback_t callback)

Description This API subscribes to notify the reconnection after power recycle when the device was
in network before power recycle. Upon reconnection on a device, this callback is called.

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 38

Pre-Condition Protocol initialization is done.

Parameters ReconnectionCallback_t callback- callback routine which is called upon
reconnection

Returns A boolean to indicate if the subscription is success or not

12.16 MiApp_ResetToFactoryNew

API bool MiApp_ResetToFactoryNew(void)

Description This API erases all the persistent items in the NVM and resets the system

Pre-Condition None

Parameters None

Returns A boolean to indicate if the operation is success or not

12.17 MiApp_ReadyToSleep

API bool MiApp_ReadyToSleep(uint32_t* sleepTime)

Description This API helps to know if the stack is ready to sleep and how much time stack allows to
sleep if it is ready

Pre-Condition None

Parameters uint32_t* sleep Time – pointer to sleep time which gets filled with the sleep time if
the stack is ready to sleep

Returns A boolean to indicate if the stack is ready to sleep or not

12.18 MiApp_ManuSpecSendData

API bool MiApp_ManuSpecSendData(uint8_t addr_len, uint8_t *addr,
uint8_t msglen, uint8_t *msgpointer,uint8_t msghandle, bool ackReq,
DataConf_callback_t ConfCallback)

Description This is an interface function for the manufacturer-specific data. The destination device
is specified by the input parameter DestinationAddress. The OTAU module uses
this API for upgrade support.

Pre-Condition Protocol initialization is done.

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 39

Parameters • uint8_t addr_len – destination address length
• uint8_t *addr – destination address
• uint8_t msglen – length of the message
• uint8_t *msgpointer – message/frame pointer
• uint8_t msghandle – message handle
• bool ackReq – set to receive network level acknowledgment

Note:  Discarded for the broadcast data.
• DataConf_callback_t ConfCallback - callback routine which is called when

the initiated data procedure is performed.

Returns A boolean indicates if the unicast procedure is successful.

Example <code>
// Secure and then broadcast the message stored in msgpointer to the
permanent address
// specified in the input parameter.
MiApp_ManuSpecSendData(SHORT_ADDR_LEN, 0x0004, 5, “hello”,1, callback);
</code>

Remarks None

12.19 MiApp_SubscribeManuSpecDataIndicationCallback

API bool MiApp_SubscribeManuSpecDataIndicationCallback (PacketIndCallback_t
callback)

Description This is the primary user interface functions for the OTAU module to register for
manufacturer-specific indication callback.

Pre-Condition Protocol initialization is done.

Parameters None

Returns A boolean indicates if the subscription operation is successful or not.

Example <code>
if(true == MiApp_SubscribeManuSpecDataIndicationCallback (ind))
{
}
</code\>

Remarks None

12.20 MiApp_IsConnected

API bool MiApp_IsConnected(void)

Description This is used to check the connection of MiWiTM Mesh to a network.

Pre-Condition None

Parameters None

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 40

Returns A boolean true indicates the node is connected to a network.

12.21 MiApp_MeshGetNextHopAddr

API uint16_t MiApp_MeshGetNextHopAddr(uint16_t destAddress)

Description This is used to get the address of next hop to reach the destAddress.

Pre-Condition None

Parameters uint16_t destAddress – destination address of the device to which the next hop is
required.

Returns Address of the next hop to reach the destAddress.

 MiWi™
MiApp API Description

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 41

13. Limitations
The following are the known limitations:

1. Random behavior in some SAMR30 devices that the Back mode sleep fails to wake up when run
continuously for 1 or 2 days.

2. It is possible to miss confirmation callback for data in P2P/Star if initiated too fast. It is
recommended to have proper debounce in customer applications.

3. OTAU - Device unable (randomly) to wake up from sleep when CPU works at 48 MHz which is
derived using DFLL with External 32 KHz crystal/clock source.

 MiWi™
Limitations

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 42

14. Document Revision History
Revision Date Section Description

A 02/2019 Document Initial Revision

 MiWi™
Document Revision History

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 43

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online
discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 MiWi™

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 44

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 MiWi™

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 45

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4185-4

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 MiWi™

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 46

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2019 Microchip Technology Inc. User Guide DS50002851A-page 47

	Introduction
	Features
	Table of Contents
	1. MiWi Architecture
	2. MiWi Mesh Device Types
	3. MiWi Mesh Frame Format
	3.1. MAC Header – Frame Control Field
	3.1.1. Frame Type
	3.1.2. Security Enabled
	3.1.3. Frame Pending
	3.1.4. Acknowledgment Request
	3.1.5. PAN ID Compression
	3.1.6. Destination Addressing Mode
	3.1.7. Frame Version
	3.1.8. Source Addressing Mode

	3.2. Network Header
	3.2.1. Hops Field
	3.2.2. Frame Control Field
	3.2.3. Sequence Number Field
	3.2.4. Destination PANID Field
	3.2.5. Source Address Field
	3.2.6. Destination Address Field
	3.2.7. Auxiliary Security Header Field
	3.2.7.1. Security Level

	4. MiWi Mesh – Device Addressing Mechanism
	5. Network Freezer
	5.1. Interface
	5.2. Additional Notes

	6. Sleep Mode
	6.1. Interface

	7. Over-The-Air Upgrade
	7.1. OTAU Server
	7.2. OTAU Client
	7.3. Domains of OTAU
	7.3.1. Notify
	7.3.2. Upgrade

	7.4. Compiler Switches for OTAU

	8. MiWi Mesh – Networking
	8.1. Network Commissioning
	8.2. Start and Join Network
	8.3. Routing in Network

	9. Macros for MiWi Mesh
	9.1. CHANNEL_MAP
	9.2. KEEP_ALIVE_COORDINATOR_SEND_INTERVAL
	9.3. KEEP_ALIVE_COORDINATOR_TIMEOUT_IN_SEC
	9.4. KEEP_ALIVE_RXONENDDEVICE_SEND_INTERVAL
	9.5. KEEP_ALIVE_RXONENDDEVICE_TIMEOUT_IN_SEC
	9.6. DATA_REQUEST_SEND_INTERVAL
	9.7. RXOFF_DEVICE_TIMEOUT_IN_SEC
	9.8. MAXIMUM_DATA_REQUEST_SEND_INTERVAL
	9.9. MAX_NUMBER_OF_DEVICES_IN_NETWORK
	9.10. JOIN_WISH
	9.11. ROLE_UPGRADE_INTERVAL_IN_SEC
	9.12. CONNECTION_RESPONSE_WAIT_IN_SEC
	9.13. NUM_OF_COORDINATORS
	9.14. NUM_OF_NONSLEEPING_ENDDEVICES
	9.15. NUM_OF_SLEEPING_ENDDEVICES
	9.16. ROUTE_UPDATE_INTERVAL
	9.17. ROUTE_REQ_WAIT_INTERVAL
	9.18. INDIRECT_DATA_WAIT_INTERVAL
	9.19. ED_LINK_FAILURE_ATTEMPTS
	9.20. FRAME_RETRY
	9.21. REBROADCAST_TABLE_SIZE
	9.22. REBROADCAST_TIMEOUT
	9.23. DUPLICATE_REJECTION_TABLE_SIZE
	9.24. MAX_BEACON_RESULTS
	9.25. MESH_SECURITY_LEVEL
	9.26. PUBLIC_KEY_DEFAULT
	9.27. NETWORK_KEY_DEFAULT

	10. Recommendation for Macros
	10.1. Extending Battery Life for Sleeping End-device

	11. MiApp API
	12. MiApp API Description
	12.1. MiApp_ProtocolInit
	12.2. MiApp_Set
	12.3. MiApp_StartConnection
	12.4. MiApp_SearchConnection
	12.5. MiApp_EstablishConnection
	12.6. MiApp_RemoveConnection
	12.7. MiApp_ConnectionMode
	12.8. MiApp_SendData
	12.9. MiApp_SubscribeDataIndicationCallback
	12.10. MiApp_NoiseDetection
	12.11. MiApp_TransceiverPowerState
	12.12. MiApp_Get
	12.13. MiApp_RoleUpgradeNotification_Subscribe
	12.14. MiApp_Commissioning_AddNewDevice
	12.15. MiApp_SubscribeReConnectionCallback
	12.16. MiApp_ResetToFactoryNew
	12.17. MiApp_ReadyToSleep
	12.18. MiApp_ManuSpecSendData
	12.19. MiApp_SubscribeManuSpecDataIndicationCallback
	12.20. MiApp_IsConnected
	12.21. MiApp_MeshGetNextHopAddr

	13. Limitations
	14. Document Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

