

SPECIFICATION SHEET

SPECIFICATION SHEET NO.	P0412- UT227M063HPNTA
STEERICATION SHEET NO.	
DATE	April 12, 2022
REVISION	A1
DESCRIPITION	SMD Aluminum Electrolytic Capacitors, Wide Temperature Standard Type
	UT series, 2 pads Capacitance: 220μ F, Tolerance ±20%, Voltage 63V,
	Case size: ØD12.5*L13.5mm, Ripple Current 470mA Max.@+105°C, 120Hz
	Lifetime 2000 Hours @105°C, Operating Temp. Range: -55°C ~+105°C
	RoHS/RoHS III Compliant & Halogen Free
	Package in Tape/Reel, 200pcs/Reel
CUSTOMER	
CUSTOMER PART NUMBER	
CROSS REF. PART NUMBER	
ORIGINAL PART NUMBER	Aillen CAE227M1JHUTI1CTR
PART CODE	UT227M063HPNTA

VENDOR APPROVE			
Issued/Checked/Approved	Component Mandy Xu Zu Zu Zu Zu	Compose Scale Changes	Jack Zhang
DATE: April 12, 2022			
CUSTOMER APPROVE			

DATE:

4/12/2022

Т

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

MAIN FEATURE

- Polar Aluminum Electrolytic Capacitor (Foil Type)
- High stability and reliability
- Lifetime 2000 Hours @ 105°C
- Designed Capacitor's Quality Meets IEC60384.
- Applicable To Automatic Mounting Machine
- Cross Competitors Parts FN, FKS, MVE UUT SKV, SGV Series and more.
- RoHS Complaint And Halogen Free

APPLICATION

• High-density Patch Assembly General Electronic Circuit Etc.

PART CODE GUIDE

UT	227	м	063	Н	Р	N	т	Α
1	2	3	4	5	6	7	8	9

1) UT: SMD Aluminum Electrolytic Capacitors, UT series, 2 pads

2) 227: Rated Capacitance Code, 105: 1.0µF; 225: 2.2µF; 335: 3.3µF; 475: 4.7µF; 106: 10µF; 226: 22µF; 336: 33µF; 476: 47µF

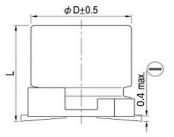
107: 100µF; 227: 220µF; 337: 330µF; 477: 470µF; 687: 680µF; 108: 1000µF; 158: 1500µF; 228: 2200µF

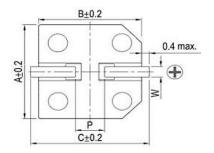
- M: Capacitance tolerance code, M: ±20%; K: ±10%; V: -10% ~ ±20%,
- 4) 063: Rated Voltage Code, 6V3: 6.3V; ; 010: 10V; 016:16V; 025: 25V; 035: 35V; 050: 50V; 063: 63V; 100: 100V
- 5) H: Environmental Requirements code, R: RoHS Complaint; H: RoHS III Complaint & Halogen Free
- 6) P: Aluminum Case size code, B: ØD3.0mm; C: ØD4.0mm; D: ØD5.0mm; E: ØD6.3mm; F: ØD8.0mm; G: ØD10.0mm; P: ØD12.5mm

sales@NextGenComponent.com

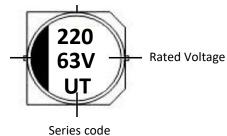

- 7) N: Aluminum case Heigh code, H: L5.4mm; I: L6.5mm; J: L7.7mm; K: L10.2mm; L: L11.5mm; M: L12.5mm; N: L13.5mm
- 8) T: Package in Tape/Reel, 200pcs/Reel
- 9) A: Internal control or Customer's Special Code (A~Z or 1~9)

uest For Quotation


SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES


Image For Reference

UT Series Case ØD12.5*L13.5mm Explosion Proof Value



Symbol	Dimension (mm)
Α	13.0
В	13.0
D	Ø12.5
С	13.7 +/-0.2
L	13.5 +/-0.5
р	4.4 +/-0.20
w	1.0~1.40

Marking

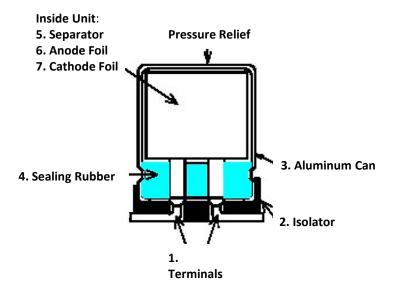
Negative Polarity

G. Y

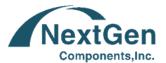
Recommended Pad Layout

Symbol	Dimension
G	6.0
х	3.2
Y	4.0

NextGen Components, Inc.


3

🕢 : pad



SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CONSTRUCTION

No.	Parts	Material		
1	Terminal	Tinned Copper – Clad Steel Wire (Pb Free)		
2	Isolator	Thermo-plastic resin		
3	Aluminum Can	Aluminum		
4	Sealing Rubber	Synthetic rubber		
5	Separator	Manila hemp		
6	Anode Foil	High purity aluminum foil		
7	Cathode Foil	Aluminum foil		

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CHARACTERISTICS

Standard Atmospheric Conditions

The standard range of atmospheric conditions for making measurements/test as follows:

Ambient temperature: 15°C to 35°C

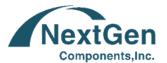
Relative humidity: 45% to 85% ;

Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: 20°C \pm 2°C

Relative humidity: 60% to 70%


Air Pressure: 86kPa to 106kPa

As to the detailed information, please refer to following Table

Operating Temperature Range

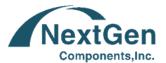
The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

As to the detailed information, please refer to table 1

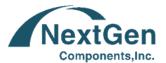
SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Table 1

ITEM		PERFORMANCE										
Nominal Capacitance	<condition< td=""><td>n></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></condition<>	n>										
(Tolerance)	Measuring	g Freque	ency	: 120Hz :	±12	Hz						
	Measuring Voltage : Not more than 0.5V											
	Measuring	g Tempe	eratu	re : 20 \pm	2°C							
	<criteria></criteria>	•										
	Shall be w	ithin th	e spe	cified ca	paci	tance t	olerance					
Leakage Current	<condition< td=""><td>n></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></condition<>	n>										
	After DC V	/oltage	is app	olied to c	ара	citors t	hrough tł	ne series p	orotective	resistor		
	(1kΩ±10	Ω) so th	at te	rminal vo	oltag	e may	reach the	e reacted	use voltag	e. The		
	leakage current when measured in 2 minutes shall not exceed the value						es of th					
	following	following equation.										
	<criteria></criteria>											
	I (μ A) \leq 0.01 CV or 3 (μ A), Whichever is greater											
	I: Leakage	Curren	t (μΑ)								
	C: Capacit	ance (µ	F)									
	V: Rated V	Vorking	; Volta	age (V)								
tanδ	<conditio< td=""><td>n></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></conditio<>	n>										
	See Norm	nal Capa	icitan	ce, for n	neas	uring f	requency	, voltage a	and tempe	rature.		
	<criteria></criteria>	•										
	The tangent of the loss angle (Tan δ) of the capacitors shall refer to the following											
	table. Mea	asureme	ents s	shall be r	nade	e unde	r the sam	e conditic	ons as thos	e given		
	for the me	easurem	nent o	of the ca	paci	tance.						
	W.V.	6.3		10	:	16	25	35	50/63	100		
	Tanδ	0.35	5	0.30	0	.26	0.20	0.18	0.14	0.10		
Rated Woking Voltage (WV)												
Surge Voltage (SV)	W.V. (V.DC)	6.3	10	16	5	25	35	50	63	100		
	S.V. (V.DC.)	8	13	20)	32	44	63	79	125		

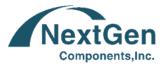

6

ITEM	PERFORMANCE								
Temperature Characteristic IEC-60384-4 4.12	<condition>.</condition>								
	Step. Testing Temperature(°C)					Time			
	1		20±2	2	Ti	Time to reach thermal equilibrium			
	2		-55(-25)	±3	Ti	me to rea	ach thei	rmal equilibrium	
	3		20±2	2	Ti	me to re	ach thei	rmal equilibrium	
	4.		105±	2	Ti	me to re	ach thei	rmal equilibrium	
	5		20±2	2	Ti	me to rea	ach thei	rmal equilibrium	
	 <criteria></criteria> a. At +105°C, capacitance shall be within ±20% of their origin at +20°C, measured capacitance, Tanδ shall be within limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. b. At step 5, Tanδ shall be within the limit of 4.3. The leakage current value shall not more than the specified value. c. At-55°C (-25°C), impedance (Z) ratio shall not exceed the value of the 								
		wing ta		6.3	10	16	25	35/50/63/100	
	Z-25°(-							
	Z+20° (120H	C	Φ 12.5	5	4	3	2	2	
	Z-55°(
	Z+20° (120H		Φ 12.5	10	8	6	4	3	
		-	e Tanδ and	l impedar	nce shall	be meas	ured at	120Hz	
Sealing Tape Reel Strength	d. Capacitance Tanδ and impedance shall be measured at 120Hz <condition> Peel angle: 165 to 180°C referred to the surface on which the tape is glued. Peel speed: 300mm per minutes The peel strength must be 0.1 ~ 0.7N under these conditions. Peel speed: 300mm/min Cover tape Direction of unreeling 165 - 180° Carrier tape</condition>								


ITEM	PERFORMANCE						
Load Life Test IEC-60384- 4 4.13	<condition></condition>						
	The capacitor is stored at a temperature of 105 °C \pm 2 °C with rated voltage						
		000+48/0 hours, Then the product should be tested					
		time at atmospheric conditions. The result should					
	meet the following table:						
	 Criteria> The characterist 	tic shall meet the following requirements.					
	Capacitance Change	\pm 30% of initial measured value.					
	tanδ	200% or less of the specified value					
	Leakage current	Not more than the specified value.					
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible					
	Inner construction	No corrosion of tab terminals or electrodes					
	Remarks: Prior to the measurement of the leakage current, the D.C. rated voltage shall be applied across the capacitor and its protective resistance ($1k\Omega$)						
	for 30 mines after which it	shall be discharged.					
Shelf Life Test IEC-60384- 4 4.17	<condition></condition>						
	The capacitors are then st	ored with no voltage applied at a temperature of 105					
	±2°C for 1000+48/0 hours	. Following this period the capacitors shall be removed					
		d be allowed to stabilized at room temperature for 4~8					
		connected to a series limiting resistor($1k\pm 100\Omega$) with					
		for 30min. After which the capacitors shall be					
	discharged, and then, test						
		tic shall meet the following requirements.					
	Capacitance Change	\pm 30% of initial measured value.					
	tanδ	200% or less of the specified value					
	Leakage current	Not more than 300% of the specified value					
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible					
	Inner construction	No corrosion of tab terminals or electrodes					
	Remark:						
		d more than 1 year, the leakage current may increase.					
	Please apply voltage throu	igh about 1 Kω resistor, if necessary.					

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

ITEM	PERFORMANCE						
Surge Test IEC-60384- 4 4.9							
	tanδ	Not more than the specified value.					
	Leakage current	Not more than the specified value.					
	Appearance	There shall be no leakage of electrolyte.					
	Attention: This test simulates over voltage at abnormal situation, and not be hypothesizing that over voltage is always applied.						
Vibration Test IEC-60384- 4 4.8	diameter or 25 mm or Cap orthogonal directions mut Vibration frequency range Peak to peak amplitude : 1 Sweep rate : 10Hz ~ 55Hz <criteria> The characteristic shall me</criteria>	5mm ~ 10Hz in about 1 minute eet the following requirements.					
	Capacitance Change	Within \pm 10% of initial value.					
	tanδ	Not more than the specified value.					
	Leakage current	Not more than the specified value.					
	Appearance	There shall be no leakage of electrolyte.					


9

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

ITEM	PERFORMANCE					
Solderability Test IEC-60384-4 4.6	<condition> The capacitor shall be tested under the following conditions: Soldering</condition>					
	temperature : 245±3 °C					
	Dipping depth : 2mm					
	Dipping speed : 25 \pm 2.5m	nm/s				
	Dipping time : $3\pm0.5s$					
	<criteria></criteria>					
	The characteristic shall m	eet the following requirements.				
	Coating quality	A minimum of 95% of the surface being immersed				
Resistance To Solder Heat						
Test	<condition></condition>					
	_	ne capacitor shall be left at room temperature for				
	before measurement.					
	<criteria></criteria>	act the following requirements				
		eet the following requirements.				
	Capacitance Change	Within \pm 10% of initial value.				
	tanδ	Not more than the specified value.				
	Leakage current	Not more than the specified value.				
	Appearance	There shall be no leakage of electrolyte.				
Damp Heat Test						
IEC60384-4 4.12	<condition></condition>					
		to IEC60384-4 No.4.12 methods, capacitor shall be				
		s in an atmosphere of 90~95% R H .at 60±3°C, the				
	characteristic change shall meet the following requirement.					
		eet the following requirements.				
	Capacitance Change	Within \pm 20% of initial value.				
	tanδ	Not more than 120% of the specified value.				
	Leakage current	Not more than the specified value.				
	Appearance	There shall be no leakage of electrolyte.				

10

ITEM	PERFORMANCE						
Change Of Temperature Test	<condition></condition>						
IEC-60384-4 4.7	Temperature cycle: According to IEC60384-4 No.4.7 methods, capacitor shall be						
	placed in an	oven, the cor	ndition accor	ding as below			
	No.	Tempe	rature	Time			
	1	+25	°C	≤3 Minutes			
	2	-55	°C	30±2 Minutes			
	3	+25	°C	≤3 Minutes			
	4	+105	5°C	30±2 Minutes			
	5	+25	°C	≤3 Minutes			
		1	to 5 = 1 cyc	le, Total 5 cycles			
	and then the	capacitor sha	all be subjec	ted to standard atmospheric conditions for			
	4 hours, afte	r which meas	urements sh	nall be made.			
	<criteria></criteria>						
	The characteristic shall meet the following requirements.						
	Capacitan	ce Change		Within \pm 10% of initial value.			
	ta	nδ	Not more than the specified value.				
	Leakage	current	No	t more than the specified value.			
	Appea	irance		No broken and undamaged.			
Low Temperature Test	<condition></condition>						
	Capacitors a	re placed at -!	55 ± 3°C for	96 ± 4 hours. And then the capacitor shall			
	be subjected	to standard	atmospheric	conditions for 4 hours, after which			
	measuremer	nts shall be m	ade.				
	<criteria></criteria>						
	The characteristic shall meet the following requirements.						
	Capacitan	ce Change		Within \pm 10% of initial value.			
	ta	nδ	No	ot more than the specified value.			
	Leakage	current	No	ot more than the specified value.			
	Арреа	arance		No broken and undamaged.			

ITEM		PERFORMANCE		
Vent Test	<condition></condition>			
IEC-60384-4 4.16	The following test only apply to those products with vent products at diameter			
	$\geq \Phi 8$ with vent.			
	D.C. test			
	The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from following table is applied.			
	Diameter (mm)	DC Current (A)		
	22.4 or less	1		
	<criteria></criteria>			
	No emission of gas after 30 minutes of the voltage application also meets the			
	specification. The vent shall operate with no dangerous conditions such as			
	flames or dispersion of pieces of the capacitor and/or case.			
Mechanical	<condition></condition>			
Characteristics Test	Bending Test: Apply pressure in the direction of the arrow at a rate of about			
	0.5 mm / s until bent width reaches 2 mm and hold for 60s. The board shall be			
	the test board "B" as specified in JIS C 0051: 2002. If the land area differs, it shall			
	be specified clearly in the next item.			
	Substrate before test Specimen (of SMD)	1,6 mm ± Support Radius 2,5 mm	0,20 mm	
	Substrate during test Ra	20 mm idius 5	5 (minimum)	
	<criteria></criteria>			
	Without mechanical damage such as breaks. Electrical characteristics shall be			
	satisfied. If there are electrodes on both surfaces, above requirements shall be			
	satisfied on whichever surface it may be fixated on.			
L			12	

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

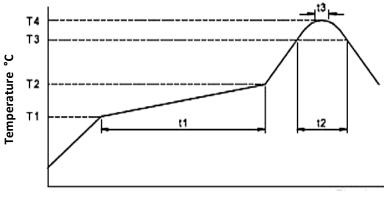
CASE SIZE & MAX RIPPLE CURRENT

Rated	Capacitance	Case Size	Dissipation Factor	Ripple Current	Leakage Current
Voltage	(+/-20%)	ØD*L	@+20°C, 120Hz	@+105°C, 120Hz	@20 °C
V	μF	mm	Tanδ Max.	mA rms .	μΑ Max.
63	220	12.5*13.5	0.14	470	138.6

Remark:

1)Specification are subject to change without notice should a safety or technical concern arise regarding the product please be sure to contact our sales offices;

2)The sizes in the above table are all general specifications. If you need other specifications, please contact us.


3) Frequency Coefficient of Allowable Ripple Current:

Frequency	50Hz	120Hz	300Hz	1KHz	≥10KHz
Coefficient	0.70	1.00	1.17	1.36	1.50

WELDING METHODS AND APPLICABILITY

Welding Method	Reflow Soldering	Soldering Iron	Wave Soldering
The feasibility of	ОК	ОК	No

Conditions for the use of lead-free reflow soldering:

Time Second

METHODS THE FOLLOWING

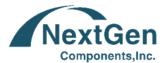
Reflow soldering: please follow the temperature condition during welding. If high temperature is used, please measure and inform the capacitor temperature and reflow soldering condition. The product size is larger and its rising temperature is slower. It is not necessary to adjust the temperature of the reflow solder in accordance with the size of the product. For example, the products of 4 and 10 will be installed in the PCB over tin furnace.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Precautions For Soldering Tin:

Related factors of reflow soldering temperature: Product size: The product size is larger and its temperature rises slowly. Product installation position: The temperature of PCB center is lower than that of PCB. Reflow soldering If possible, avoid reflow soldering twice. If repeated reflux is unavoidable, measure and inform the first and second reflux temperature, and the time of reflow soldering. Please do not 3 times of reflow soldering Please follow the following conditions when soldering tin soldering: Soldering iron maximum temperature: $350\pm5^{\circ}$ C Welding time: 3+1/-0 sec

TEST METHOD AND PEAK TEMPERATURE PERMISSIBLE RANGE


Part Code		UT227M063HPNTA	
Rated Voltage (V)		63 V	
Case Size		ØD12.5*L13.5mm	
Preheating	Temperature Range (T1~T2)	150~180 °C	
	Time (t1) Max.	180 Second	
The Duration Of The	Temperature Range (T3)	230 °C Max.	
	Time (t2) Max.	40 Second	
The Highest Temperature	Temperature Range (T4)	250 °C	
	Time (t3) Max.	5 Second	
Return The Number		≤2 times	

Note

1) Please contact us if the condition of use are higher than the

2) When performing 2nd reflow Soldering, please make sure the temperature of capacitor have cooled to : 5~35°C

3) If the reflow condition is based on IPC/JEDEC(J-STD-020), please contact us.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

ATTENTION FOR OP-CAP SOLDERING

Reflow soldering will reduce the rated electrostatic capacity of the product, and it should be confirmed whether reflow soldering condition meets the specification of recommended reflow soldering.

Although the actual reflow condition change is still based on the reflow soldering method, please note that the highest temperature and the electrode terminal at the bottom of the aluminum shell must not exceed the maximum temperature.

Please note: OP - CAP products during the process of reflow heating temperature should increase to more than 200 °C. If the reflow condition temperature or duration is greater than the above table, the OP-CAP product will be damaged. The electrostatic capacity of the product is reduced by about 50%, the leakage current is large (up to mA), and the outside of the capacitor is damaged.

APPLICATION GUIDELINE

Circuit Design

1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.

2) Operating temperature and applied ripple shall be within specification.

3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.

4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge/ discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.

6) Do not apply excess voltage.

(1) Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

(2) In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor.

7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:

(1) (a) Capacitors will be exposed to water (including condensation), brine or oil. (b) Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc. (c) Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

(2) Severe vibration and physical shock conditions that exceed specification.

Vibration test condition: 10-55-10Hz

vibration frequency range : 10 $\sim\!55\!\sim\!10\text{Hz}$

sweep rate : $10 \sim 55 \sim 10$ Hz/minute

sweep method : logarithmic

amplitude or acceleration : 1.5mm (max. acceleration is 10G)

direction of vibration : X, Y, Z direction

testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.

9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.

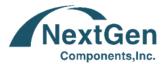
10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.

11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.

12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

Mounting

1) Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.


2) Leakage current of the capacitors that have been stored for more than 2 years may increase. When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.

3) Please confirm specifications and polarity before installing capacitors on the PC board.

4) Do not drop capacitors on the floor, nor use a capacitor that was dropped.

5) Do not deform the capacitor during installation.

6) Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Reflow Soldering

1) Please follow "Reflow Soldering Conditions" when use the part.

2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.

(1) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.

(2) Do not carry the PC board by grasping the soldered capacitor.

(3) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.

(4) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

(5) Cleaning:

(a) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.

(b) Recommended cleaning method, Applicable : Any type, any ratings


Cleaning conditions: Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.; Avoid using ozone destructive substances as cleaning agents for protecting global environment.

In The PCB After Mounted

1) Do not directly touch terminal by hand.

2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3) Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc. Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

In an Emergency

1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.

2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.

3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Storage

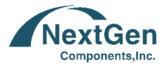
1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: 5°C~35°C

Humidity : lower than 75%

Place : Indoor

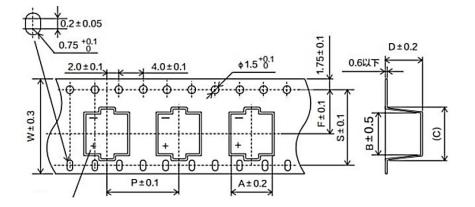
2) Avoid ambient conditions where capacitors are covered with water, brine or oil.

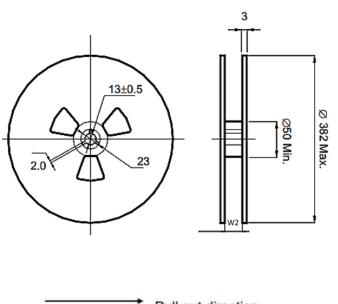

3) Avoid ambient conditions where capacitors are exposed to ozone, ultraviolet ray or radiation.

Disposal

Please take either of the following methods in disposing capacitors.

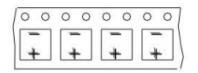
1) Incinerate them after crushing capacitors or making a hole on the capacitor body.


2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.


SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

TAPE (Unit: mm), 200pcs/Reel

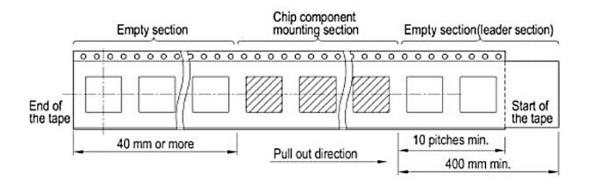
Applicable standard JIS C0806 and IEC 60286.




REEL (Unit: mm)

Case size: ØD12.5*L13.5mm		
Symbol	Dimension (mm)	
А	14.0	
В	14.0	
С	18.0	
D	14.5	
F	14.2	
Р	24.0	
S	28.4	
W	32.0	
W2	34.0	

Pull out direction


SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

PACKING METHOD

Polarity: Anode on the opposite side of the feed hole

The leader length of the tape shall not be less than 400mm including 10 or more embossed sections in which no parts are contained.

The winding core is provided with an over 40mm long empty section

DISCLAIMER

NextGen Component, Inc. reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information 20