

INA219 Evaluation Module

This user's guide describes the characteristics, operation, and use of the INA219 evaluation module (EVM). It covers all pertinent areas involved to properly use this EVM board. This document includes the physical printed circuit board layout, schematic diagrams, and circuit descriptions.

Contents

1	Overview	2
2	System Setup	5
	INA219EVM Hardware Setup	
4	INA219 Software Overview	12
5	Bill of Materials	18

List of Figures

1	Hardware Included with the INA219EVM	. 3
2	INA219EVM Hardware Setup	. 5
3	INA219_Test_Board Block Diagram	. 5
4	INA219_Test_Board Schematic	. 6
5	SM-USB-DIG Platform Theory of Operation	. 8
6	Typical Hardware Connections	. 9
7	Response from Connecting the USB Cable	10
8	INA219EVM Default Jumper Settings	11
9	INA219EVM Software—Functioning Properly	13
10	Invalid Calibration Warning—To be Ignored	14
11	INA219EVM Software—No Communication with the SM-USB-DIG Platform	14
12	INA219EVM Software—No Communication with the SM-USB-DIG Platform and INA219	15
13	EVM Controls Drop-Down Menu	17
14	Current Software Revision	17

List of Tables

1	Signal Definition of J1 (25-Pin Male DSUB) on INA219_Test_Board	7
2	INA219_Test_Board Jumper Functions	11
3	INA219_Test_Board Parts List	18

Microsoft, Windows are registered trademarks of Microsoft Corporation. I^2C is a trademark of NXP Semiconductors. All other trademarks are the property of their respective owners.

Overview

1 Overview

This document provides the information needed to set up and operate the INA219EVM evaluation module, a test platform for the INA219, a high-side measurement, bi-directional current/power monitor with I²C interface. For a more detailed description of the INA219, please refer to the product data sheet (SBOS448) available from the Texas Instruments web site at http://www.ti.com. Additional support documents are listed in the section of this guide entitled *Related Documentation from Texas Instruments*.

The INA219EVM is an evaluation module that is used to fully evaluate the INA219 current/power monitor device. The INA219EVM consists of three printed circuit boards (PCBs). One board (the SM-USB-DIG Platform) generates the digital signals required to communicate with the INA219, which is part of the second board (INA219_Test_Board), as well as support and configuration circuitry. The last board (SENS009) is an interface board between the SM-USB-DIG and the INA219_Test_Board.

Throughout this document, the abbreviation *EVM* and the term *evaluation module* are synonymous with the INA219EVM.

1.1 INA219EVM Hardware

Figure 1 shows the hardware included with the INA219EVM kit. Contact the factory if any component is missing. It is highly recommended that you check the TI web site at http://www.ti.com to verify that you have the latest software.

Figure 1. Hardware Included with the INA219EVM

The complete kit includes the following items:

- INA219 test PCB
- SM-USB-DIG platform PCB
- USB cable
- SENS009 adaptor PCB
- CD-ROM containing product software

1.2 Related Documentation from Texas Instruments

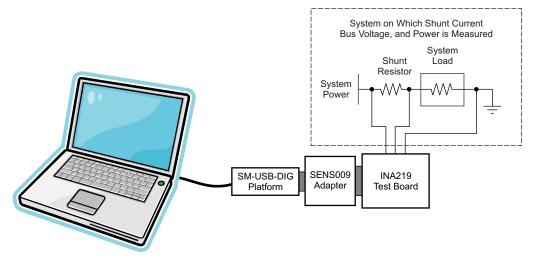
The following document provides information regarding Texas Instruments integrated circuits used in the assembly of the INA219EVM. This user's guide is available from the TI web site under literature number SBOU074. Any letter appended to the literature number corresponds to the document revision that is current at the time of the writing of this document. Newer revisions may be available from the TI web site at http://www.ti.com/, or call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center at (972) 644-5580. When ordering, identify the document by both title and literature number.

Document	Literature Number
INA219 Product Data Sheet	SBOS448
SM-USB-DIG Platform Users Guide	SBOU098

1.3 Information About Cautions and Warnings

This document contains caution statements.

CAUTION


This is an example of a caution statement. A caution statement describes a situation that could potentially damage your software or equipment.

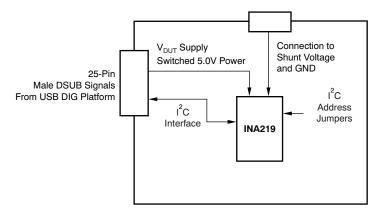
The information in a caution or a warning is provided for your protection. Please read each caution carefully.

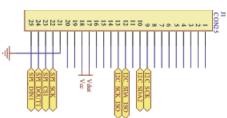
2 System Setup

Figure 2 shows the system setup for the INA219EVM. The PC runs software that communicates with the SM-USB-DIG Platform. The SM-USB-DIG Platform generates the analog and digital signals used to communicate with the INA219_Test_Board. Connectors on the INA219_Test_Board allow the user to connect to the system under test whose power, current, and voltage will be monitored.

2.1 Theory of Operation for INA219_Test_Board Hardware

Figure 3 presents a block diagram of the INA219_Test_Board. The functionality of this PCB is relatively simple. It provides connections to the I²C[™] and general-purpose input/outputs (GPIO) on the SM-USB-DIG Platform board. It also provides connection points for external connections of the shunt voltage, bus voltage, and GND.




Figure 3. INA219_Test_Board Block Diagram

System Setup

www.ti.com

Figure 4 illustrates the system setup for the INA219_Test_Board schematic. D1 is an LED that indicates whether the INA219 Test Board is receiving power. Jumpers allow the selection of the power source as well as configuration of A0 and A1. Connector T4 allows the connection of the shunt and bus voltages.

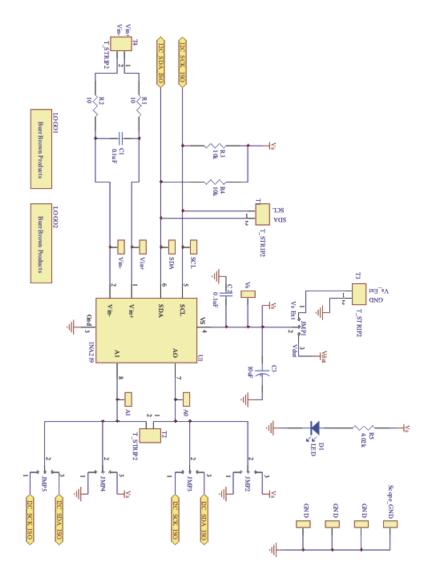


Figure 4. INA219_Test_Board Schematic

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Table 1 lists the different signals connected to J1 on the INA219_Test_Board. This table also identifies signals connected to pins on J1 that are not used on the INA219_Test_Board.

0	· ·	/
J1 Pin	Signal	INA219 Pin
1	NC	No connection
2	NC	No connection
3	NC	No connection
4	NC	No connection

No connection

I²C clock signal (SCL) channel 1; can be disconnected using a switch

I²C data signal (SDA) channel 1; can be disconnected using a switch

No connection

No connection

No connection

Switched 3V or 5V power. Note that when power is

No connection

No connection

No connection

Common or ground connection for power

No connection

No connection

No connection

No connection

switched off, the digital I/O is also switched off.

NC

NC

NC

NC

I2C_SCK

I2C_SDA2

NC

I2C_SCK_ISO

I2C_SDA_ISO

NC

NC

NC

V_{DUT}

 V_{CC}

NC

NC

GND

SPI_SCK

SPI_CS1

SPI_DOUT

SPI_DIN1

Table 1. Signal Definition of J1 (25-Pin Male DSUB) on INA219_Test_Board

SBOU074C-January 2009-Revised September	er 2	017
Submit Documentation Feedback		

7

System Setup

System Setup

2.3 Theory of Operation For SM-USB-DIG Platform

Figure 5 shows the block diagram for the SM-USB-DIG Platform. This platform is a general-purpose data acquisition system that is used on several different Texas Instruments evaluation modules. The details of its operation are included in a separate document (available for download at www.ti.com). The block diagram shown in Figure 5 gives a brief overview of the platform. The primary control device on the SM-USB-DIG Platform is the TUSB3210.

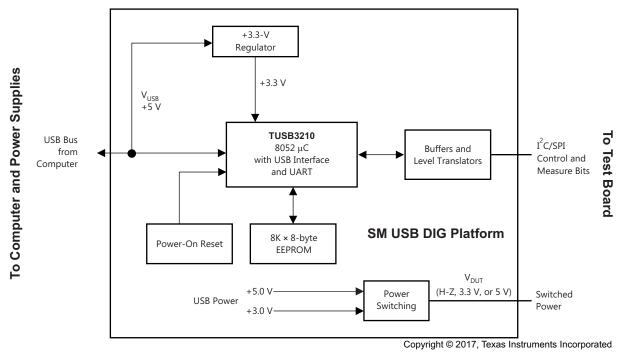
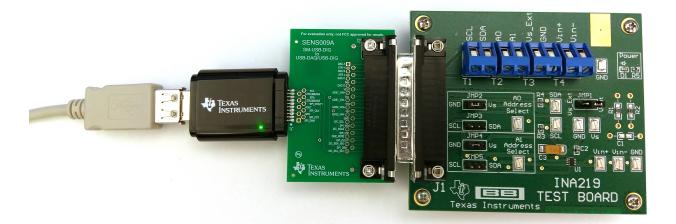


Figure 5. SM-USB-DIG Platform Theory of Operation

3 INA219EVM Hardware Setup

The INA219EVM hardware setup involves connecting the three PCBs of the EVM together, applying power, connecting the USB cable, and setting the jumpers. This section presents the details of this procedure.

3.1 Electrostatic Discharge Warning


Many of the components on the INA219EVM are susceptible to damage by electrostatic discharge (ESD). Customers are advised to observe proper ESD handling precautions when unpacking and handling the EVM, including the use of a grounded wrist strap at an approved ESD workstation.

CAUTION

Failure to observe ESD handling procedures may result in damage to EVM components.

3.2 Typical Hardware Connections

The INA219EVM hardware setup involves connecting the three PCBs of the EVM together, and connecting an external shunt and load. The external connections may be the real-world system that the INA219 will be incorporated into. Figure 6 shows the typical hardware connections.

Figure 6. Typical Hardware Connections

INA219EVM Hardware Setup

3.3 Connecting the Hardware

To connect the three PCBs of the INA219EVM together, gently push on both sides of the D-SUB connectors (as Figure 6 shows). Make sure that the two connectors are completely pushed together; loose connections may cause intermittent operation. Finally, connect the SM-USB-DIG to the SENS009 board as Figure 6 shows.

3.4 Connecting the USB Cable to the INA219EVM

Figure 7 shows the typical response to connecting the SM-USB-DIG platform to a PC USB port for the first time. Typically, the computer will respond with a *Found New Hardware, USB Device* pop-up. The pop-up typically changes to *Found New Hardware, USB Human Interface Device*. This pop-up indicates that the device is ready to be used. The SM-USB-DIG platform uses the *Human Interface Device Drivers* that are part of the Microsoft[®] Windows[®] operating system.

In some cases, the Windows Add Hardware Wizard will pop up. If this prompt occurs, allow the system device manager to install the Human Interface Drivers by clicking **Yes** when requested to install drivers.

Figure 7. Response from Connecting the USB Cable

INA219EVM Hardware Setup

www.ti.com

3.5 INA219 Jumper Settings

Figure 8 shows the default jumpers configuration for the INA219EVM. In general, the jumper settings of the SM-USB-DIG Platform will not need to be changed. You may want to change some of the jumpers on the INA219_Test_Board to match your specific configuration. For instance, you may wish to set a specific l²C address.

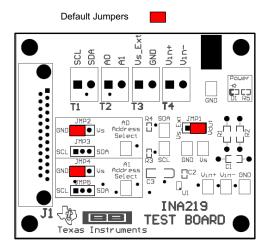


Figure 8. INA219EVM Default Jumper Settings

Table 2 explains the function of the jumpers on the INA219_Test_Board.

Jumper	Default	Purpose
JMP1	V _{DUT}	This jumper determines the source for the INA219 power supply. In the <i>Vdut</i> position, the SM-USB-DIG board supplies the power to the INA219. In the <i>Vs_Ext</i> position, an external supply connected to the INA219 T3 terminal supplies power.
JMP2, JMP3	JMP2 (GND)	A0 address input selection. This jumper determines which signal is connected to the A0 pin of the INA219.
JMP4, JMP5	JMP4 (GND)	A1 address input selection. This jumper determines which signal is connected to the A1 pin of the INA219.

Table 2. INA219_Test_Board Jumper Functions

INA219EVM Hardware Setup

3.6 Connecting External Power to the INA219EVM

The INA219 power supply (V_s) operates over the range of 3V to 5.5V (see the INA219 product data sheet). The default jumper position provides 5V to the INA219 from the SM-USB-DIG Platform. The power from the SM-USB-DIG Platform can be changed to 3V using JUMP9.

Another option is to connect power to the INA219 power supply (V_s) using an external power supply. In this case, connect power to the T3 terminal block and set JMP1 to the Vs_EXT position. The INA219 power supply (V_s) operates over the range of 3V to 5.5V, so be careful to not exceed this range.

3.7 Connecting External Signals to the INA219EVM

The INA219 shunt and bus voltages are applied via terminal block T4. The T4 terminal block is a direct connection to V_{IN+} and V_{IN-} of the INA219. The bus voltage is monitored on V_{IN-} (26V max). The shunt voltage is the difference between V_{IN-} and V_{IN+} (320mV max). Refer to the INA219 data sheet for more details

4 INA219 Software Overview

This section discusses how to install and use the INA219 software.

4.1 Operating Systems for INA219 Software

The INA219EVM software has been tested on the Microsoft Windows XP operating system (OS) with United States and European regional settings. The software should also function on other Windows operating systems.

4.2 INA219EVM Software Install

INA219 Software Overview

Follow these steps to install the INA219EVM software:

- Step 1. Software can be downloaded from the INA219EVM web page, or from the disk included with the INA219EVM, which contains a folder called *Install_software/*.
- Step 2. Find the file called setup.exe. Double-click the file to start the installation process.
- Step 3. Follow the on-screen prompts to install the software.
- Step 4. To remove the application, use the Windows Control Panel utility, Add/Remove Software.

4.3 Starting the INA219EVM Software

The INA219 software can be operated through the Windows *Start* menu. From Start, select *All Programs*; then select the *INA219EVM* program. Figure 9 shows how the software should appear if the EVM is functioning properly. When started, the software may produce an error about "Invalid calibration information" as shown in Figure 10. Dismiss this error and continue, it no longer affects current hardware.

🦥 INA219 EVM
EVM Controls USB Controls Help
Vbus 2.476 V I_shunt 2.0168 A Vshunt 0.0503 V P_in 4.978 W
Overview [1] A/D Config (2) Calibrate (3) Scaling Graphs Registers
External Controls
On Off
Vin+ Vs SCL
Vin- Supply SDA
GND V Address (Hex)
GND
Read All Write All Start Continuous Stop Continuous Reg Edited Read Read

Figure 9. INA219EVM Software—Functioning Properly

n information.	
	n information.

Figure 10. Invalid Calibration Warning—To be Ignored

Figure 11 shows an error that pops up if the computer cannot communicate with the EVM. If you receive this error, first check to see that the USB cable is properly connected. A second possible reason for this problem is that there may be a problem with your computer USB Human Interface Device Driver. Make sure that when you plug the in the USB cable, the computer recognizes the device. If the sound is on, you will hear the distinctive sound that you expect when a USB device is properly connected to the PC. A third possible reason for this error is that you may need to select the "Use Legacy Address" button regardless of your board revision date.

💐 USB Communication Probl	em					
USB Communications problem! Check your cable connections and press 'Try Again' to continue.						
The 'Run without USB' option will allow the software to continue without using the USB. This option is generally used if you want to examine the software without hardware connected. You cannot communicate to the EVM in this mode.						
The 'Abort Program' option will close the software.						
Try Again	Run Without USB: Put USB to Sleep	Abort Program	Set Address and Try Again			

Figure 11. INA219EVM Software—No Communication with the SM-USB-DIG Platform

Figure 12 shows an error that occurs if the INA219_Test_Board is not communicating with the SM-USB-DIG Platform. If you see this error, check the connectors between the two boards; make sure the 25-pin connectors are completely pushed together. Another possible cause of this issue it that the INA219_Test_Board jumpers are set in the wrong position.

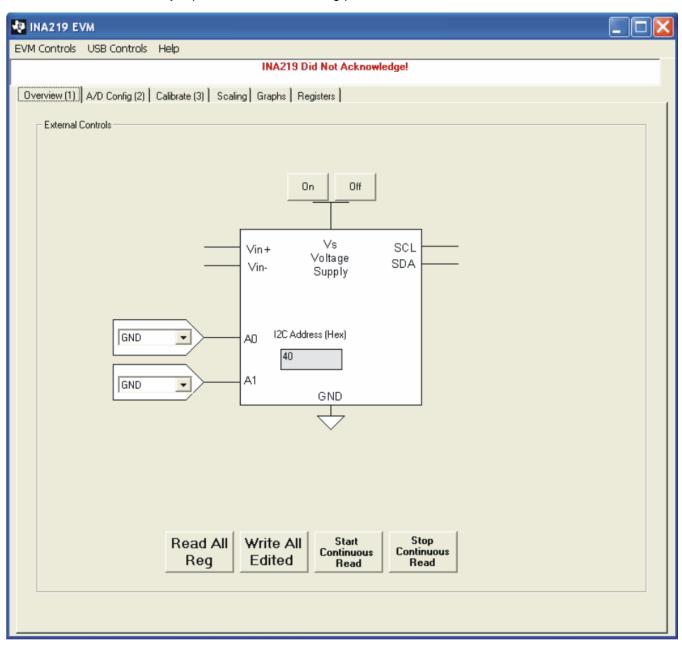


Figure 12. INA219EVM Software—No Communication with the SM-USB-DIG Platform and INA219

4.4 Using the INA219 Software

The INA219EVM software has six different tabs that allow you to access different features of the INA219. The first four tabs are designed so that you can completely configure the device by stepping through the tabs in order. Each of the tabs is intended to have an intuitive graphical interface that helps you gain a better understanding of the device.

4.4.1 Overview Tab

This tab has the following controls:

- Turn the power supply on and off
- Set the I²C address

4.4.2 Config Tab

This tab has the following controls:

- Shunt voltage attenuator range (smallest range: 40mV; largest range: 320mV)
- Shunt voltage configuration: resolution and number of averages. Note that increasing the number of averages decreases the noise but slows down the conversion rate.
- Bus voltage attenuator range (16V and 32V): Note that the maximum bus voltage for the INA219 is 26V. Thus, the 32V range cannot be fully used.
- Bus voltage configuration: Resolution and number of averages. Note that increasing the number of averages decreases noise but slows down the conversion rate.
- A/D converter mode: This control determines how the converters work. The most commonly used modes are Shunt and Bus continuous conversion mode. This mode causes both converters to run continuously.

More details on these options are explained in the product data sheet.

4.4.3 Calibrate Tab

The calibration tab allows users to enter some information regarding the INA219 configuration in a given application. This information is used to compute the Full-Scale Cal Register. The Full-Scale Cal Register converts the shunt voltage to a current value. The detailed mathematics behind this calibration feature is given in the INA219 data sheet.

4.4.4 Scaling Tab

This tab allows you to see how the mathematical operations work in the INA219. Specifically, this tab shows how the current and power values are computed using the full-scale calibration register.

4.4.5 Graph Tab

The graph tab will display bus voltage, shunt current, and power versus time when the software is in continuous convert mode.

4.4.6 Registers Tab

This tab allows you to read and edit all the registers in the INA219. All the previous tabs affect the register listing. For example, changing the A/D configuration on Tab 2 will affect Register 0 in the register list. It is also true that changing register 0 updates the A/D configuration on Tab 2. Thus, the graphical representation and register representation affect each other.

4.4.7 EVM Controls Pull-Down Menu

The INA219 Configuration (that is, the register settings) can be saved or loaded using the *EVM Controls* drop-down menu, as Figure 13 shows. The file that the configuration is saved into is a simple text file and can be viewed with any text editor.

1	🐏 INA219 E	vм		
l	EVM Controls	USB Controls	Help	
ł	Save Regist	ers To File	Lshunt 0 A Vshunt	I
	Load Regist	ers From File		ľ
	Log INA209	To File	alibrate (3) Scaling Graphs Registers	
	Engineering	Mode		
	External	Lontrois		
			On Off	

Figure 13. EVM Controls Drop-Down Menu

4.4.8 Software Revision

The *Help...About* feature can be used to check the current software revision, as Figure 14 illustrates. This document is based on revision 1.0.35.

😻 INA219 EVM							
EVM Controls USB Co	ntrols	Help					
Vbus 0] Y	l_shu		0		A	Vshunt
Overview [1] A/D Cor	fig (2)	Calibrate	(3)	Scaling	Grapi	hs Registe	HS
- External Controls	INA209	EVM					
		19 Softw an By Ar			0.35		
		0	ж			On	Off
			-		Vin+ Vin-	V0	√s Itage ⊯pplv

Figure 14. Current Software Revision

Bill of Materials

5 Bill of Materials

Table 3 shows the parts list for the INA219_Test_Board.

No.	Quantity	Value	Ref Des	Description	Vendor	Part Number
1	1	4.02k	R5	Resistor, 4.02k, 603	ROHM	MCR03EZPFX4021
2	2	10k	R3, R4	Resistor, 10k, 603	Yageo Corporation	RC0603FR-0710KL
3	2	0ohm	R1, R2	RES 0.0 OHM 1/8W 5% 0805 SMD	Panasonic - ECG	ERJ-6GEY0R00V
4	1	10uF	C3	Capacitor, Tantalum, 10uF, 16V, 6032	Kemet	T491C106M016AT
5	1	0.1uF	C2	CAP .10UF 25V CERAMIC Y5V 0603	Kemet	C0603C104M3VACTU
6	0	Optional/Not Installed	C1	0603-1206 Capacitor	_	_
7	1	LED	D1	Diode, LED, Ultra Bright Diff, 603	Panasonic	LNJ208R8ARA
8	1	DSUB25M	J1	CONN D-SUB PLUG R/A 25POS 30GOLD (With Threaded Inserts and Board locks)	AMP/Tyco Electronics	5747842-4
9	3	N/A	N/A	SHUNT LP W/HANDLE 2 POS 30AU	AMP/Tyco Electronics	881545-2
10	5	JUMP3 cut to size	JMP1-JMP5	CONN HEADER 32POS .100" SGL GOLD (4 per Strip)	Samtec	TSW-132-07-G-S
11	5	standoff	none	Standoffs, Hex , 4- 40 Threaded, 0.500" length, 0.250" OD, Aluminum Iridite Finish	Keystone	2203
12	5	screw	none	SCREW MACHINE PHIL 4-40X1/4 SS	Building Fasteners	PMSSS 440 0025 PH
13	10	Test Point	N/A	5018 SMD Test Point	Keystone	5018
14	4	2 pin connector	T1 T2 T3 T4	2-Position Terminal Strip, Cage Clamp, 45°, 15A, Dove- tailed	On-Shore Technology Inc	ED300/2

Table 3. INA219_Test_Board Parts List

Texas Instruments

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from B Revision (May 2016) to C Revision Page			
•	Changed 'USB DIG' to SM-USB-DIG throughout the user's guide.	2		
•	Changed the number of PCBs of the EVM from two to three throughout the user's guide	2		
•	Added a sentence describing the third PCB to the second paragraph of Overview.	. 2		
•	Deleted all references to a video included on the CD-ROM starting in INA219EVM Hardware and throughout the document.	2		
•	Replaced third bullet in the list in INA219EVM Hardware.	4		
•	Deleted paragraph and NOTE: after SM-USB-DIG Platform Theory of Operation image.	8		
•	Added SENS009 board connection to Connecting the Hardware.	10		
•	Deleted the Connecting Power section.	10		
•	Deleted requirement statement that the EVM must be powered on before connecting the USB cable from the Connection the USB Cable to the INA219EVM section.	ing		
•	Deleted text and tables following the INA219_Test_Board Jumper Functions table	. 11		
•	Added "Invalid calibration information to Starting the INA219EVM Software, also added Invalid Calibration Warning—7 be Ignored			
•	Reworded second paragraph in Starting the INA219EVM Software.	14		

Revision History

Changes from A Revision (January, 2009) to B Revision		
•	Changed Figure 1	2
•	Changed list item From: "+6V power supply" To: "Barrel plug cable assembly" in Section 1.1	4

Revision History

Changes from Original (January, 2009) to A Revision			
•	Added Section 3.6		. 12
•	Added Section 3.7		. 12

STANDARD TERMS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.
- 3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けて いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated