

Specification

Part No.	:	TG.08.0723
Product Name	:	Cellular and GPS/GLONASS/GALILEO/BEIDOU Hinged Fakra Connector Mount Antenna
Features	:	Compact Passive Monopole Antenna
		High Efficiencies at Cellular and GNSS frequencies
		Fits in places other antennas just don't
		360° rotatable with durable brass hinge
		Compatible with:
		- 2G (GSM / DCS / PCS)
		- 3G (CDMA / WCDMA / UMTS / HSPA)
		- 4G (LTE)
		- GNSS (GPS / GLONASS / GALILEO/ BEIDOU)
		Fakra Code D Bordeaux Violet SMB(F) Connector
		Length: 79.5mm
		ROHS Compliant

1. Introduction

The compact TG.08 with hinged rotatable Fakra Code D connector is a monopole antenna for automotive telematics applications that provides wide coverage among cellular and GNSS frequencies and offers impressively high efficiencies. It fits in crowded device environments.

It's robust brass hinge enables TG.08 to be oriented in all directions, allowing users to maximize performance with minimum effort. The Fakra connector gives additional mechanical robustness over a traditional SMA connector since it locks securely with its mate and will not come loose due to vibrations or impacts.

This 72mm long monopole antenna has good efficiency in the 700MHz to 2700MHz range, covering the 2G/3G/4G bands, as well as GPS/GLONASS/BEIDOU. When connected to a ground plane, it can achieve up to 75% efficiency at GPS and LTE bands.

With its cellular and GNSS function, plus compact design, TG.08 is a great antenna for routers, vehicle tracking devices, telematic devices, and remote monitoring systems. It is also ideal for use in cellular modules with Assisted GPS functionality that can be implemented in various devices.

As with all monopole antennas, TG.08 works best when connecting directly to the ground-plane of the device main-board or to the device's metal enclosure. For optimum radiation efficiency care should be taken to keep the radiating element of the antenna as far away from metal as possible.

2. Specification

Parameter											
Straight Position											
Band		700LTE	GSM	BEIDOU	GPS	GLONASS	DCS	PCS	UMTS/ HSPA	2700LTE	
Frequency (MHz)		703~ 803	824~ 960	1561	1575.42	1602	1710~ 1880	1850~ 1990	1920~ 2170	2490~ 2690	
Average Gain (dBi)	In Free Space	-7.08	-3.34	-2.69	-2.64	-2.19	-2.27	-2.36	-2.47	-4.08	
Efficiency (%)		19.93	46.55	53.87	54.45	60.38	59.31	58.12	56.62	39.81	
Peak Gain (dBi)		-1.96	1.82	1.87	1.88	2.30	3.43	3.55	3.55	3.62	
Return Loss (dB)		< -2	< -4	< -9	< -8	< -8	< -10	< -8	< -5	< -3	
Average Gain (dBi)		-2.16	-2.40	-2.01	-1.92	-1.67	-2.74	-2.42	-2.37	-6.30	
Efficiency (%)	With 15x9cm Ground	61.04	57.99	63.01	64.29	68.15	53.30	57.34	58.00	23.88	
Peak Gain (dBi)		1.61	1.55	2.00	2.04	2.20	2.99	3.95	4.72	0.54	
Return Loss (dB)		< -8	< -5	< -10	< -10	< -10	< -6	< -6	< -7	< -2	
Average Gain (dBi)	On 30x30cm Ground Metal Edge	-1.76	-1.80	-1.06	-1.19	-1.15	-1.66	-1.22	-1.19	-4.03	
Efficiency (%)		67.10	66.26	78.34	75.97	76.77	68.30	75.58	76.02	40.15	
Peak Gain (dBi)		2.09	1.35	4.27	4.18	4.37	3.48	3.70	4.28	3.65	
Return Loss (dB)		< -8	< -6	< -10	< -10	< -10	< -9	< -10	< -10	< -4	
Average Gain (dBi)	On 30x30cm Ground Metal Center	-3.49	-1.98	-3.43	-3.37	-3.35	-3.34	-2.95	-2.66	-2.44	
Efficiency (%)		46.33	63.95	45.36	46.07	46.20	46.41	50.82	54.33	57.42	
Peak Gain (dBi)		1.37	2.52	1.47	1.50	1.43	1.17	1.76	2.68	3.40	
Return Loss (dB)		< -3	< -4	< -6	< -5	< -5	< -3	< -3	< -4	< -6	

Bent Position										
Average Gain (dBi)	In Free Space	-7.45	-3.54	-2.56	-2.54	-2.14	-2.30	-2.42	-2.57	-4.29
Efficiency (%)		18.25	44.69	55.42	55.66	61.13	58.87	57.24	55.32	37.76
Peak Gain (dBi)		-2.75	1.68	2.17	2.19	2.57	3.28	3.41	3.41	3.26
Return Loss (dB)		< -2	< -4	< -8	< -7	< -7	< -10	< -8	< -4	< -3
Average Gain (dBi)	With	-2.52	-2.01	-2.10	-1.97	-1.68	-2.62	-2.34	-2.31	-6.36
Efficiency (%)		56.59	63.28	61.62	63.50	67.92	54.71	58.37	58.73	23.51
Peak Gain (dBi)	Ground	1.47	1.55	2.40	2.44	2.62	3.05	4.04	4.67	0.35
Return Loss (dB)		< -5	< -7	< -10	< -10	< -10	< -7	< -7	< -8	< -2
Average Gain (dBi)	On	-2.22	-1.43	-1.06	-1.21	-1.14	-1.65	-1.24	-1.22	-3.29
Efficiency (%)	30x30cm	61.30	72.15	78.32	75.76	76.86	68.38	75.28	75.55	47.63
Peak Gain (dBi)	Metal	2.46	2.50	3.94	3.81	3.87	3.04	3.97	4.44	4.37
Return Loss (dB)	Luge	< -6	< -7	< -10	< -10	< -10	< -9	< -10	< -10	< -4
Average Gain (dBi)	On	-6.65	-3.06	-2.28	-2.34	-2.44	-3.00	-2.82	-2.61	-2.71
Efficiency (%)	30x30cm	23.10	49.79	59.19	58.34	56.99	50.15	52.34	54.95	54.27
Peak Gain (dBi)	Ground Metal Center	-0.80	1.78	2.03	1.93	1.79	1.56	1.87	2.69	3.30
Return Loss (dB)		< -1	< -4	< -9	< -8	< -7	< -4	< -4	< -4	< -8
Radiat	tion				Or	nni-directi	onal			
Polariza	ation		Linear							
Impedance		50 Ω								
Input P	ower		10W							
. .	MECHANICAL									
Antenna length			/9.5mm							
Antenna Diameter		5mm								
Casing										
Weight										
ENVIRONMENTAL										
Operation Temperature			-40°C ~ + 85°C							
Storage Temperature			-40°C ~ + 85°C							
Humidity			Non-condensing 65°C 95% RH							

1. Antenna Characteristics

3.1 Testing setup

Straight Antenna Position

A) In free space

B) With 15*9cm ground

C) With 30*30cm ground metal edge

metal center

Bent Antenna Position

Figure 1. Measurement Environments

Figure 2. Return Loss of TG.08 antenna in straight position

• Efficiency

Figure 6. Peak gain of TG.08 antenna in straight position

Figure 7. Peak gain of TG.08 antenna in bent position

2. Antenna Radiation Patterns

The antenna radiation patterns were measured in a CTIA certified ETS Anechoic Chamber. The measurement setups are shown below.

Antenna with Straight Position

In free space

With 15x9cm ground plane

On 30x30cm metal ground edge

On 30x30cm metal ground center

Antenna Bent Position

In free space

On 30x30cm metal ground edge

With 15x9cm ground plane

On 30x30cm metal ground center

Figure 10. Testing Setup in ETS Anechoic Chamber

2D Radiation Pattern (Straight Position in Free Space)

240

210

180

120

(dBi)

150

2500MHz

_____2690MHz

XZ Plane

Ζ

YZ Plane

2D Radiation Pattern

(Straight Position with 15x9cm Ground)

XY Plane

240

210

180

120

(dBi)

150

2500MHz

2D Radiation Pattern

(Straight Position with 30x30cm Metal Ground Edge)

2D Radiation Pattern

(Straight Position with 30x30cm Metal Ground Center)

Х

XY Plane

SPE-18-8-018/A/AW Page 25 of 70

180

824MHz

960MHz

(dBi)

YZ Plane

2D Radiation Pattern (Bent Position in Free Space)

XY Plane

180

(dBi)

2D Radiation Pattern (Bent Position with 15x9cm Ground)

2D Radiation Pattern (Bent Position with 30x30cm Metal Ground Edge)

2D Radiation Pattern (Bent Position with 30*30cm Metal Ground Center)

Х

XY Plane

XY Plane

Ζ

XZ Plane

3D Radiation Pattern (Straight Position in Free Space)

2690MHz

3D Radiation Pattern (Straight Position with 15x9cm Ground)

1602MHz

2690MHz

3D Radiation Pattern (Straight Position with 30x30cm Metal Ground Edge)

1602MHz

+10

-10

-20

-40 IR

2690MHz

3D Radiation Pattern (Straight Position with 30x30cm Metal Ground Center)

1602MHz

2690MHz

3D Radiation Pattern (Bent Position with in Free Space)

1575.42MHz

3D Radiation Pattern (Bent Position with 15x9cm Ground)

3D Radiation Pattern (Bent Position with 30x30cm Metal Ground Edge)

40

3D Radiation Pattern (Bent Position with 30x30cm Metal Ground Center)

824MHz +10 +5 0 -5 -10 -15 -20 -25 -30 -35

960MHz

SPE-18-8-018/A/AW Page 65 of 70

3. Mechanical Drawing

(Unit:mm)

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein.

Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

Copyright © Taoglas Ltd.