

3.1 - 3.5 GHz, 60 W, Packaged GaN MMIC Power Amplifier

Description

Cree's CMPA3135060S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. This MMIC power amplifier contains a two-stage reactively matched amplifier design approach, enabling high power and power added efficiency to be achieved in a 7mm x 7mm, surface mount (QFN package). The MMIC is designed for S-Band radar power amplifier applications.

PN: CMPA3135060S Package Type: 7 x 7 QFN

Typical Performance Over 3.1 - 3.5 GHz ($T_c = 25^{\circ}C$)

Parameter	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain ^{1,2}	37	37	36	dB
Output Power ^{1,3}	72	83	87	W
Power Gain ^{1,3}	29	29	29	dB
Power Added Efficiency ^{1,3}	55	55	57	%

Notes:

 ${}^{1}V_{DD} = 50 \text{ V}, \text{ I}_{DO} = 260 \text{ mA}$

² Measured at Pin = -20 dBm

 $^3\text{Measured}$ at Pin = 20 dBm and 300 μs ; Duty Cycle = 20%

Features

- 3.1 3.5 GHz Operation
- 75 W Typical Output Power
- 29 dB Power Gain
- 50-ohm Matched for Ease of Use
- Plastic Surface-Mount Package, 7x7 mm QFN

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

- Air Traffic Control Radar
- Defense Surveillance Radar
- Fire Control Radar
- Military Air, Land and Sea Radar
- ٠ Weather Radar

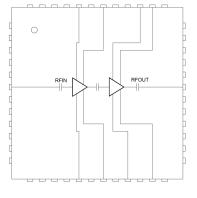


Figure 1.

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	150	VDC	25°C
Gate-source Voltage	V _{gs}	-10, +2	VDC	25°C
Storage Temperature	T _{stg}	-55, +150	°C	
Maximum Forward Gate Current	l _g	15.2	mA	25°C
Maximum Drain Current	I _{DMAX}	14.2	А	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 3.1 GHz to 3.5 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	V _{DS} = 10 V, I _D = 15.2 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	$V_{\rm dc}$	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	9.9	14.1	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	100	-	-	V	$V_{gs} = -8 \text{ V}, I_{p} = 15.2 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	S21 ₁	-	36	-	dB	Pin = -20 dBm, Freq = 3.1 - 3.5 GHz
Output Power	P _{out1}	-	72	-	W	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 260 mA, $P_{_{IN}}$ = 20 dBm, Freq = 3.1 GHz
Output Power	P _{OUT2}	-	83	-	W	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 260 mA, $P_{_{IN}}$ = 20 dBm, Freq = 3.3 GHz
Output Power	P _{OUT3}	-	87	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}, P_{IN} = 20 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Power Added Efficiency	PAE ₁	-	55	-	%	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 260 mA, $P_{_{IN}}$ = 20 dBm, Freq = 3.1 GHz
Power Added Efficiency	PAE ₂	-	55	-	%	$V_{_{DD}} = 50 \text{ V}, I_{_{DQ}} = 260 \text{ mA}, P_{_{IN}} = 20 \text{ dBm}, \text{ Freq} = 3.3 \text{ GHz}$
Power Added Efficiency	PAE ₃	-	57	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}, P_{IN} = 20 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Power Gain	G _{P1}	-	29	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}, P_{IN} = 20 \text{ dBm}, \text{ Freq} = 3.1 \text{ GHz}$
Power Gain	G _{P2}	_	29	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}, P_{IN} = 20 \text{ dBm}, \text{ Freq} = 3.3 \text{ GHz}$
Power Gain	G _{P3}	-	29	-	dB	$V_{_{DD}} = 50 \text{ V}, I_{_{DQ}} = 260 \text{ mA}, P_{_{IN}} = 20 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Input Return Loss	S11	-	-12	-	dB	Pin = -20 dBm, Freq = 3.1 - 3.5 GHz
Output Return Loss	S22	-	-7	-	dB	Pin = -20 dBm, Freq = 3.1 - 3.5 GHz
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles

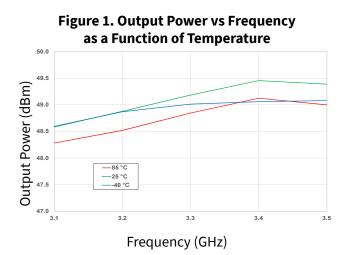
Notes:

¹ Scaled from PCM data

² Measured in CMPA3135060S high volume test fixture at 3.1, 3.3 and 3.5 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 3 Unless otherwise noted: Pulse Width = 25 μ s, Duty Cycle = 1%

Thermal Characteristics


Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T _J	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{_{ ext{ hetaJC}}}$	TBD	°C/W	Pulse Width = 300 µs, Duty Cycle =20%

Notes:

 $^{\rm 1}$ Measured for the CMPA3135060S at $\rm P_{\scriptscriptstyle DISS}{=}\,TBD$ W

Typical Performance of the CMPA3135060S

Test conditions unless otherwise noted: $V_{D} = 50 V$, $I_{DO} = 260 mA$, Pulse Width = 300 μ s, Duty Cycle = 20%, Pin = 20 dBm, $T_{BASE} = +25 °C$

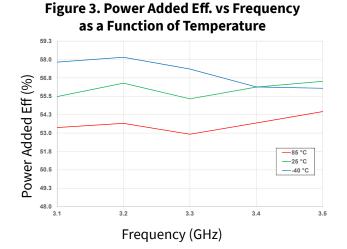
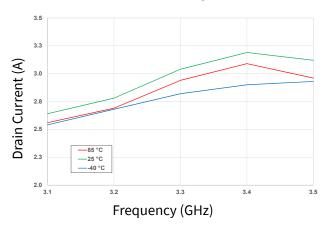



Figure 5. Drain Current vs Frequency as a Function of Temperature

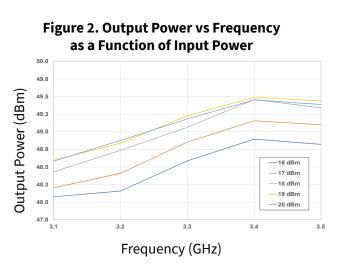
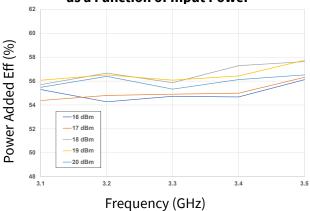
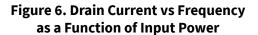
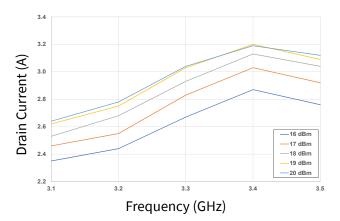
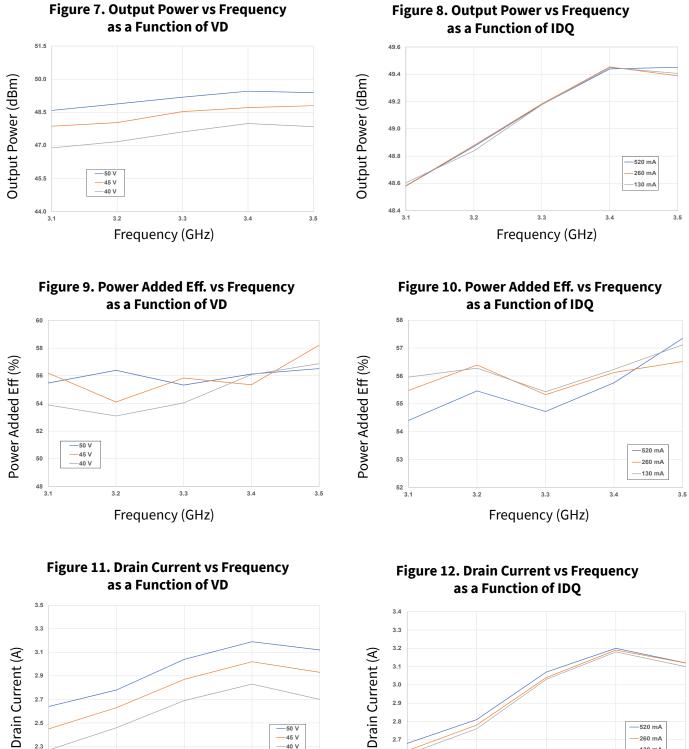





Figure 4. Power Added Eff. vs Frequency as a Function of Input Power



Typical Performance of the CMPA3135060S

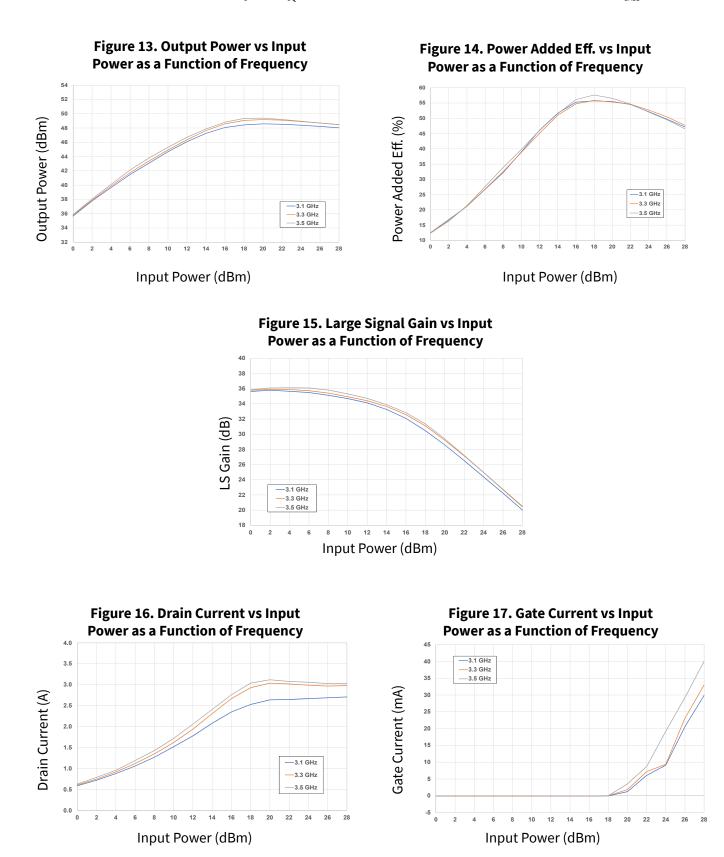
Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 260 mA, Pulse Width = 300 µs, Duty Cycle = 20%, Pin = 20 dBm, T_{BASE} = +25 °C

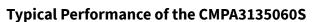
Frequency (GHz)

3.3

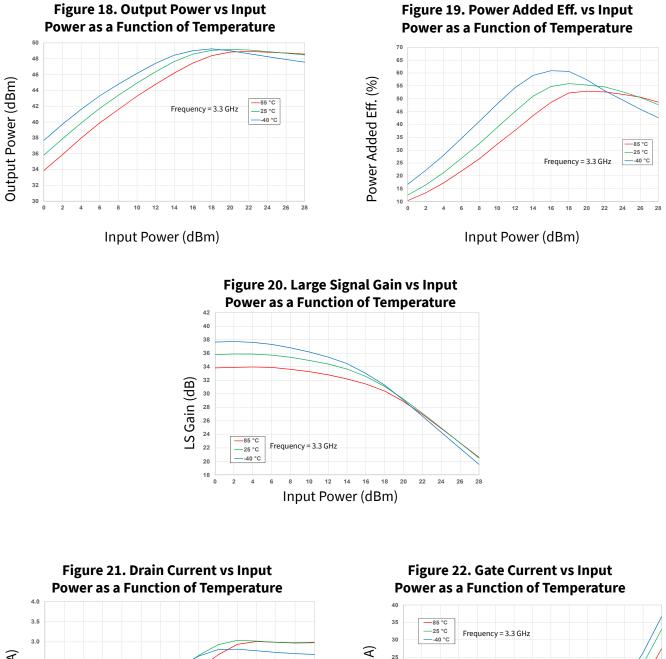
3.4

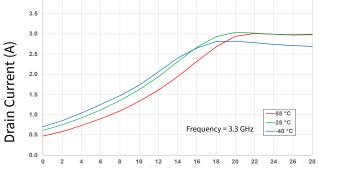
3.5

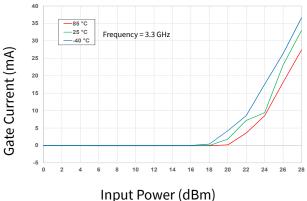

3.2



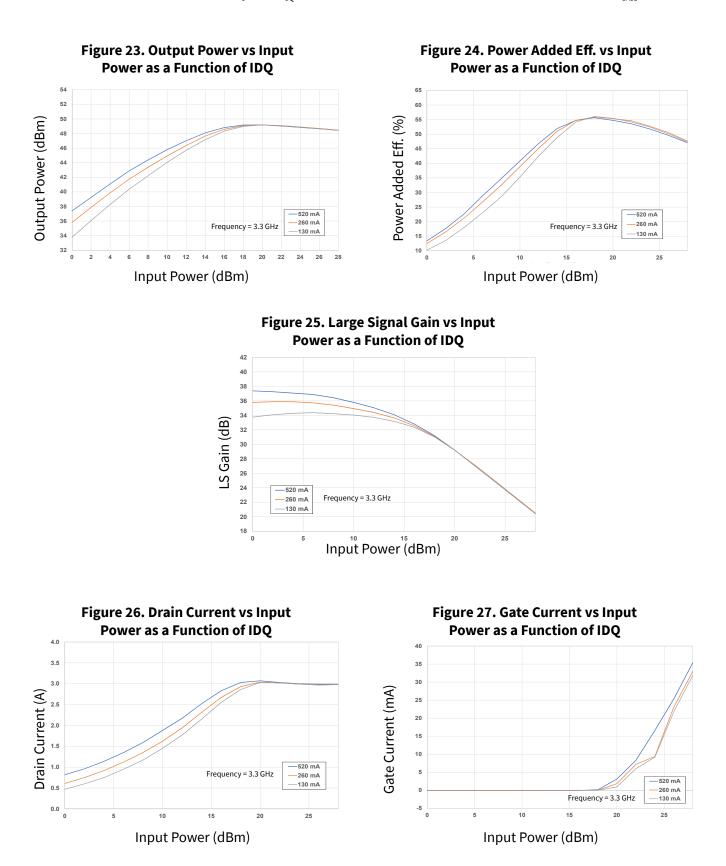
2.1 3.1


Typical Performance of the CMPA3135060S


Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 260 mA, Pulse Width = 300 µs, Duty Cycle = 20%, Pin = 20 dBm, T_{BASE} = +25 °C



Test conditions unless otherwise noted: $V_{D} = 50 V$, $I_{DO} = 260 mA$, Pulse Width = 300 μ s, Duty Cycle = 20%, Pin = 20 dBm, $T_{BASE} = +25 °C$



Input Power (dBm)

Typical Performance of the CMPA3135060S

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DO} = 260 mA$, Pulse Width = 300 μ s, Duty Cycle = 20%, Pin = 20 dBm, $T_{BASE} = +25 °C$

Typical Performance of the CMPA3135060S

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DO} = 260 mA$, Pulse Width = 300 μ s, Duty Cycle = 20%, Pin = 20 dBm, $T_{RASF} = +25 °C$

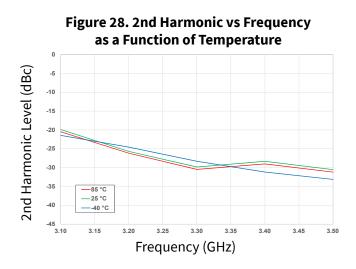


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

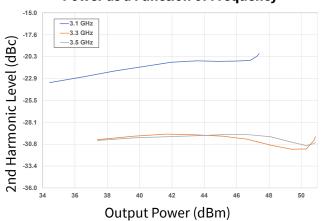
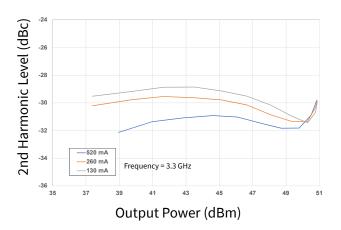
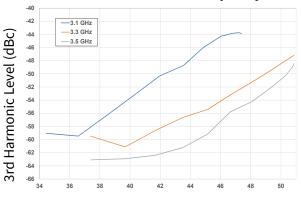


Figure 32. 2nd Harmonic vs Output Power as a Function of IDQ

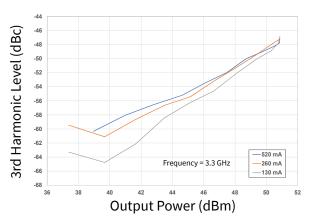

Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature -38 3rd Harmonic Level (dBc) -40 -42 -44 -46 -48 -50 -85 °C -25 °C -52 -40 °C -54 3.1 3.5 3.2 3.3 3.4 Frequency (GHz)

Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

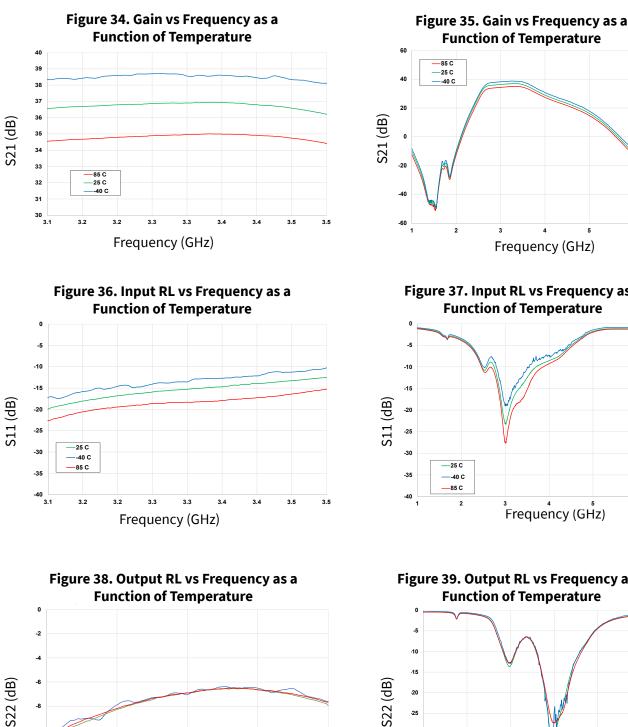

Output Power (dBm)

Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ

Typical Performance of the CMPA3135060S

Test conditions unless otherwise noted: V_{D} = 50 V, I_{DO} = 260 mA, Pin = -30 dBm, T_{BASE} = +25 °C

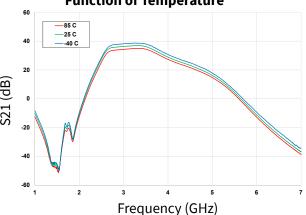
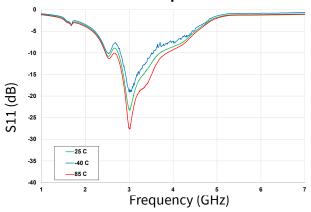



Figure 37. Input RL vs Frequency as a **Function of Temperature**

-8

-10

-12

-14 ∟ 3.1

-25 C

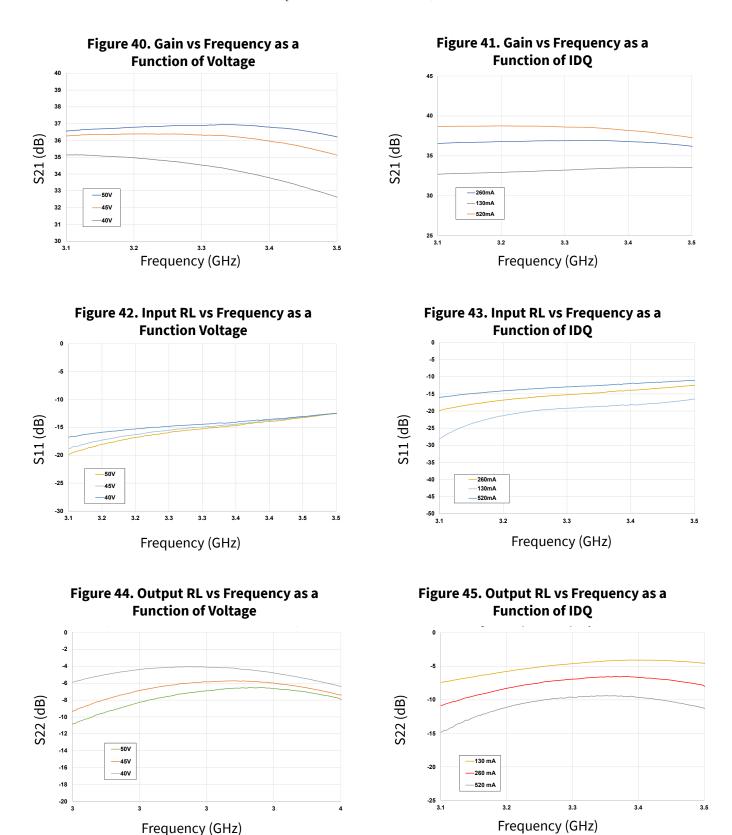
-40 C

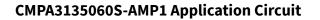
85 C

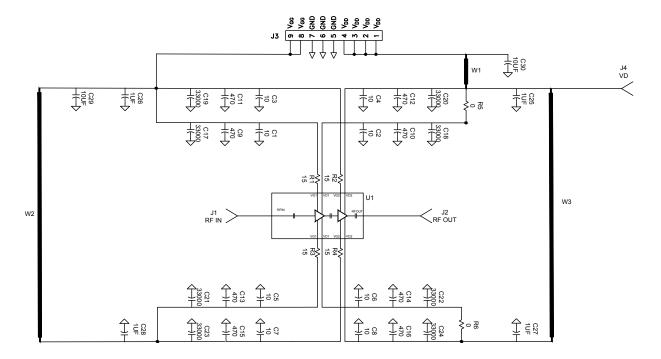
3.2

3.3

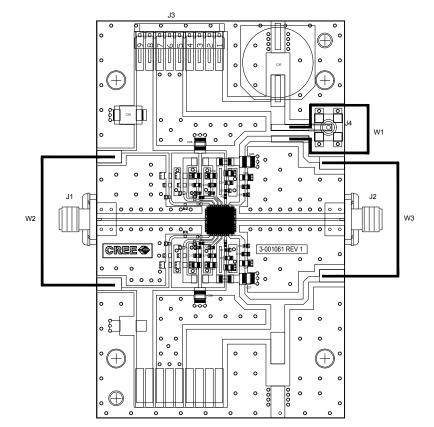
Frequency (GHz)


3.4


3.5



Typical Performance of the CMPA3135060S

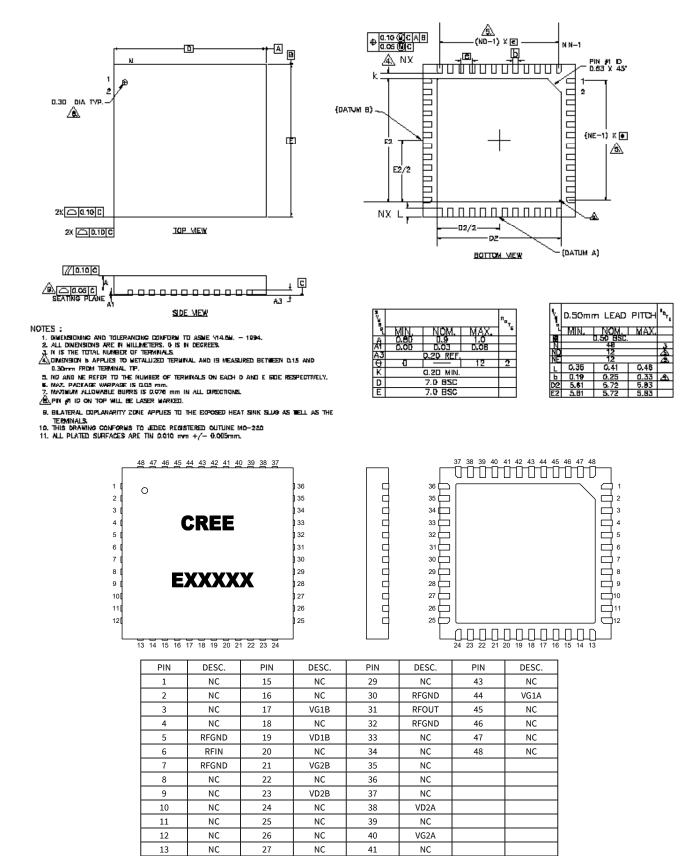

Test conditions unless otherwise noted: $V_{D} = 50 \text{ V}$, $I_{DO} = 260 \text{ mA}$, Pin = -30 dBm, $T_{BASE} = +25 \text{ °C}$

CMPA3135060S-AMP1 Evaluation Board Layout

11

CMPA3135060S-AMP1 Evaluation Board Bill of Materials

Designator	Description	Qty
C1, C2, C3, C4, C5, C6, C7, C8	CAP, 10pF, +/-5%, pF, 200V, 0402	8
C9, C10, C11, C12, C13, C14, C15, C16	CAP, 470PF, 5%, 100V, 0603	8
C17, C18, C19, C20, C21, C22, C23, C24	CA, 330000PF, 0805,100V, X7R	8
C25, C26, C27, C28	CAP, 1.0UF, 100V, 10%, X7R, 1210	4
C29	CAP 10UF 16V TANTALUM, 2312	1
C30	CAP, 330 UF, +/-20%, 100V, ELECTROLYTIC, CASE SIZE K16	1
R1, R2, R3, R4	RES 15 OHM, +/-1%, 1/16W, 0402	4
R5, R6	RES 0.0 OHM 1/16W 1206 SMD	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	4
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W2, W3	WIRE, BLACK, 20 AWG ~ 2.5"	2
W1	WIRE, BLACK, 20 AWG ~ 3.0"	1
	PCB, TEST FIXTURE, RF-35TC, 0.010 THK, 7X7 Overmold QFN SOCKET BOARD	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA3135060S	1


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

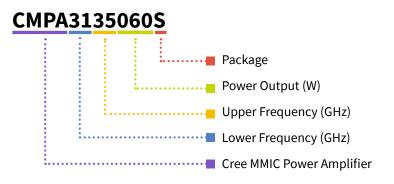
Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA3135060S (Package 7 x 7 QFN)

28

NC


14

NC

VD1A

42

Part Number System

Table 1.	
----------	--

Parameter	Value	Units
Lower Frequency	3.1	GHz
Upper Frequency	3.5	GHz
Power Output	60	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.	
Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA3135060S	Packaged GaN MMIC PA	Each	
CMPA3135060S-AMP1	Evaluation Board with GaN MMIC Installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/rf

Sales Contact rfsales@cree.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

© 2020 – 2021 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.