

- Designed for Low Power 304 MHz Transmitters
- Very Low Series Resistance
- Quartz Frequency Stability
- Miniature 3.0 x 3.0 mm Surface-mount Case
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481

The RO3104E is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode quartz frequency stabilization of fixed-frequency transmitters operating at 304 MHz. This SAW is designed specifically for transmitters used in wireless security and remote control applications.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	0	dBm
DC Voltage Between Terminals (Observe ESD Precautions)	5	VDC
Case Temperature	-40 to +85	°C
Maximum Soldering Profile Temperature (10 s, 5 cycles maximum)	+260	°C

AEC-Q200 This component was always RoHS compliant from the first date of manufacture.

RO3150E

304 MHz SAW Resonator

SM3030-6 Case

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units	
Frequency, +25 °C	Nominal Frequency	f _C		303.925	304.000	304.075	MHz	
	Tolerance from 304.000 MHz	Δf_{C}				±75	kHz	
Insertion Loss		IL			1.35	2.0	dB	
Quality Factor	Unloaded Q	Q _U			14,590			
	50 Ω Loaded Q	QL			2,100			
Temperature Stability	Turnover Temperature	Т _О		10	25	40	°C	
	Turnover Frequency	f _O			f _C			
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²	
Frequency Aging	Absolute Value during the First Year	f _A			10		ppm/yr	
DC Insulation Resistance between Any Two Terminals				1.0			MΩ	
RF Equivalent RLC Model	Motional Resistance	R _M			16		Ω	
	Motional Inductance	L _M			125		μH	
	Motional Capacitance	CM			2.1		fF	
	Transducer Static Capacitance	CO			3.8		pF	
Test Fixture Shunt Inductance		L _{TEST}			TBD		nH	
Lid Symbolization			977, <u>YWWS</u>					
Observational Data L Oscaratita	Reel Size 7 Inch				500 Pieces/Re	el		
Standard Reel Quantity	Reel Size 13 Inch		3000 Pieces/Reel					

Pin

1

2

3

4

5

6

NC

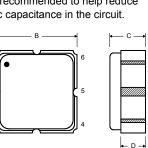
NC

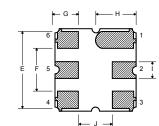
NC

NC

Terminal

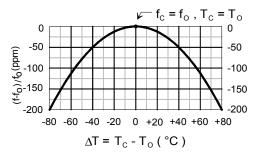
Terminal


1. The design, manufacturing process, and specifications of this device are subject to change.


Connection

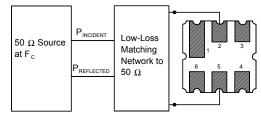
2. US or International patents may apply.

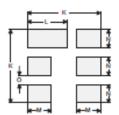
Electrical Connections


The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

Temperature Characteristics

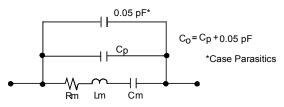
The curve shown accounts for resonator contribution only and does not include external LC component temperature effects.

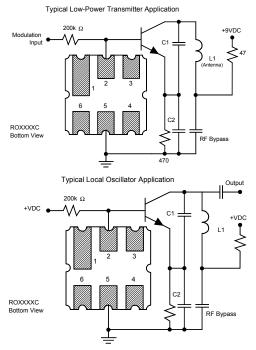



Characterization Test Circuit

Inductor L_{TEST} is tuned to resonate with the static capacitance, C_O, at F_C.

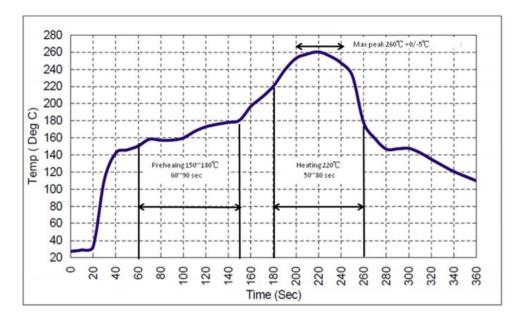
Power Dissipation Test




Case and Typical PCB Land Dimensions

Ref	mm			Inches			
	Min	Nom	Max	Min	Nom	Max	
Α	2.87	3.00	3.13	0.113	0.118	0.123	
В	2.87	3.00	3.13	0.113	0.118	0.123	
С	1.12	1.25	1.38	0.044	0.049	0.054	
D	0.77	0.90	1.03	0.030	0.035	0.040	
E	2.67	2.80	2.93	0.105	0.110	0.115	
F	1.47	1.60	1.73	0.058	0.063	0.068	
G	0.72	0.85	0.98	0.028	0.033	0.038	
н	1.37	1.50	1.63	0.054	0.059	0.064	
I	0.47	0.60	0.73	0.019	0.024	0.029	
J	1.17	1.30	1.43	0.046	0.051	0.056	
К		3.20			0.126		
L		1.70			0.067		
М		1.05			0.041		
Ν		0.81			0.032		
0		0.38			0.015		

Equivalent RLC Model



Example Application Circuits

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

