
Digital Temperature Sensor Breakout - AS6212 (Qwiic) Hookup
Guide

Introduction
The SparkFun Digital Temperature Sensor Breakout - AS6212 (Qwiic) provides a combination of high temperature
accuracy with excellent low power consumption using the AS6212 digital temperature sensor from ams AG. The
AS6212 measures temperature with ±0.2°C accuracy between -10°C to 65°C (full measurement range is -40°C to
125°C), consumes an average of 6µA (0.1µA in standby) and communicates over I C so naturally we put it on a
Qwiic breakout to add to our ever expanding Qwiic system. All of this in a tiny IC package measuring 1.5mm x
1mm.

Required Materials

In order to follow along with this tutorial you'll need a few items along with the AS6212 breakout.

First off, the Digital Temperature Sensor Breakout - AS6212 (Qwiic) needs a controller like an Arduino
development board or single-board computer (SBC) like a Raspberry Pi to communicate with the board. Click the
button below to toggle to recommended Raspberry Pi and Qwiic Pi products.

2

SparkFun Digital Temperature Sensor Breakout -
AS6212 (Qwiic)
 SEN-18521

https://www.sparkfun.com/
https://www.sparkfun.com/products/18521
https://www.sparkfun.com/products/18521
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/18521

RASPBERRY PI MATERIALS (TOGGLE)

Below are a few Arduino development boards SparkFun carries that are Qwiic enabled out of the box:

If your preferred microcontroller does not have a Qwiic connector, you can add one using one of the following
products:

SparkFun Qwiic Pro Micro - USB-C
(ATmega32U4)
 DEV-15795

SparkFun RedBoard Qwiic
 DEV-15123

SparkFun RedBoard Artemis
 DEV-15444

SparkFun Qwiic Micro - SAMD21 Development
Board
 DEV-15423

SparkFun Qwiic Adapter
 DEV-14495

SparkFun Qwiic Shield for Arduino
 DEV-14352

https://www.sparkfun.com/products/15795
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15795
https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/15444
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15444
https://www.sparkfun.com/products/15423
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15423
https://www.sparkfun.com/products/14495
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14495
https://www.sparkfun.com/products/14352
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14352

Along with a development board or SBC, you'll need at least one Qwiic cable. SparkFun carries a variety of
lengths and types of Qwiic cables as seen here:

Recommended Reading

In case you are not familiar with the Qwiic System, we recommend reading here for an overview:

SparkFun Qwiic Shield for Thing Plus
 DEV-16790

SparkFun Qwiic Shield for Arduino Nano
 DEV-16789

SparkFun Qwiic Cable Kit
 KIT-15081

Qwiic Cable - 100mm
 PRT-14427

Flexible Qwiic Cable - 100mm
 PRT-17259

Qwiic Cable - 200mm
 PRT-14428

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/16790
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/16790
https://www.sparkfun.com/products/16789
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/16789
https://www.sparkfun.com/products/15081
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15081
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/17259
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/17259
https://www.sparkfun.com/products/14428
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14428

We also recommend taking a look at the following tutorials if you aren't familiar with the concepts covered in them:

Hardware Overview
Let's take a closer look at the AS6212 temperature sensor and other hardware present on this Qwiic breakout.

AS6212 Digital Temperature Sensor

The AS6212 is a highly accurate and power efficient digital temperature sensor with a wide temperature sensing
range (-40°C to 125°C) from ams AG. The AS6212 boasts a host of features including a configurable alert pin that
can trigger when temperature data exceeds user-defined temperature thresholds. Read more on configuring the
alert pin and temperature thresholds in the Arduino and Python sections of this guide as well as in the AS6212
Datasheet. The AS6212 also features a sleep/low power mode that works in tandem with a Single Shot
measurement mode to wake the device, retrieve stored temperature data and return it to sleep mode.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Serial Terminal Basics
This tutorial will show you how to communicate with
your serial devices using a variety of terminal emulator
applications.

https://cdn.sparkfun.com/assets/f/a/6/c/8/AS621x_DS000677_2-00.pdf
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/terminal-basics

The AS6212 accepts a supply voltage between 1.7V and 3.6 and typically consumes 6µA during normal
temperature conversions and 0.1µA on standby. The AS6212 normally runs at 3.3V and receives power either
through the Qwiic connectors or the dedicated 3.3V and GND PTH pins.

The breakout design isolates the AS6212 from the rest of the PCB as much as possible to minimize ambient heat
from interfering with temperature data. The table below outlines the temperature data accuracy across the
AS6212's temperature measurement range:

Temperature Range Temperature Accuracy

−10°C to 65°C ±0.2°C

−40°C to −10°C and 65°C to 85°C ±0.3°C

85°C to 125°C ±0.5°C

I C and Qwiic Interface

As the name of this breakout suggests, the board routes the AS6212's I C pins to a pair of Qwiic connectors as
well as a 0.1"-spaced PTH header for users who prefer a soldered connection. The AS6212 supports both fast
(max 400kHz) and high-speed (max 3.4MHz) clock frequencies and has eight configurable I C addresses (default
is 0x48). Select the address by adjusting the labeled jumpers covered in the next section.

2

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/SparkFun_AS6212_Qwiic-TempSensor.jpg

The Alert/AD1 and AD0 pins are also broken out to the same PTH header as the I C pins to interact with. The
Alert pin can be enabled to act as an external hardware interrupt for an attached microcontroller.

Solder Jumpers

 Never worked with solder jumpers or PCB traces before or would like a refresher? Take a look at our How
to Work with Jumper Pads and PCB Traces tutorial.

The Digital Temperature Sensor Breakout - AS6212 (Qwiic) has four solder jumpers labeled LED, I2C, AD0 and
AD1. The LED jumper connects the Power LED anode to 3.3V via a 1kΩ resistor. The jumper is CLOSED by
default. Open the jumper to disable the Power LED and reduce the total current draw of the board. The I2C jumper
ties the SDA and SCL lines to 3.3V via a pair of 2.2kΩ resistors and is CLOSED by default. Open the jumper to
disable the pull-up resistors.

Note: Recommended practice suggests to only have a single pair of pull-up resistors on an I C bus to avoid
creating too strong of a parallel resistance on the bus. If you disable the pull-ups on this breakout to use a
separate pair, make sure the entire bus is operating at the appropriate logic level (in this case, 3.3V) or the
lines are properly shifted to avoid damaging this or other devices on the bus.

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/SparkFun_AS6212_Qwiic-Qwiic_PTH.jpg
https://learn.sparkfun.com/tutorials/how-to-work-with-jumper-pads-and-pcb-traces
https://learn.sparkfun.com/tutorials/logic-levels
https://www.sparkfun.com/categories/361

The AD0 and AD1 jumpers control the I C address as well as enabling/disabling the Alert pin. By default, these
two-way jumpers connect the AD0 pin to Ground and the Alert/AD1 pin to 3.3V to enable the Alert pin and set the
I C address to 0x48. Adjust these jumpers to change the address and/or disable the Alert pin. The table below
outlines the various settings these jumpers can be set to:

ALERT/AD1 Jumper Net AD0 Jumper Net Alert Pin Functionality I C Address

VCC (PU) GND Enabled 0x48 (Default)

VCC (PU) VCC Enabled 0x49

VCC (PU) SDA Enabled 0x4A

VCC (PU) SCL Enabled 0x4B

SCL GND Disabled 0x44

SCL VCC Disabled 0x45

SCL SDA Disabled 0x46

SCL SCL Disabled 0x47

GND GND Disabled 0x48

GND VCC Disabled 0x49

GND SDA Disabled 0x4A

GND SCL Disabled 0x4B

Board Dimensions

The Digital Temperature Sensor Breakout - AS6212 (Qwiic) matches the 1" x 1" (25.4mm x 25.4mm) standard
form-factor for most of SparkFun's Qwiic breakouts and has four mounting holes that fit 4-40 screws.

2

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/SparkFun_AS6212_Qwiic-SolderJumpers.jpg
https://www.sparkfun.com/products/10453

Hardware Assembly
Assembling your temperature sensing circuit with the Qwiic system is simple. Just connect your SparkFun Digital
Temperature Sensor Breakout - AS6212 (Qwiic) to your chosen development board or single-board computer with
a Qwiic cable or adapter cable.

Users who prefer a traditional through-hole connection can solder the PTH pins broken out on the board.
Reminder, the Alert/AD1 Pin is not connected to the Qwiic connector so it requires a separate connection to the
Alert PTH pin for use. Alternatively, if you want a temporary connection for prototyping, these IC Hooks are a great
option to make that connection. If you are not familiar with through-hole soldering take a look at this tutorial:

How to Solder: Through-Hole Soldering
SEPTEMBER 19, 2013
This tutorial covers everything you need to know about through-hole soldering.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/Sparkfun_AS6212_Qwiic-Dimensions.png
https://www.sparkfun.com/products/14425
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/SparkFun_AS6212_Qwiic-Basic_Circuit.jpg
https://www.sparkfun.com/products/9741
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

With the AS6212 connected to your microcontroller it's time to get some code uploaded and start taking
temperature measurements!

Qwiic AS6212 Arduino Library

Note: This library assumes the latest version of the Arduino IDE is used. If this is your first time using
Arduino, please review our tutorials on Installing the Arduino IDE and Installing an Arduino Library.

The SparkFun AS6212 Arduino Library helps users configure and pull temperature data from the AS6212. Install
the library through the Arduino Library Installer by searching for "SparkFun AS6212". Users who prefer to
manually install the library can find it on the GitHub Repository or can download a .ZIP of the repo by clicking the
button below:

SPARKFUN AS6212 ARDUINO LIBRARY (ZIP)

Library Functions

The list below outlines the functions included in the AS6212 Arduino Library along with short descriptions of what
they do.

Class

Construct the AS6212 object in the global class. The examples use sensor as the AS6212 breakout object.

AS6212 sensor;

Device Setup and Settings

bool begin(uint8_t sensorAddress, TwoWire &wirePort); - Initialize the AS6212 Qwiic breakout at a
specified address on a selected port. If left empty, default values are used for the address (0x48) and Wire
port.
bool setDefaultSettings(); - Set the AS6212 CONFIG register to default/factory settings. This helps

quickly return the sensor to default settings if anything in the CONFIG register has been changed as
adjustments to the CONFIG register remain through power cycles.
uint8_t getAddress(); - Returns the device's I C address.
bool getAlertStatus(); - Returns the status of the Alert bit.
void setConsecutiveFaults(int faults); - Sets the number of consecutive faults (temperature above
THigh) to occur before the Alert pin state adjusts. Acceptable values are 1,2,3 and 4.
uint8_t getConsecutiveFaults(); - Returns the value set for setConsecutiveFaults(); .
void setInterruptMode(bool mode); - Set the AS6212 Alert pin to operate in Interrupt mode.
bool getInterruptMode(); - Read whether the Alert pin is set to operate in Interrupt mode.
void setConversionCycleTime(uint8_t cycleTime = AS6212_CONVERSION_CYCLE_TIME_250MS); - Sets the

time between temperature conversions in milliseconds. Acceptable entries are: 125MS, 250MS, 1000MS or
4000MS.
uint16_t getConversionCycleTime(); - Returns the value set for Conversion Cycle Time in milliseconds.
void setAlertPolarity(bool polarity); - Set the polarity of the Alert pin output to go either HIGH or LOW

when triggered. Default is LOW / 0 .
bool getAlertPolarity(); - Returns the value set for the Alert polarity bit. 0 for active LOW or 1 for

active HIGH.

2

https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/SparkFun_AS6212_Qwiic_Arduino_Library
https://github.com/sparkfun/SparkFun_AS6212_Qwiic_Arduino_Library/archive/refs/heads/main.zip

void sleepModeOn(); - Put the AS6212 into Sleep Mode. The device must be in Sleep Mode for Single
Shot measurements to be made.
void sleepModeOff(); - Clears the Sleep Mode bit in the config register and after reseting the SM bit to 0

the device returns to continuous conversion mode.
bool getSleepMode(); - Returns the Sleep Mode bit status as a boolean.
void triggerSingleShotConversion(); - Tell the AS6212 to perform a Single Shot temperature

conversion.
bool getSingleShotStatus(); - Returns the Single Shot mode bit status as a boolean. 0 for no

conversion ongoing/conversion finished. 1 for start Single Shot conversion/conversion ongoing.
void setConfig(uint16_t targetState); - Legacy function for users who wish to interact directly with the

CONFIG register. Refer to section 6.2 in the AS6212 Datasheet for a detailed description of this regsiter and
the adjustable bits in it.
uint16_t readConfig(); - Returns the settings in the CONFIG register as an unsigned integer.

Temperature Data

float readTempC(); - Returns the recorded temperature in degrees Celsius.
float getTLowC(); - Returns the temperature value set for setTLowC .
bool setTLowC(int16_t lowLimit); - Sets the temperature in °C for low temperature threshold. Used for

the alert pin temperature limits.
float getTHighC(); - Returns the temperature value set for setTHighC .
bool setTHighC(int16_t highLimit); - Sets the temperature in °C for the high temperature threshold.

Used for the alert pin temperature limits.
float readTempF(); - Returns the recorded temperature in degrees Fahrenheit.
float getTLowF(); - Returns the temperature value set for setTLowF .
bool setTLowF(int16_t lowLimit); - Sets the temperature in °F for low temperature threshold. Used for

the alert pin temperature limits.
float getTHighF(); - Returns the temperature value set for setTHighF .
bool setTHighF(int16_t highLimit); - ets the temperature in °F for high temperature threshold. Used for

the alert pin temperature limits.

Arduino Examples
The SparkFun AS6212 Arduino Library includes ten examples to showcase the various capabilities and settings of
the AS6212. In this section we'll take an in-depth look at most of those examples and highlight pertinent bits of
code where necessary. The examples build on each other so it may help to go through them in sequential order.

Prior to uploading the examples, let's take a quick look at the setup function used in all examples:

if (sensor.begin() == false)
{
 Serial.println("AS6212 Qwiic failed to respond. Please check wiring and possibly the I2C add
ress. Freezing...");
 while (1);
};

After uploading any of the examples, open the Arduino serial monitor with the baud set to 115200. If the AS6212
fails to initialize on the bus, the code freezes and prints out "AS6212 Qwiic failed to respond. Please check wiring
and possibly the I2C address. Freezing...".

https://cdn.sparkfun.com/assets/f/a/6/c/8/AS621x_DS000677_2-00.pdf
https://learn.sparkfun.com/tutorials/terminal-basics

If you see this message, check the connection between the breakout and controller and make sure the AS6212 is
either set to the default address or the sensor.begin(); function is adjusted to the correct address. Refer to
Example 2 - Different I2C Address for a quick demonstration of initializing the AS6212 on an alternate address.

Each example also includes a quick call of the setDefaultSettings(); function to return the AS6212 to default
settings as adjustments to the CONFIG register (e.g. conversion cycle time, interrupt mode, alert pin polarity)
remain through power cycles.

Example 1 - Basic Readings

The first example in the library demonstrates how to initialize the AS6212 on the I C bus and retrieve temperature
data from the sensor in both °C and °F. Open the example by navigating to File > Examples > SparkFun AS6212
Arduino Library > Example_01_BasicReadings. Select the appropriate Board and Port and click upload.
Assuming the upload was successful, open the serial monitor with the baud set to 115200.

After initializing, the code prints out temperature data recorded by the AS6212 in both °C and °F every second. Try
breathing on the sensor or gently press your finger to it and watch the temperature data change.

Example 3 - Sleep

Example 3 demonstrates how to put the AS6212 in and out of Sleep Mode with default settings. Note, this
example keeps the default settings so the AS6212 measures in continuous mode when awake. Take a look at the
next example for use of the Single Shot readings for maximum power efficiency.

The main loop creates a wake/sleep loop with a 150ms delay after waking to ensure temperature current and
accurate temperature data. Without this delay the first values read will be from the last time the AS6212 was
awake. Once woken up, the code returns temperature data for both Celsius and Fahrenheit and then puts the
AS6212 back into Sleep Mode for five seconds.

Example 4 - Single Shot Readings

Example 4 builds on the previous example to combine Sleep Mode with Single Shot readings to maximize power
efficiency. The example starts similarly to Example 3 but includes an extra two lines in the setup to start with the
AS6212 in Sleep Mode to enable Single Shot readings.

sensor.sleepModeOn();
delay(150);

With the sensor in Sleep Mode, the code triggers a Single Shot reading. Note, this automatically returns the
AS6212 to sleep mode once complete.:

sensor.triggerSingleShotConversion();

2

https://github.com/sparkfun/SparkFun_AS6212_Qwiic_Arduino_Library/blob/main/examples/Example_02_DifferentI2cAddress/Example_02_DifferentI2cAddress.ino
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/Example1-Serial_Monitor.png

The code also includes a serial print to let the user know when a Single Shot conversion is ongoing and prints out
the temperature data in both Celsius and Fahrenheit for each reading.

Example 5 - Alert

Example 5 shows how to set upper and lower temperature thresholds and how to enable/disable the Alert pin
when the recorded temperature crosses those values. The code starts by checking to make sure the AS6212 is
awake in case it was left in Sleep Mode from a previous example in this library. After checking that (and waking the
sensor up if it was asleep), the code sets values for THighF(); and TLowF(); to 80°F and 77°F, respectively.

if (sensor.getSleepMode() == true)
{
 Serial.println("Sensor was asleep, waking up now");
 sensor.sleepModeOff();
 delay(150);
}

sensor.setTHighF(80);
sensor.setTLowF(77);

Note: The registers for setting the THigh and TLow thresholds have a specific resolution so you may notice
that the code prints out a value slightly off of what was set for the threshold. Refer to section 6.2.9 in the
AS6212 Datasheet for more specific information on the High and Low Limit Registers.

The code sets these values close together specifically to easily test the threshold settings by breathing on the
sensor lightly to raise the temperature above the threshold. The main loop prints the temperature data and
watches the alert status. When the temperature crosses the THigh threshold, the Alert pin goes LOW and
remains LOW until the temperature drops below the TLow threshold. The code also prints out the status of the
Alert pin.

void loop() {
 tempF = sensor.readTempF();
 Serial.print("Temperature (°F): ");
 Serial.print(tempF, 6); //Reads out 6 characters of the temperature float

 alertStatus = sensor.getAlertStatus();

 Serial.print("\talertStatus: ");
 Serial.print(alertStatus);

 if (alertStatus == false) // be default alertStatus is active low
 {
 Serial.print("\tAlert ACTIVE LOW!");
 }

 Serial.println();
 delay(1000);
}

https://cdn.sparkfun.com/assets/f/a/6/c/8/AS621x_DS000677_2-00.pdf

Example 6 - Conversion Cycle Time

Now that we've used the high and low temperature thresholds to toggle the Alert pin, Example 6 shows how to
adjust the conversion cycle time for Single Shot measurements to alter how long the temperature must stay
above/below the set temperature thresholds to trigger the Alert pin. The example sets the conversion cycle time to
once every four seconds while reading the alert status every second. With this setting, the temperature data must
cross the threshold and stay there through the conversion before the Alert pin will fire.

sensor.setConversionCycleTime(AS6212_CONVERSION_CYCLE_TIME_4000MS);

Other options for this setting are 125MS (8 times/sec), 250MS (4 times/sec) and 1000MS (1 time/sec). The main
loop performs the same alertStatus check as the previous example and if the temperature crosses the THigh
threshold and stays there during the conversion cycle time, the alert pin will go LOW until the temperature drops
below the TLow threshold and stays there through a conversion cycle.

Example 7 - Consecutive Faults

Further building on the alert examples, Example 7 demonstrates how to integrate the setConsecutiveFaults
function into monitoring temperature data to trigger the Alert pin. Adding a consecutive fault check on top of the
conversion cycle time setting allows you to really configure how long temperature must remain above/below the
THigh and TLow thresholds to trigger the Alert pin. This example sets both the setConsecutiveFaults and
setConversionCycleTime to their max values so the temperature must remain above the THigh threshold for 16

seconds for the Alert pin to go LOW. Note, this also means the Alert pin will remain LOW until the temperature
data is below the TLow threshold for 16 seconds as well.

sensor.setConsecutiveFaults(4);

Allowable values for the setConsecutiveFaults function are 1,2,3 or 4. The main loop is the same as the previous
two examples; temperature data prints and alertStatus is checked every second. If the temperature crosses the
THigh threshold and stays there for four conversion cycles (16 seconds), the code prints "Alert ACTIVE LOW!"

until the temperature drops below the TLow threshold for the same duration.

Example 8 - Interrupt Mode

Example 8 shows how to use the setInterruptMode function to switch between Comparator and Interrupt. The
previous examples all use the default mode, Comparator, where the Alert pin changes state when temperature
data crosses the THigh threshold and stays in the new state until the temperature drops below the TLow
threshold. This example sets the Alert pin to operate in Interrupt mode:

sensor.setInterruptMode(AS6212_MODE_INTERRUPT);`

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/Example5-Serial_Monitor.png

In Interrupt mode, the Alert pin changes state quickly when the temperature crosses the THigh threshold and
again when the temperature drops below the TLow threshold. This change is extremely quick so it works best
when connected to a hardware interrupt pin on a microcontroller (see Example 10 for that use case). This example
sets the Conversion Cycle time and Consecutive Faults to their lowest values to reduce any delays in reading
temperature since the Alert state changes so quickly.

sensor.setConversionCycleTime(AS6212_CONVERSION_CYCLE_TIME_250MS);
sensor.setConsecutiveFaults(1);

The code prints out the Alert status and temperature when the Alert pin is fired and also includes an extra function
to blink the LED to show the code is alive and working. This function exists outside of the main loop to eliminate
any delays.

Note: When operating in Interrupt mode, the Alert pin only changes state once temperature data crosses the
THigh threshold and again when the temperature data crosses the TLow threshold. This means even if the

temperature data crosses the THigh threshold multiple times, the Alert pin changes state only once until the
temperature data crosses below the TLow threshold. For more information, refer to section 6.2.5 and Figure
19 in the AS6212 Datasheet.

Example 10 - Hardware Interrupt

To round out the Alert pin examples (and this section), Example 10 shows how to use the Alert pin as an external
hardware interrupt to your RedBoard/Arduino. Example 10 performs nearly identically to Example 9 where the
Alert pin operates in Interrupt mode. The primary difference here is the code attaches an external interrupt to D2
on the RedBoard/Arduino:

attachInterrupt(digitalPinToInterrupt(2), ISR_alert, FALLING);

The example does not run any routines or actions when the interrupt pin triggers so it's left to the user to include
the necessary code to run an action on interrupt. Use the interrupt to trigger an external component like a fan to
cool down a temperature-sensitive device or an LED to indicate a temperature fault.

Qwiic AS6212 Python Package

Note: This package and the included examples assume you are using the latest version of Python 3. If this is
your first time using Python or I C hardware on a Raspberry Pi, these tutorial can help you get started:

Python Programming with the Raspberry Pi
Raspberry Pi SPI and I2C Tutorial

The Qwiic AS6212 Python package

The module is hosted on PyPi to make installation quick and painless with simple commands in the command
interface. Users who prefer to manually install the package can find it on the GitHub Repository or download the
ZIP of the repository by clicking the button below:

DOWNLOAD THE SPARKFUN QWIIC AS6212 PYTHON PACKAGE (ZIP)

2

https://cdn.sparkfun.com/assets/f/a/6/c/8/AS621x_DS000677_2-00.pdf
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/digital-temperature-sensor-breakout---as6212-qwiic-hookup-guide/all
https://github.com/sparkfun/Qwiic_AS6212_Py/archive/refs/heads/main.zip

(*Please be aware this package depends on the Qwiic I C Driver. You can also view the repository documentation
page hosted on Read the Docs.)

Qwiic AS6212 Py Installation

Now we'll cover the two installation methods for the Qwiic AS6212 Python package.

Note: Don't forget to double check the hardware I C connection is enabled on your Rasbperry Pi or other
single board computer. The Raspberry Pi tutorials linked in the note above cover how to enable the I C bus.

PyPi Installation

Since the package is hosted on PyPi, installation on systems that support PyPi installation via pip3 (use pip for
Python 2) is easy using a command interface and the following commands:

For all users (The user must have sudo privileges):

sudo pip3 install sparkfun-qwiic-as6212

For the current user:

pip3 install sparkfun-qwiic-as6212

Local Installation

The following instructions cover how to perform a local installation of the Qwiic AS6212 Python package. Make
sure to install the setuptools package prior to installing the Qwiic AS6212 Python package.

Use this command for direct installation at the command line (use python for Python 2):

python3 setup.py install

Build a package for use with pip3 :

python setup.py sdist

This command builds and places a subdirectory called "dist". Change to the new subdirectory and install the Qwiic
AS6212 package using pip3 with these commands (make sure to fill in the correct version number):

pip3 install sparkfun_qwiic_as6212-<version>.targ.gz

Qwiic AS6212 Python Package Operation

For a complete overview of all functions included in Qwiic AS6212 Py, visit ReadtheDocs. You can also review the
package's source code.

Upgrading the Qwiic AS6212 Python Package

In case the package is updated in the future, you may need to upgrade it. Use the following commands to upgrade
it:

For all users (The user must have sudo privileges):

2

2

2

https://github.com/sparkfun/Qwiic_I2C_Py
https://qwiic-as6212-py.readthedocs.io/en/latest/?
https://learn.sparkfun.com/tutorials/digital-temperature-sensor-breakout---as6212-qwiic-hookup-guide/all
https://qwiic-as6212-py.readthedocs.io/en/latest/?
https://github.com/sparkfun/Qwiic_AS6212_Py/blob/main/qwiic_as6212.py
https://en.wikipedia.org/wiki/Sudo

sudo pip3 install --upgrade sparkfun-qwiic-as6212

For the current user:

pip3 install --upgrade sparkfun-qwiic-as6212

Python Examples
The Qwiic AS6212 Python package includes two quick examples to get you started. Let's take a quick look at both
of them. Just like the Arduino library, the examples start by creating the temperature sensor object and checking
the Digital Temperature Sensor Breakout - AS6212 (Qwiic) is connected to the bus at the default address:

myTempSensor = qwiic_as6212.QwiicAs6212Sensor()

if myTempSensor.is_connected == False:
 print("The Qwiic AS6212 Sensor device isn't connected to the system. Please check your conne
ction", \
 file=sys.stderr

return

If you see this printout, the most common causes are the AS6212 is set to an alternate I C address and the code
has not been adjusted properly or the device is not making a good connection with the I C pins. If the AS6212 is
set to an alternate address, make sure to add the address to this line:

myTempSensor = qwiic_as6212.QwiicAs6212Sensor(NEW ADDRESS HERE)

Example 1 - Basic Readings

Don't be fooled by the name of Example 1, think of it more as a kitchen sink demo of getting temperature data,
setting high and low temperature thresholds, the alert behavior, alert polarity, consecutive fault count and
conversion cycle time. After initializing the sensor on the bus, the code sets all of the values listed above:

2

2

set the number of consecutive faults before triggering alarm.
valid options: 1,2,3 or 4
myTempSensor.set_consecutive_faults(1)

set the polarity of the Alert. (0:Active LOW, 1:Active HIGH).
myTempSensor.set_alert_polarity(myTempSensor.AS6212_ALERT_ACTIVE_LOW)

set the sensor in Comparator Mode (0) or Interrupt Mode (1).
myTempSensor.set_interrupt_mode(myTempSensor.AS6212_MODE_COMPARATOR)

set the Conversion Cycle Time (how quickly the sensor gets a new reading)
myTempSensor.set_conversion_cycletime(myTempSensor.AS6212_CONVERSION_CYCLE_TIME_250MS)

set T_HIGH, the upper limit to trigger the alert on
myTempSensor.set_high_temp_f(78.0) # set T_HIGH in F
myTempSensor.set_high_temp_c(25.56) # set T_HIGH in C

set T_LOW, the lower limit to shut turn off the alert
myTempSensor.set_low_temp_f(75.0) # set T_LOW in F
myTempSensor.set_low_temp_c(23.89) # set T_LOW in C

The main loop puts the AS6212 in and out of sleep mode. When awake, the code retrieves temperature data in °F
and then puts it back into sleep mode. Each second the code prints out the recorded temperature data and the
Alert Register state.

while True:
 myTempSensor.set_sleep_mode(0) # turn sleep mode off (0)
 time.sleep(0.250) # allow time to wake up and complete first conversion

 temperature = myTempSensor.read_temp_f()

 # Check for alert
 alertRegisterState = myTempSensor.get_alert_status() # read the Alert from register

 # Place sensor in sleep mode to save power.
 # Current consumption typically ~0.1uA.
 myTempSensor.set_sleep_mode(1) # turn sleep mode on (1)

 print("Temperature: ", temperature, "\tAlert Register: ", alertRegisterState)
 time.sleep(1)

This method works fine for standard applications but using the AS6212's single shot readings is even better to
conserve power as we can call for temperature data on demand. The next example covers using single shot.

Example 2 - Single Shot

The second example shows how to set up and use single shot readings on the AS6212. The example sets up
similarly to the previous example but does not set any of the alert or threshold settings. Instead, the code initializes
the AS6212 and then puts the device into sleep mode:

lanugage:python
myTempSensor.set_sleep_mode(1)
print("Sleep mode ON")
time.sleep(1)

The AS6212 must be in sleep mode for single shot measurements to work. After the device has been initialized
and put in sleep mode, the main loop triggers single shot conversions and prints out the reported temp data every
second:

while True:
 myTempSensor.trigger_single_shot_conversion() # trigger SS

 #wait for conversion to complete (~51ms)
 conversionTime = 0
 while myTempSensor.get_single_shot_status() == 1:
 conversionTime += 1
 time.sleep(0.001) # 1ms

 tempF = myTempSensor.read_temp_f()

 print("Temperature: %.2fF \t Conversion time: %ims" % (tempF, conversionTime))
 time.sleep(1)

Troubleshooting

Device Not Initializing

The examples from both the Arduino library and Python module print out:

"AS6212 Qwiic failed to respond. Please check wiring and possibly the I2C address. Freezing..."

If you see this, double-check the connections to the breakout and make sure if the I C address has been changed
to adjust the appropriate line to start communication with the AS6212 at the correct address as demonstrated
below:

Arduino

sensor.begin(NEW ADDRESS HERE)

Python

myTempSensor = qwiic_as6212.QwiicAs6212Sensor(NEW ADDRESS HERE)

THigh and TLow Temperature Resolution

As mentioned in the Arduino Examples section, some users may notice the value printed for the THigh and TLow
by the code do not exactly match the value set in the setTHighF/C or setTLowF/C functions. This is due to the
resolution of the registers controlling those thresholds so the code sets it to the closest "step" on that resolution.
For more information on these registers, refer to section 6.2.9 in the AS6212 Datasheet.

CONFIG Register Settings

2

https://cdn.sparkfun.com/assets/f/a/6/c/8/AS621x_DS000677_2-00.pdf

Reminder, any changes to the CONFIG register such as changing the alert pin from Comparator mode to Interrupt
mode, conversion cycle time, consecutive faults, etc. remain through power cycles. Users need to either manually
set these to their desired settings or, in the case of the Arduino library, use the setDefaultSettings(); function to
return the settings back to default.

General Troubleshooting and Technical Assistance

 Not working as expected and need help?

If you need technical assistance and more information on a product that is not working as you expected, we
recommend heading on over to the SparkFun Technical Assistance page for some initial troubleshooting.

SPARKFUN TECHNICAL ASSISTANCE PAGE

If you don't find what you need there, the SparkFun Forums are a great place to find and ask for help. If this
is your first visit, you'll need to create a Forum Account to search product forums and post questions.

CREATE NEW FORUM ACCOUNT LOG INTO SPARKFUN FORUMS

Resources and Going Further
That's a wrap for this tutorial. Check out the resources below for more information about the Digital Temperature
Sensor Breakout - AS6212 (Qwiic).

Schematic (PDF)
Eagle Files (ZIP)
Board Dimensions (PNG)
AS6212 Datasheet (PDF)
AS6212 Arduino Library
Qwiic AS6212 Py
GitHub Hardware Repo
Qwiic Info Page

Not sure what to do for your temperature sensing project? The following Weather-related tutorials might offer some
inspiration:

MPL3115A2 Pressure Sensor Hookup Guide
Getting started with the MPL3115A2 Pressure Sensor.

SparkFun BME280 Breakout Hookup Guide
A guide for connecting the BEM280 sensor to a
microcontroller, and for using the Sparkfun Arduino
library.

https://www.sparkfun.com/technical_assistance
https://www.sparkfun.com/technical_assistance
https://forum.sparkfun.com/index.php
https://forum.sparkfun.com/ucp.php?mode=register
https://forum.sparkfun.com/ucp.php?mode=register
https://forum.sparkfun.com/index.php
https://cdn.sparkfun.com/assets/d/b/6/e/6/Sparkfun_AS6212_Qwiic-Schematic.pdf
https://cdn.sparkfun.com/assets/4/6/2/5/1/Sparkfun_AS6212_Qwiic.zip
https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/Sparkfun_AS6212_Qwiic-Dimensions.png
https://cdn.sparkfun.com/assets/f/a/6/c/8/AS621x_DS000677_2-00.pdf
https://github.com/sparkfun/SparkFun_AS6212_Qwiic_Arduino_Library
https://github.com/sparkfun/Qwiic_AS6212_Py
https://github.com/sparkfun/SparkFun_Digital_Temperature_Sensor_Breakout_AS6212_Qwiic
https://www.sparkfun.com/qwiic
https://learn.sparkfun.com/tutorials/mpl3115a2-pressure-sensor-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide

Environmental Monitoring with the Tessel 2
Build an air-conditioner monitoring device to collect
environment information and store it in the cloud.

Qwiic Kit for Raspberry Pi Hookup Guide
Get started with the CCS811, BME280, VCNL4040,
and microOLED via I2C using the Qwiic system and
Python on a Raspberry Pi! Take sensor readings from
the environment and display them on the microOLED,
serial terminal, or the cloud with Cayenne!

https://learn.sparkfun.com/tutorials/environmental-monitoring-with-the-tessel-2
https://learn.sparkfun.com/tutorials/qwiic-kit-for-raspberry-pi-hookup-guide

