

CMPA2735030D

30 W, 2.7 - 3.5 GHz, GaN MMIC, Power Amplifier

Cree's CMPA2735030D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This

MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

Typical Performance Over 2.7-3.5 GHz ($T_c = 25^{\circ}C$)

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	32	34	35	35	36	dB
Output Power ¹	40	43	48	45	41	W
Power Gain ¹	28	28	29	29	28	dB
PAE ¹	63	62	61	58	55	%

Note¹: P_{IN} = 18 dBm, Pulse Width = 500 μ s; Duty Cycle = 10%

Features

- 35 dB Small Signal Gain
- 40 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.130 x 0.08 x 0.004 inches

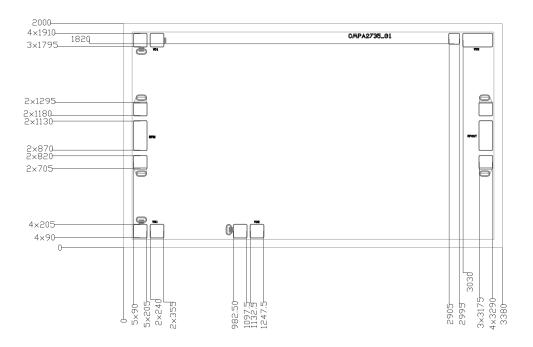
Applications

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units
Drain-source Voltage	V _{DSS}	150	VDC
Gate-source Voltage	V _{GS}	-10, +2	VDC
Storage Temperature	T _{STG}	-65, +150	°C
Operating Junction Temperature	T _J	225	°C
Thermal Resistance, Junction to Case (packaged)	$R_{\theta JC}$	-	°C/W
Mounting Temperature (30 seconds)	T _s	260	°C

Electrical Characteristics (Frequency = 2.7 GHz to 3.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

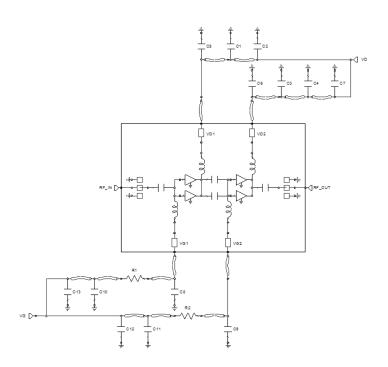
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V, } I_{D} = 6 \text{ mA}$
Gate Quiescent Voltage	$V_{\rm GS(Q)}$	-	-2.7	-	V _{DC}	V_{DD} = 50 V, I_{DQ} = 135 mA, Frequency = 2.9 GHz
Saturated Drain Current ¹	I _{DS}	-	6	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{\scriptscriptstyle BD}$	-	150	-	V	V_{GS} = -8 V, I_D = 6 mA
RF Characteristics ²						
Small Signal Gain ₁	S21	-	32	-	dB	V_{DD} = 50 V, I_{DQ} = 135 mA, Frequency = 2.7 GHz
Small Signal Gain ₂	S21	-	35	-	dB	V_{DD} = 50 V, I_{DQ} = 135 mA, Frequency = 3.1 GHz
Small Signal Gain ₃	S21	-	36	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 135 \text{ mA, } Frequency} = 3.5 \text{ GHz}$
Power Output ₁	P _{out}	-	40	-	W	V_{DD} = 50 V, I_{DQ} = 135 mA, P_{IN} = 18 dBm, Frequency = 2.7 GHz
Power Output ₂	P _{out}	-	48	-	W	V_{DD} = 50 V, I_{DQ} = 135 mA, P_{IN} = 18 dBm, Frequency = 3.1 GHz
Power Output ₃	P _{out}	-	41	-	W	V_{DD} = 50 V, I_{DQ} = 135 mA, P_{IN} = 18 dBm, Frequency = 3.5 GHz
Power Added Efficiency ₁	PAE	-	63	-	%	V_{DD} = 50 V, I_{DQ} = 135 mA, Frequency = 2.7 GHz
Power Added Efficiency ₂	PAE	-	61	-	%	V_{DD} = 50 V, I_{DQ} = 135 mA, Frequency = 3.1 GHz
Power Added Efficiency ₃	PAE	-	55	-	%	V_{DD} = 50 V, I_{DQ} = 135 mA, Frequency = 3.5 GHz
Power Gain	G _P	-	28	-	dB	V _{DD} = 50 V, I _{DQ} = 135 mA
Input Return Loss	S11	-	-11	-	dB	V _{DD} = 50 V, I _{DQ} = 135 mA
Output Return Loss	S22	-	-8	-	dB	V _{DD} = 50 V, I _{DQ} = 135 mA
Output Mismatch Stress	VSWR	-	-	10:1	Ψ	TBD


Notes:

¹ Scaled from PCM data.

 $^{^2}$ All data pulse tested on-wafer with Pulse Width = 10 μ s, Duty Cycle = 1%.

Die Dimensions (units in microns)



Die Assembly Notes:

- Recommended solder is AuSn (80/20) solder. Refer to Cree's website for the Eutectic Die Bond Procedure application note at http://www.cree.com/RF/Document-Library
- Vacuum collet is the preferred method of pick-up.
- The backside of the die is the Source (ground) contact.
- Die back side gold plating is 5 microns thick minimum.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- · Gold wire must be used for connections.
- Use the die label (XX-YY) for correct orientation.

Block Diagram Showing Additional Capacitors & Output Matching Section for Operation Over 2.7 to 3.5 GHz

Designator	Description	Quantity
C1, C4, C10, C11	CAP, 470pF, 100V, 0603	4
C2, C3	CAP, 100pF, 100V, 0603	2
C5, C6, C8, C9	CAP, 10pF, 100V, 0402	4
C7	CAP, 33uF, 50V, ELECT, MVY, SMD	1
C12, C13	CAP, 10uF, 16V, TANTALUM, SMD	1
R1,R2	RES, 1000hm, 1/16W, 0603	2
Q1	CMPA2735030D	1

Notes:

¹ The input, output and decoupling capacitors should be attached as close as possible to the die-typical distance is 40 to 50 mils.

² The MMIC die and capacitors should be connected with 1 mil gold bond wires.

Typical Performance

Figure 1. - Gain and Input Return Loss vs Frequency of CMPA2735030D $V_{\rm DD}$ = 50 V, $I_{\rm DO}$ = 0.135 A

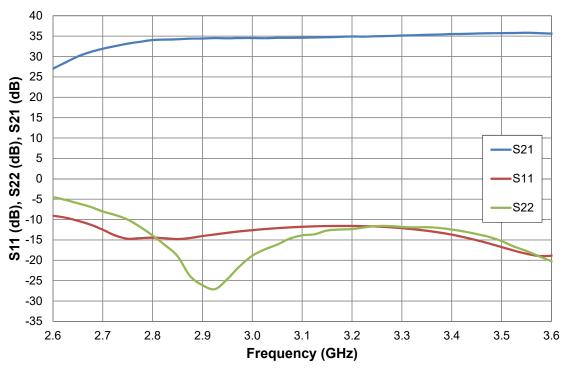
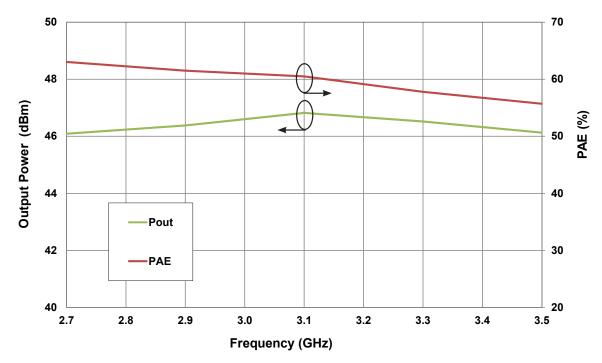
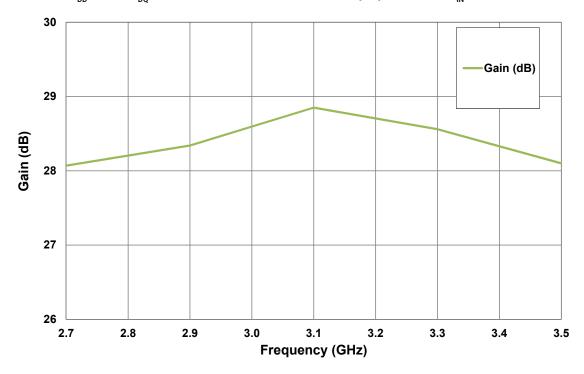



Figure 2. - Output Power and PAE vs Frequency of CMPA2735030D $V_{\rm DD}$ = 50 V, $I_{\rm DQ}$ = 0.135 A, Pulse Width 500 us, Duty Cycle = 10%, $P_{\rm IN}$ =18 dBm



www.cree.com/RF

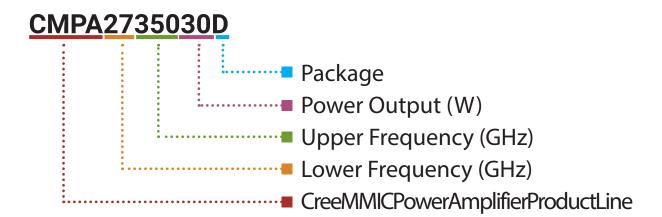

Typical Performance

Figure 3. - Associated Gain vs Frequency of CMPA2735030D V_{DD} = 50 V, I_{DO} = 0.135 A, Pulse Width 500 us, Duty Cycle = 10%, P_{IN} =18 dBm

Part Number System

Parameter	Value	Units
Lower Frequency	2.7	GHz
Upper Frequency	3.5	GHz
Power Output	30	W
Package	Bare Die	-

Table 1.

Note: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Product Ordering Information

Order Number	Description	Unit of Measure
CMPA2735030D	GaN MMIC	Each

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639