

UF3N170400B7S

Part Number	Package	Marking
UF3N170400B7S	D ² PAK-7L	UF3N170400B7S

1700V-400m Ω SiC Normally-on JFET

Preliminary, February 2020

Description

UnitedSiC offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{\rm DS(ON)}$) and gate charge ($Q_{\rm G}$) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{\rm DS(ON)}$ at $V_{\rm GS}$ = 0 V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Features

- \bullet Typical on-resistance $R_{DS(on),typ}$ of $400 m\Omega$
- Voltage controlled
- Maximum operating temperature of 175°C
- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Typical applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		1700	V
Gate-source voltage	V_{GS}	DC	-20 to +3	V
		AC ¹	-30 to +20	V
Continuous drain current ²	I _D	T _C = 25°C	6.8	Α
		T _C = 100°C	5.1	Α
Pulsed drain current ³	I _{DM}	T _C = 25°C	16	Α
Power dissipation	P _{tot}	T _C = 25°C	68	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J , T_{STG}		-55 to 175	°C
Reflow soldering temperature	T_{solder}	reflow MSL 3	260	°C

- 1. +20V AC rating applies for turn-on pulses <200ns applied with external $R_{\rm G}$ > $1\Omega.$
- 2. Limited by $T_{\text{\scriptsize J,max}}$
- 3. Pulse width t_p limited by $T_{J,max}$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
			Min	Тур	Max	Offics
Thermal resistance, junction-to-case	$R_{ heta$ JC			1.7	2.2	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

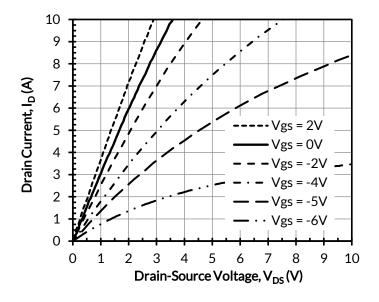
Typical Performance - Static

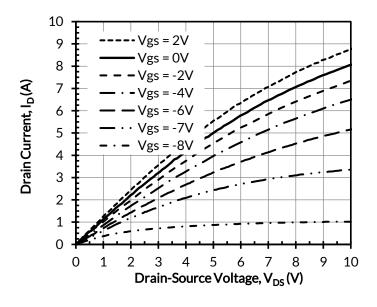
Parameter	Symbol	Test Conditions	Value			Unito
			Min	Тур	Max	Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =-20V, I_D =0.3mA	1700			V
Total drain leakage current	I _{DSS}	V _{DS} =1700V, V _{GS} =-20V, T _J =25°C		2.2	60	μΑ
		V _{DS} =1700V, V _{GS} =-20V, T _J =175°C		9		
Total gate leakage current	I _{GSS}	V _{GS} =-20V, T _J =25°C		0.15	6	μА
		V _{GS} =-20V, T _J =175°C		0.8		μА
Drain-source on-resistance	R _{DS(on)}	V_{GS} =2V, I_D =5A, T_J =25°C		350		mΩ
		V _{GS} =0V, I _D =5A, T _J =25°C		400	500	
		V _{GS} =2V, I _D =5A, T _J =175°C		928		
		V _{GS} =0V, I _D =5A, T _J =175°C		1040		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =4.5mA	-14	-9.5	-6	V
Gate resistance	R_{G}	f=1MHz, open drain		5		Ω

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions -	Value			Units
			Min	Тур	Max	Units
Input capacitance	C_{iss}	- V _{DS} =100V, V _{GS} =-20V - f=100kHz		225		
Output capacitance	C_{oss}			22		pF
Reverse transfer capacitance	C_{rss}	1-100KHZ		18		
Effective output capacitance, energy related	$C_{oss(er)}$	V_{DS} =0V to 1200V, V_{GS} =-20V		11.4		pF
C _{OSS} stored energy	E_{oss}	V _{DS} =1200V, V _{GS} =-20V		8.2		μJ
Total gate charge	Q_{G}	V _{DS} =1200V, I _D =5A,		30		nC
Gate-drain charge	Q_{GD}	$V_{DS} = 1200 \text{ V}, V_{D} = 3\text{ A},$ $V_{GS} = -18 \text{ V to } 0\text{ V}$		17		
Gate-source charge	Q_{GS}	VGS 10V 10 0V		5		
Turn-on delay time	$t_{d(on)}$			5		ns
Rise time	t_r	V_{DS} =1200V, I_{D} =5A, Gate		19		
Turn-off delay time	$t_{d(off)}$	Driver =-18V to 0V, $R_G=1\Omega$, Inductive Load, FWD: $2x$ UJ3D1210TS in series $T_I=25^{\circ}C$		9		
Fall time	t_f			37		
Turn-on energy	E _{ON}			125		μЈ
Turn-off energy	E _{OFF}			38		
Total switching energy	E_TOTAL			163		
Turn-on delay time	t _{d(on)}	$V_{DS} = 1200V, I_{D} = 5A, Gate$ $Driver = -18V to 0V,$ $R_{G} = 1\Omega,$ $Inductive Load,$ $FWD: 2x UJ3D1210TS$ $in series,$ $T_{J} = 150^{\circ}C$		5		- ns
Rise time	t_r			16		
Turn-off delay time	$t_{d(off)}$			8		
Fall time	t_f			34		
Turn-on energy	E _{ON}			114		
Turn-off energy	E _{OFF}			31		μЈ
Total switching energy	E_TOTAL			145		

10




Typical Performance Diagrams

9 8 Drain Current, I_D (A) 7 6 -- Vgs = 2V 5 • Vgs = 0V 4 - Vgs = -2V 3 Vgs = -4V2 Vgs = -6V1 Vgs = -7V0 1 2 10 Drain-Source Voltage, V_{DS} (V)

Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, $tp < 250\mu s$

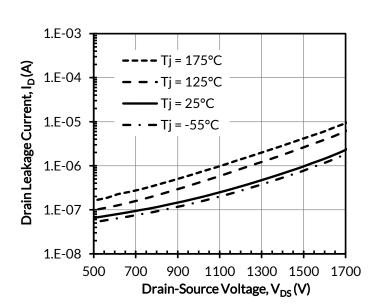
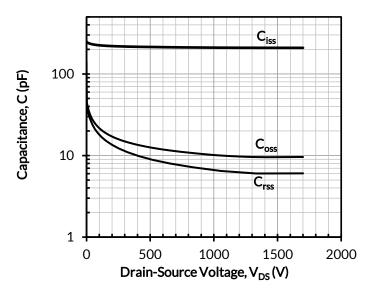


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Typical drain-source leakage at V_{GS} = -20V



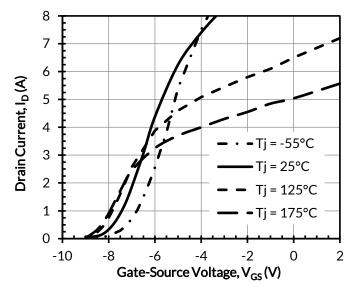
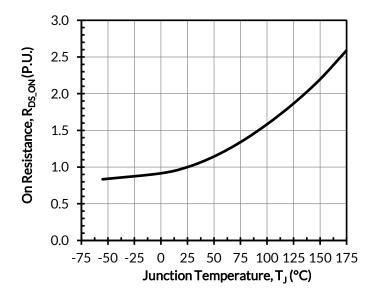



Figure 5. Typical capacitances at f = 100kHz and $V_{GS} = -20V$

Figure 6. Typical transfer characteristics at V_{DS} = 5V

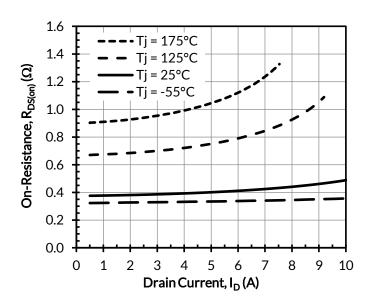
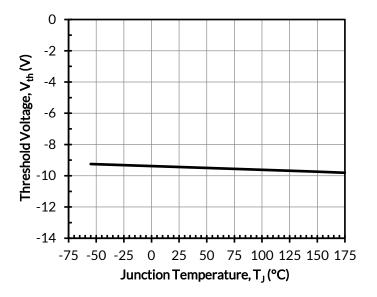


Figure 7. Normalized on-resistance vs. temperature at V_{GS} = 0V and I_D = 5A

Figure 8. Typical drain-source on-resistances at $V_{GS} = 0V$



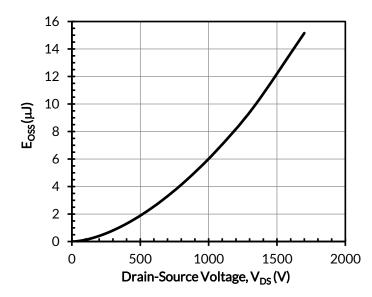
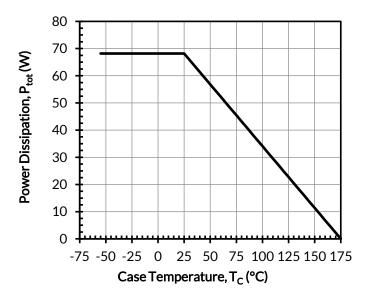



Figure 9. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 4.5mA

Figure 10. Typical stored energy in C_{OSS} at V_{GS} = -20V

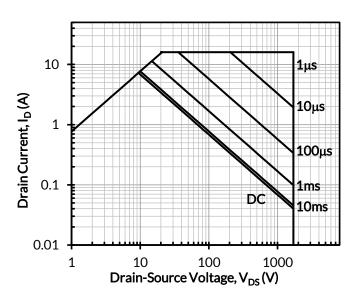
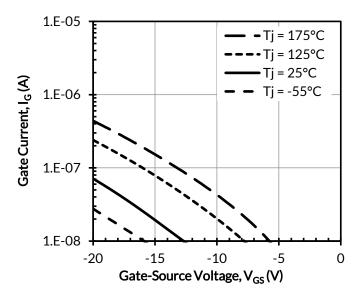


Figure 11. Total power Dissipation

Figure 12. Safe operation area at T_C =25°C, Parameter t_p



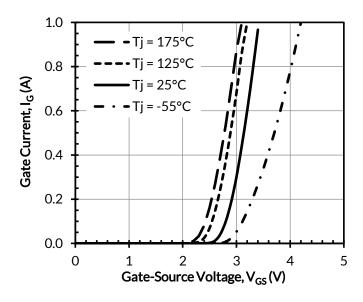
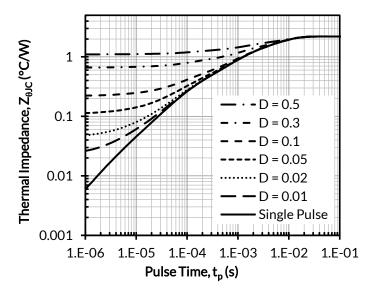



Figure 13. Typical gate leakage at $V_{DS} = 0V$

Figure 14. Typical gate forward current at $V_{DS} = 0V$

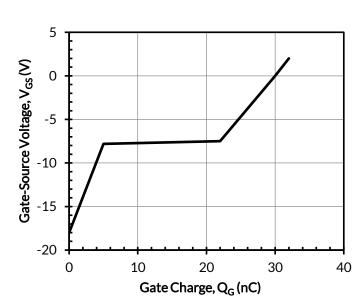
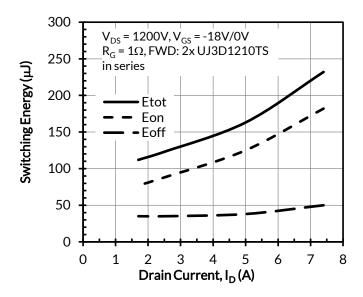


Figure 15. Maximum transient thermal impedance

Figure 16. Typical gate charge at V_{DS} = 1200V and I_{D} = 5A



350 Etot 300 Eon Switching Energy (μJ) **Eoff** 250 200 150 $V_{DS} = 1200V, V_{GS} = -18V/0V$ $I_{D} = 5A, T_{J} = 25^{\circ}C$ 100 FWD: 2x UJ3D1210TS in series 50 0 5 10 15 20 0 25 Gate Resistor $R_G(\Omega)$

Figure 17. Clamped inductive switching energy vs. drain current at $T_J = 25$ °C

Figure 18. Clamped inductive switching energy vs. gate resistor R_{G}

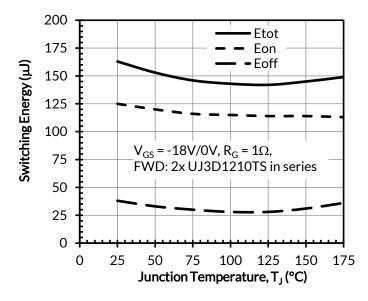


Figure 19. Clamped inductive switching energy vs. junction temperature at V_{DS} = 1200V and I_{D} = 5A

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.