
Applicability

This document applies to the part numbers of STM32L05xxx/L06xxx devices and the device variants as stated in this page.

It gives a summary and a description of the device errata, with respect to the device datasheet and reference manual RM0367/
RM0376/RM0377.

Deviation of the real device behavior from the intended device behavior is considered to be a device limitation. Deviation of the
description in the reference manual or the datasheet from the intended device behavior is considered to be a documentation
erratum. The term “errata” applies both to limitations and documentation errata.

Table 1. Device summary

Reference Part numbers

STM32L051x6/8 STM32L051C6, STM32L051K6, STM32L051R6, STM32L051T6,STM32L051C8, STM32L051K8,
STM32L051R8, STM32L051T8

STM32L052x6/8 STM32L052C6, STM32L052K6, STM32L052R6, STM32L052T6, STM32L052C8, STM32L052K8,
STM32L052R8, STM32L052T8

STM32L053x6/8 STM32L053C6, STM32L053R6, STM32L053C8, STM32L053R8

STM32L062x8 STM32L062C8,STM32L062K8, STM32L062T8

STM32L063x8 STM32L063C8 STM32L063R8

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1) REV_ID(2)

STM32L051xx/52xx/53xx/62xx/63xx A 0x1000

STM32L051xx/52xx/53xx/62xx/63xx Z 0x1008

STM32L051xx/52xx/53xx/62xx/63xx Y 0x1018

STM32L051xx/52xx/53xx/62xx/63xx 1, P, Q, X 0x1038

1. Refer to the device datasheet for how to identify this code on different types of package.
2. REV_ID[15:0] bitfield of DBG_IDCODE register.

STM32L05xxx/L06xxx device errata

 STM32L05xxx STM32L06xxx

Errata sheet

ES0251 - Rev 5 - December 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

1 Summary of device errata

The following table gives a quick reference to the STM32L05xxx/L06xxx device limitations and their status:
A = limitation present, workaround available
N = limitation present, no workaround available
P = limitation present, partial workaround available
“-” = limitation absent
Applicability of a workaround may depend on specific conditions of target application. Adoption of a workaround
may cause restrictions to target application. Workaround for a limitation is deemed partial if it only reduces the
rate of occurrence and/or consequences of the limitation, or if it is fully effective for only a subset of instances on
the device or in only a subset of operating modes, of the function concerned.

Table 3. Summary of device limitations

Function Section Limitation

Status

Rev.
A

Rev.
Z

Rev.
Y

Rev.
1, P,
Q, X

System

2.1.1 Exiting Stop mode on a reset event is not possible when HSI16 is
the clock system and it is selected as wakeup clock A - - -

2.1.2 Protection level1 does not work N - - -

2.1.3 LSE bypass feature cannot be used in Standby mode N - - -

2.1.4 Delay after an RCC peripheral clock enabling A A A A

2.1.5 Flash memory wakeup issue when waking up from Stop or Sleep
with Flash in power-down mode A A - -

2.1.6 Unexpected system reset when waking up from Stop mode with
regulator in low-power mode A A - -

2.1.7 I2C and USART cannot wake up the device from Stop mode N N N -

2.1.8 LDM, STM, PUSH and POP not allowed in IOPORT bus N N N N

2.1.9 BOOT_MODE bits do not reflect the selected boot mode N N N -

GPIO

2.2.1 Writing in byte mode to the GPIOx_OTYPER register does not
work A A A A

2.2.2 PA4 and PA5 cannot be redirected to comparator 2 minus input N - - -

2.2.3 PB14 output speed configuration interferes with PB13 N - - -

2.2.4 PB6 and PB7 AF1 alternate functions not available when LCD
controller is enabled N N - -

DMA 2.3.1 DMA disable failure and error flag omission upon simultaneous
transfer error and global flag clear A A A A

ADC

2.4.4 ADC transfer curve issue at VREF+/2 when VREF+ < VDDA N - - -

2.4.1 Overrun flag is not set if EOC reset coincides with new
conversion end P P P P

2.4.2 Writing ADC_CFGR1 register while ADEN bit is set resets
RES[1:0] bitfield A A A A

2.4.3 Out-of-threshold value is not detected in AWD1 Single mode A A A A

2.4.5 Incorrect first ADC conversion result when delay between two
consecutive conversions is too long A A - -

DAC
2.5.1 DMA request not automatically cleared by clearing DMAEN A A A A

2.5.2 DMA underrun flag not set when an internal trigger is detected on
the clock cycle of the DMA request acknowledge N N N N

 STM32L05xxx STM32L06xxx
Summary of device errata

ES0251 - Rev 5 page 2/34

Function Section Limitation

Status

Rev.
A

Rev.
Z

Rev.
Y

Rev.
1, P,
Q, X

COMP
2.6.1 COMP1_CSR and COMP2_CSR lock bit reset by SYSCFGRST

bit in RCC_APB2RSTR register N N N N

2.6.2 Output of comparator 2 cannot be internally connected to input 1
of low-power timer A A - -

TSC 2.7.2 Touch sensing channels not available in dynamic voltage range 3 A A A A

TIM

2.9.1 PWM re-enabled in automatic output enable mode despite of
system break P P P P

2.9.3 Consecutive compare event missed in specific conditions N N N N

2.9.4 Output compare clear not working with external counter reset P P P P

LPTIM

2.10.1 Device may remain stuck in LPTIM interrupt when entering Stop
mode A A A A

2.10.2 Device may remain stuck in LPTIM interrupt when clearing event
flag P P P P

2.10.3 LPTIM events and PWM output are delayed by 1 kernel clock
cycle P P P P

RTC and
TAMP

2.11.1 Spurious tamper detection when disabling the tamper channel N N N N

2.11.2 RTC calendar registers are not locked properly A A A A

2.11.3 RTC interrupt can be masked by another RTC interrupt A A A A

2.11.4 Calendar initialization may fail in case of consecutive INIT mode
entry A A A A

2.11.5 Alarm flag may be repeatedly set when the core is stopped in
debug N N N N

2.11.6 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode A A A A

I2C

2.12.1 10-bit master mode: new transfer cannot be launched if first part
of the address is not acknowledged by the slave A A A A

2.12.3 Wrong data sampling when data setup time (tSU;DAT) is shorter
than one I2C kernel clock period P P P P

2.12.4 Spurious bus error detection in master mode A A A A

2.12.5 Last-received byte loss in reload mode P P P P

2.12.6 Spurious master transfer upon own slave address match P P P P

2.12.8 OVR flag not set in underrun condition N N N N

2.12.9 Transmission stalled after first byte transfer A A A A

USART

2.13.1 Non-compliant sampling for NACK signal from smartcard N N N N

2.13.2 Break request preventing TC flag from being set A A A A

2.13.3 RTS is active while RE = 0 or UE = 0 A A A A

2.13.4 Receiver timeout counter wrong start in two-stop-bit configuration A A A A

2.13.5 Data corruption due to noisy receive line N N N N

LPUART

2.14.1 Break request preventing TC flag from being set A A A A

2.14.2 RTS is active while RE = 0 or UE = 0 A A A A

2.14.3 Receiver timeout counter wrong start in two-stop-bit configuration A A A A

2.14.4 Data corruption due to noisy receive line N N N N

SPI2S 2.15.1 BSY bit may stay high when SPI is disabled A A A A

 STM32L05xxx STM32L06xxx
Summary of device errata

ES0251 - Rev 5 page 3/34

Function Section Limitation

Status

Rev.
A

Rev.
Z

Rev.
Y

Rev.
1, P,
Q, X

SPI2S

2.15.2 BSY bit may stay high at the end of data transfer in slave mode A A A A

2.15.3 Corrupted last bit of data and/or CRC, received in master mode
with delayed SCK feedback A A A A

2.15.4 SPI CRC corruption upon DMA transaction completion by another
peripheral P P P P

2.15.5 In I2S slave mode, enabling I2S while WS is active causes
desynchronization A A A A

2.15.6 Wrong CRC in full-duplex mode handled by DMA with imbalanced
setting of data counters A A A A

2.15.8 Anticipated communication upon SPI transit from slave receiver
to master A A A A

USB

2.16.2 ESOF interrupt timing desynchronized after resume signaling A A A A

2.16.3 Incorrect CRC16 in the memory buffer N N N N

2.16.4 USB BCD functionality limited below –20 °C N N N N

The following table gives a quick reference to the documentation errata.

Table 4. Summary of device documentation errata

Function Section Documentation erratum

DMA 2.3.2 Byte and half-word accesses not supported

TIM 2.9.2 TRGO and TRGO2 trigger output failure

I2C
2.12.2 Wrong behavior in Stop mode

2.12.7 START bit is cleared upon setting ADDRCF, not upon address match

RNG 2.8.1 RNG clock error does not stop random numbers

SPI2S 2.15.7 CRC error in SPI slave mode if internal NSS changes before CRC transfer

TSC 2.7.1 Inhibited acquisition in short transfer phase configuration

USB 2.16.1 Possible packet memory overrun/underrun at low APB frequency

 STM32L05xxx STM32L06xxx
Summary of device errata

ES0251 - Rev 5 page 4/34

2 Description of device errata

The following sections describe limitations of the applicable devices with Arm® core and provide workarounds if
available. They are grouped by device functions.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2.1 System

2.1.1 Exiting Stop mode on a reset event is not possible when HSI16 is the clock system and it is
selected as wakeup clock

Description

The Stop mode can be entered whatever the system clock. The system clock after exiting from Stop mode is
selected through the STOPWUCK control bit in RCC_CFGR register:
• when STOPWUCK = 0: the internal MSI oscillator (64 KHz to 4 MHz) is selected.
• when STOPWUCK = 1: the internal HSI16 (16 MHz) oscillator is selected.
The microcontroller is blocked (no system clock is selected) when the following events occur:
• Stop mode is entered when the system clock is HSI16 and STOPWUCK bit is set to 1 (wakeup clock is

HSI16)
• and Stop mode is exited when a reset occurs
Only a power-on reset can restart the microcontroller.

Workaround

To avoid blocking the STM32L063x8 microcontroller if a reset occurs in Stop mode, select the MSI clock
instead of HSI16 before entering Stop mode. Follow the sequence below if HSI16 is selected as system clock,
STOPWUCK =1 and a Stop entry is requested by the application:
1. Switch to MSI.
2. Enter Stop mode.
3. When a reset occurs, the microcontroller is reset.
4. Code execution restarts normally when exiting from Stop mode.

2.1.2 Protection level1 does not work

Description

A mass erase is performed when the protection level is changed from level1 to level0. This mass erase consists
in the following operations:
• Erasing the data EEPROM and Flash program memory area
• Erasing the protection option byte (RDPROT)
• Programming the targeted level (level0) in RDPROT.
Erase and write operations are not efficient when a mass erase is executed. As a result, the complete erasing
of the data EEPROM and Flash program memory is not guaranteed as well as the programming of RDPROT to
level0. After several mass erase operations, the RDPROT value is finally programmed with level0 but the total
erasing of the data EEPROM and Flash program memory is still not guaranteed.

Note: The other erase and write operations are not impacted by this issue.

Workaround

None.

2.1.3 LSE bypass feature cannot be used in Standby mode

 STM32L05xxx STM32L06xxx
Description of device errata

ES0251 - Rev 5 page 5/34

Description

The external clock selected in LSE bypass mode to drive the OSC32_IN pin is no more effective in Standby
mode.
The LSE bypass mode is selected through LSEBYP and LSEON bits of RCC_CSR register.
This issue does not occur when the LSE clock is switched on and configured to be used with an crystal or ceramic
resonator (LSEBYP bit = 0 and LSEON bit = 1 in RCC_CSR register).

Workaround

None.

2.1.4 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling should be taken into
account in order to manage the peripheral read/write from/to registers.
This delay depends on the peripheral mapping:
• If the peripheral is mapped on AHB: the delay should be equal to 1 AHB clock cycle after the clock enable bit

is set in the hardware register.
For I/O peripheral, the delay should be equal to 1 AHB clock cycle after the clock enable bit is set in the
hardware register (only applicable to write accesses).

• If the peripheral is mapped on APB: No delay is necessary (no limitation).

Workaround

• Enable the peripheral clock some time before the peripheral read/write register is required.
• For AHB peripheral (including I/O), insert a dummy read operation to the corresponding register.

2.1.5 Flash memory wakeup issue when waking up from Stop or Sleep with Flash in power-down
mode

Description

When an external wakeup event (EXTI) occurs in a narrow time window around low-power mode entry (Stop or
Sleep mode with Flash memory in power-down state), the Flash wakeup time may be increased. As a result, the
first data read or instruction fetch from Flash may be incorrect.
The probability that this issue occurs is very low since it may happen only during a very narrow time
window.

Workaround

Three workarounds are available:
• Do not put the Flash memory module in power-down mode when entering Sleep or Low-power sleep modes.
• Before entering Stop mode by executing a WFI instruction from RAM, set the RUN_PD bit in the

FLASH_ACR register. After exiting from Stop mode, the Flash memory is automatically powered ON and
you can resume program execution from Flash memory. After wakeup, clear the RUN_PD bit.

• Before entering Stop mode by executing WFI instruction from RAM, set the RUN_PD bit in the FLASH_ACR
register and set the DS_EE_KOFF bit in PWR_CR register. After resuming from Stop mode, the Flash
memory stays in power-down mode. Wake-up the Flash memory by clearing FLASH_ACR_RUN_PD bit and
return to code execution.

2.1.6 Unexpected system reset when waking up from Stop mode with regulator in low-power mode

 STM32L05xxx STM32L06xxx
System

ES0251 - Rev 5 page 6/34

Description

When the device returns to Run mode after waking up from Stop mode while the internal voltage regulator is
configured to switch to low-power mode in Stop mode (LPSDSR = 1 in PWR_CR register), an unexpected system
reset may occur if the following conditions are met:
• The internal regulator is set to Range 2 or Range 3 before entering Stop mode.
• VDD power supply is below 2.7 V.

The probability that this issue occurs is very low since it may happen only for very narrow supply voltage
windows which vary from one device to another.
This reset is internal only and does not affect the NRST pin state and the flags in the Control/status register
(RCC_CSR).

Workaround

Two workarounds are possible:
• Enter Stop mode with the internal voltage regulator set to main mode (LPSDSR=0 in PWR_CR).
• Set the internal voltage regulator to Range1 before entering Stop mode.

2.1.7 I2C and USART cannot wake up the device from Stop mode

Description

When the microcontroller is in Stop mode with the regulator in low-power mode, an unexpected system reset may
occur if the I2C or the USART attempts to wake up the device.
This limitation also impacts LPUART when the HSI16 is used as clock source instead of LSE.
This reset is internal only and does not affect the NRST pin state and the flags in the Control/status register
(RCC_CSR).
The lower the VDD value, the more often this unpredictable behavior may occur.

Workaround

None.
It is recommended to avoid using the USART and I2C wakeup from Stop mode features. To disable them, keep
WUPEN bit in I2C_CR1 and UESM bit in USARTx_CR1 at 0.
Two solutions are then possible to perform I2C or USART communications:
• Put the microcontroller in a mode different from Stop (or Standby mode) before initiating communications.
• Replace Stop mode with Stop mode plus regulator in main mode by keeping LPSDSR bit of PWR_CR set to

0.

2.1.8 LDM, STM, PUSH and POP not allowed in IOPORT bus

Description

The instructions Load Multiple (LM), Store Multiple (STM), PUSH and POP fail when the address points to the
IOPORT bus memory area (address range = 0x5XXX XXXX).

Workaround

None.

2.1.9 BOOT_MODE bits do not reflect the selected boot mode

Description

The BOOT_MODE[1:0] bits of the SYSCFG_CFGR1 register remain set to ‘0’ while they should reflect the boot
mode selected by the boot pins.

 STM32L05xxx STM32L06xxx
System

ES0251 - Rev 5 page 7/34

Workaround

None.

2.2 GPIO

2.2.1 Writing in byte mode to the GPIOx_OTYPER register does not work

Description

The OTYPER[15:8] bits in GPIOx_OTYPER register cannot be written in byte mode. This is valid for A, B, C, D
and H ports.
However, the following operations are possible:
• OTYPER[15:8] bits can be written in half-word and word mode
• OTYPER[7:0] bits can be written in byte, half-word or word mode

Workaround

Program GPIOx_OTYPER bits in half-word or word mode.

2.2.2 PA4 and PA5 cannot be redirected to comparator 2 minus input

Description

PA4 and PA5 cannot be redirected to comparator 2 minus input. This is done by setting COMP2_INN_SEL bit of
COMP2_CSR register: when COMP2_INN_SEL = 010 or 011 (respectively PA4 or PA5), the negative input of the
comparator 2 is left floating.
Only PA2, PB3, VREFINT, 1/2VREFINT, 1/4VREFINT and 3/4VREFINT can be selected as comparator 2 minus
input.

Note: The positive input of the comparator 2 is not impacted.

Workaround

None.

2.2.3 PB14 output speed configuration interferes with PB13

Description

Two GPIOB_OSPEEDR control bits (OSPEEDy[1:0], where y = 0 to 15) can be used to configure port B output
speed.These bits are written by software (see Table 5).

Table 5. Port B output speed configuration

OSPEEDRy[1:0] y= 0 to 15 Port output speed

00 Very low speed

01 Low speed

10 Medium speed

11 High speed

When OSSPEED13[1] corresponding to PB13 is modified, OSSPEED14[1] of PB14 also changes. Refer to
Table 6 for the corresponding truth table.

 STM32L05xxx STM32L06xxx
GPIO

ES0251 - Rev 5 page 8/34

Table 6. PB13/PB14 truth table

OSPEEDR13[1] / OSPEEDR14[0] PB14 I/O speed

00 Very low speed

01 Low speed

10 Medium speed

The values in pink shows OSPEED13[1] dependency versus
OSPEED14[1].1 High speed

Note: The values in bold shows OSPEED13[1] dependency versus OSPEED14[1].

Workaround

None.

2.2.4 PB6 and PB7 AF1 alternate functions not available when LCD controller is enabled

Description

When the LCD controller is enabled, the following GPIOs cannot be used anymore for the following functions:
• PB6 as I2C1_SCL
• PB7 as I2C1_SDA

Workaround

None.

2.3 DMA

2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag
clear

Description

Upon a data transfer error in a DMA channel x, both the specific TEIFx and the global GIFx flags are raised and
the channel x is normally automatically disabled. However, if in the same clock cycle the software clears the GIFx
flag (by setting the CGIFx bit of the DMA_IFCR register), the automatic channel disable fails and the TEIFx flag is
not raised.
This issue does not occur with ST's HAL software that does not use and clear the GIFx flag when the channel is
active.

Workaround

Do not clear GIFx flags when the channel is active. Instead, use HTIFx, TCIFx, and TEIFx specific event flags and
their corresponding clear bits.

2.3.2 Byte and half-word accesses not supported

Description

Some reference manual revisions may wrongly state that the DMA registers are byte- and half-word-accessible.
Instead, the DMA registers must always be accessed through aligned 32-bit words. Byte or half-word write
accesses cause an erroneous behavior.
ST's low-level driver and HAL software only use aligned 32-bit accesses to the DMA registers.
This is a description inaccuracy issue rather than a product limitation.

 STM32L05xxx STM32L06xxx
DMA

ES0251 - Rev 5 page 9/34

Workaround

No application workaround is required.

2.4 ADC

2.4.1 Overrun flag is not set if EOC reset coincides with new conversion end

Description

If the EOC flag is cleared by an ADC_DR register read operation or by software during the same APB cycle in
which the data from a new conversion are written in the ADC_DR register, the overrun event duly occurs (which
results in the loss of either current or new data) but the overrun flag (OVR) may stay low.

Workaround

Clear the EOC flag, by performing an ADC_DR read operation or by software within less than one ADC
conversion cycle period from the last conversion cycle end, in order to avoid the coincidence with the end of
the new conversion cycle.

2.4.2 Writing ADC_CFGR1 register while ADEN bit is set resets RES[1:0] bitfield

Description

Modifying the ADC_CFGR1 register while ADC is enabled (ADEN set in ADC_CR) and no conversion is ongoing
(ADSTART cleared in ADC_CR) resets RES[1:0] to 00 whatever the bitfield previous value.

Workaround

Apply the following sequence:
1. Set ADDIS to disable the ADC, and wait until ADEN is cleared.
2. Program the ADC_CFGR1 register according to the application requirements.
3. Set ADEN bit.

2.4.3 Out-of-threshold value is not detected in AWD1 Single mode

Description

AWD1 analog watchdog does not detect that the result of a converted channel has reached the programmed
threshold when the ADC operates in Single mode, performs a sequence of conversions, and one of the converted
channels other than the first one is monitored by the AWD1 analog watchdog.

Workaround

Apply one of the following measures:
• Use a conversion sequence of one single channel.
• Configure the monitored channel as the first one of the sequence.

2.4.4 ADC transfer curve issue at VREF+/2 when VREF+ < VDDA

Description

When VREF+ is lower than VDDA, and only in this case, the data MSB is forced to 1 just before VIN reaches
VREF+/2. As a result, the data transfer curve shows a discrepancy around VREF+/2 (see Figure 1).

 STM32L05xxx STM32L06xxx
ADC

ES0251 - Rev 5 page 10/34

Figure 1. Data transfer curve

MSB is forced to 1
ΔV before VR/2

After VR/2 graph follows
the expected curve

Code

VR/2 VR VIN

1. The transfer curve behaves as expected when VIN is strictly lower or higher that VREF+/2.

Workaround

None.

2.4.5 Incorrect first ADC conversion result when delay between two consecutive conversions is too
long

Description

When the ADC performs the first conversion or when the delay between two consecutive ADC conversions
is longer than 0.5 ms, the result of the conversion may be incorrect. The same issue occurs when the delay
between the calibration and the first conversion is longer than 0.5 ms. This issue is independent from the status of
ADEN bit in the control register (ADC_CR).

Workaround

For the first conversion, or when the delay between two ADC conversions is longer than the limit specified above,
perform two ADC consecutive conversions in single, scan or continuous mode:
• Dummy conversion of any ADC channel. This conversion should not be taken into account by the

application.
• Conversion of the targeted channel that will be kept as the ADC result. Subsequent conversions do not need

particular management unless the ADC conversion stops for more than 0.5 ms.

2.5 DAC

2.5.1 DMA request not automatically cleared by clearing DMAEN

Description

Upon an attempt to stop a DMA-to-DAC transfer, the DMA request is not automatically cleared by clearing the
DAC channel bit of the DAC_CR register (DMAEN) or by disabling the DAC clock.

 STM32L05xxx STM32L06xxx
DAC

ES0251 - Rev 5 page 11/34

If the application stops the DAC operation while the DMA request is pending, the request remains pending while
the DAC is reinitialized and restarted, with the risk that a spurious DMA request is serviced as soon as the DAC is
enabled again.

Workaround

Apply the following sequence to stop the current DMA-to-DAC transfer and restart the DAC:
1. Check if DMAUDR bit is set in DAC_CR.
2. Clear the DAC channel DMAEN bit.
3. Disable the DAC clock.
4. Reconfigure the DAC, DMA and the triggers.
5. Restart the application.

2.5.2 DMA underrun flag not set when an internal trigger is detected on the clock cycle of the DMA
request acknowledge

Description

When the DAC channel operates in DMA mode (DMAEN of DAC_CR register set), the DMA channel underrun
flag (DMAUDR of DAC_SR register) fails to rise upon an internal trigger detection if that detection occurs during
the same clock cycle as a DMA request acknowledge. As a result, the user application is not informed that an
underrun error occurred.
This issue occurs when software and hardware triggers are used concurrently to trigger DMA transfers.

Workaround

None.

2.6 COMP

2.6.1 COMP1_CSR and COMP2_CSR lock bit reset by SYSCFGRST bit in RCC_APB2RSTR register

Description

When the SYSCFGRST bit of RCC_APB2RSTR register is set, the COMP1_CSR and COMP2_CSR register
contents are reset even if COMP1LOCK and COMP2LOCK bits are set in COMP1_CSR and the COMP2_CSR
register, respectively.

Workaround

None.
For security reasons, it is recommended to avoid using SYSCFGRST bit of RCC_APB2RSTR when
COMP1LOCK and/or COMP2LOCK bits are set.

2.6.2 Output of comparator 2 cannot be internally connected to input 1 of low-power timer

Description

The COMP2LPTIMIN1 bit (bit 13 of COMP2_CSR register) which internally connects COMP2VALUE to the
low-power timer (LPTIM) input 1 has no effect.

Workaround

Connect COMP2_OUT output to an external pin and configure LPTIM_IN1 on an external pin, then connect both
pins together externally.

 STM32L05xxx STM32L06xxx
COMP

ES0251 - Rev 5 page 12/34

2.7 TSC

2.7.1 Inhibited acquisition in short transfer phase configuration

Description

Some revisions of the reference manual may omit the information that the following configurations of the TSC_CR
register are forbidden:
• The PGPSC[2:0] bitfield set to 000 and the CTPL[3:0] bitfield to 0000 or 0001
• The PGPSC[2:0] bitfield set to 001 and the CTPL[3:0] bitfield to 0000
Failure to respect this restriction leads to an inhibition of the acquisition.
This is a documentation inaccuracy issue rather than a product limitation.

Workaround

No application workaround is required.

2.7.2 Touch sensing channels not available in dynamic voltage range 3

Description

The touch sensing controller, that manages capacitive sensing functionality, is not efficient when range 3 is
selected as dynamic voltage scaling.

Workaround

To perform touch sensing detection in your application, select range 2 or 1 as dynamic voltage scaling.

2.8 RNG

2.8.1 RNG clock error does not stop random numbers

Description

Some revisions of the reference manual may contain the following wrong statements to ignore:
• If the RNG clock frequency is too low, the RNG stops generating random numbers.
• The RNG operates only when the CECS flag is set to 0.
This is a documentation issue rather than a device limitation.

Workaround

No application workaround is required or applicable.

2.9 TIM

2.9.1 PWM re-enabled in automatic output enable mode despite of system break

Description

In automatic output enable mode (AOE bit set in TIMx_BDTR register), the break input can be used to do a
cycle-by-cycle PWM control for a current mode regulation. A break signal (typically a comparator with a current
threshold) disables the PWM output(s) and the PWM is re-armed on the next counter period.
However, a system break (typically coming from the CSS Clock security System) is supposed to stop definitively
the PWM to avoid abnormal operation (for example with PWM frequency deviation).
In the current implementation, the timer system break input is not latched. As a consequence, a system break
indeed disables the PWM output(s) when it occurs, but PWM output(s) is (are) re-armed on the following counter
period.

 STM32L05xxx STM32L06xxx
TSC

ES0251 - Rev 5 page 13/34

Workaround

Preferably, implement control loops with the output clear enable function (OCxCE bit in the TIMx_CCMR1/CCMR2
register), leaving the use of break circuitry solely for internal and/or external fault protection (AOE bit reset).

2.9.2 TRGO and TRGO2 trigger output failure

Description

Some reference manual revisions may omit the following information.
The timers can be linked using ITRx inputs and TRGOx outputs. Additionally, the TRGOx outputs can be used as
triggers for other peripherals (for example ADC). Since this circuitry is based on pulse generation, care must be
taken when initializing master and slave peripherals or when using different master/slave clock frequencies:
• If the master timer generates a trigger output pulse on TRGOx prior to have the destination peripheral clock

enabled, the triggering system may fail.
• If the frequency of the destination peripheral is modified on-the-fly (clock prescaler modification), the

triggering system may fail.
As a conclusion, the clock of the slave timer or slave peripheral must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are being received from the master timer.
This is a documentation issue rather than a product limitation.

Workaround

No application workaround is required or applicable as long as the application handles the clock as indicated.

2.9.3 Consecutive compare event missed in specific conditions

Description

Every match of the counter (CNT) value with the compare register (CCR) value is expected to trigger a compare
event. However, if such matches occur in two consecutive counter clock cycles (as consequence of the CCR
value change between the two cycles), the second compare event is missed for the following CCR value
changes:
• in edge-aligned mode, from ARR to 0:

– first compare event: CNT = CCR = ARR
– second (missed) compare event: CNT = CCR = 0

• in center-aligned mode while up-counting, from ARR-1 to ARR (possibly a new ARR value if the period is
also changed) at the crest (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = (ARR-1)
– second (missed) compare event: CNT = CCR = ARR

• in center-aligned mode while down-counting, from 1 to 0 at the valley (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = 1
– second (missed) compare event: CNT = CCR = 0

This typically corresponds to an abrupt change of compare value aiming at creating a timer clock single-cycle-
wide pulse in toggle mode.
As a consequence:
• In toggle mode, the output only toggles once per counter period (squared waveform), whereas it is expected

to toggle twice within two consecutive counter cycles (and so exhibit a short pulse per counter period).
• In center mode, the compare interrupt flag does note rise and the interrupt is not generated.

Note: The timer output operates as expected in modes other than the toggle mode.

Workaround

None.

 STM32L05xxx STM32L06xxx
TIM

ES0251 - Rev 5 page 14/34

2.9.4 Output compare clear not working with external counter reset

Description

The output compare clear event (ocref_clr) is not correctly generated when the timer is configured in the following
slave modes: Reset mode, Combined reset + trigger mode, and Combined gated + reset mode.
The PWM output remains inactive during one extra PWM cycle if the following sequence occurs:
1. The output is cleared by the ocref_clr event.
2. The timer reset occurs before the programmed compare event.

Workaround

Apply one of the following measures:
• Use BKIN (or BKIN2 if available) input for clearing the output, selecting the Automatic output enable mode

(AOE = 1).
• Mask the timer reset during the PWM ON time to prevent it from occurring before the compare event (for

example with a spare timer compare channel open-drain output connected with the reset signal, pulling the
timer reset line down).

2.10 LPTIM

2.10.1 Device may remain stuck in LPTIM interrupt when entering Stop mode

Description

This limitation occurs when disabling the low-power timer (LPTIM).
When the user application clears the ENABLE bit in the LPTIM_CR register within a small time window around
one LPTIM interrupt occurrence, then the LPTIM interrupt signal used to wake up the device from Stop mode may
be frozen in active state. Consequently, when trying to enter Stop mode, this limitation prevents the device from
entering low-power mode and the firmware remains stuck in the LPTIM interrupt routine.
This limitation applies to all Stop modes and to all instances of the LPTIM. Note that the occurrence of this issue
is very low.

Workaround

In order to disable a low power timer (LPTIMx) peripheral, do not clear its ENABLE bit in its respective LPTIM_CR
register. Instead, reset the whole LPTIMx peripheral via the RCC controller by setting and resetting its respective
LPTIMxRST bit in RCC_APByRSTRz register.

2.10.2 Device may remain stuck in LPTIM interrupt when clearing event flag

Description

This limitation occurs when the LPTIM is configured in interrupt mode (at least one interrupt is enabled) and
the software clears any flag in LPTIM_ISR register by writing its corresponding bit in LPTIM_ICR register. If the
interrupt status flag corresponding to a disabled interrupt is cleared simultaneously with a new event detection,
the set and clear commands might reach the APB domain at the same time, leading to an asynchronous interrupt
signal permanently stuck high.
This issue can occur either during an interrupt subroutine execution (where the flag clearing is usually done), or
outside an interrupt subroutine.
Consequently, the firmware remains stuck in the LPTIM interrupt routine, and the device cannot enter Stop mode.

 STM32L05xxx STM32L06xxx
LPTIM

ES0251 - Rev 5 page 15/34

Workaround

To avoid this issue, it is strongly advised to follow the recommendations listed below:
• Clear the flag only when its corresponding interrupt is enabled in the interrupt enable register.
• If for specific reasons, it is required to clear some flags that have corresponding interrupt lines disabled in

the interrupt enable register, it is recommended to clear them during the current subroutine prior to those
which have corresponding interrupt line enabled in the interrupt enable register.

• Flags must not be cleared outside the interrupt subroutine.

Note: The proper clear sequence is already implemented in the HAL_LPTIM_IRQHandler in the STM32Cube.

2.10.3 LPTIM events and PWM output are delayed by 1 kernel clock cycle

Description

The compare match event (CMPM), auto reload match event (ARRM), PWM output level and interrupts are
updated with a delay of one kernel clock cycle.
Consequently, it is not possible to generate PWM with a duty cycle of 0% or 100%.
The following waveform gives the example of PWM output mode and the effect of the delay:

LPTIM_ARR 0x0A

0x05 0x06 0x07 0x08 0x09 0x0A 0x00 0x01 0x02

LPTIM_CMP 0x06

ARRM = 1CMPM = 1

LPTIM_CNT

PWM output

Workaround

Set the compare value to the desired value minus 1. For instance in order to generate a compare match when
LPTM_CNT = 0x08, set the compare value to 0x07.

2.11 RTC and TAMP

2.11.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for detecting on the falling edge event (TAMPFLT = 00 and TAMPxTRG =
1) and if the tamper event detection is disabled when the tamper pin is at high level, a false tamper event is
detected.

Workaround

None.

 STM32L05xxx STM32L06xxx
RTC and TAMP

ES0251 - Rev 5 page 16/34

2.11.2 RTC calendar registers are not locked properly

Description

When reading the calendar registers with BYPSHAD = 0, the RTC_TR and RTC_DR registers may not be locked
after reading the RTC_SSR register. This happens if the read operation is initiated one APB clock period before
the shadow registers are updated. This can result in a non-consistency of the three registers. Similarly, the
RTC_DR register can be updated after reading the RTC_TR register instead of being locked.

Workaround

Apply one of the following measures:
• use BYPSHAD = 1 mode (bypass shadow registers), or
• if BYPSHAD = 0, read SSR again after reading SSR/TR/DR to confirm that SSR is still the same, otherwise

read the values again.

2.11.3 RTC interrupt can be masked by another RTC interrupt

Description

One RTC interrupt request can mask another RTC interrupt request if they share the same EXTI configurable line.
For example, interrupt requests from Alarm A and Alarm B or those from tamper and timestamp events are OR-ed
to the same EXTI line (refer to the EXTI line connections table in the Extended interrupt and event controller
(EXTI) section of the reference manual).
The following code example and figure illustrate the failure mechanism: The Alarm A event is lost (fails to
generate interrupt) as it occurs in the failure window, that is, after checking the Alarm A event flag but before the
effective clear of the EXTI interrupt flag by hardware. The effective clear of the EXTI interrupt flag is delayed with
respect to the software instruction to clear it.
Alarm interrupt service routine:
void RTC_Alarm_IRQHandler(void)
{
 CLEAR_ALARM_EXTI(); /* Clear the EXTI line flag for RTC alarms*/
 If(ALRAF) /* Check if Alarm A triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the Alarm A interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process Alarm A event */
 }
 If(ALRBF) /* Check if Alarm B triggered ISR */
 {
 CLEAR_FLAG(ALRBF); /* Clear the Alarm B interrupt pending bit */
 PROCESS_AlarmBEvent(); /* Process Alarm B event */
 }
}

 STM32L05xxx STM32L06xxx
RTC and TAMP

ES0251 - Rev 5 page 17/34

Figure 2. Masked RTC interrupt

Alarm B Flag

Alarm A Flag

EXTI Flag

ISR execution
CLEAR_
ALARM_
EXTI();

If
(ALRA
F)

If (ALRBF)
{
CLEAR_FLAG(ALRBF);
PROCESS_AlarmBEvent();
}

Failure window:
Alarm A Flag is being set after the software checks
its value
Alarm A Flag does not raise EXTI flag because this
one is not yet hardware cleared.

Alarm A is never processed
because no interrupt is generated
through EXTI

Workaround

In the interrupt service routine, apply three consecutive event flag ckecks - source one, source two, and source
one again, as in the following code example:
void RTC_Alarm_IRQHandler(void)
{
 CLEAR_ALARM_EXTI(); /* Clear the EXTI's line Flag for RTC Alarm */
 If(ALRAF) /* Check if AlarmA triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process AlarmA Event */
 }
 If(ALRBF) /* Check if AlarmB triggered ISR */
 {
 CLEAR_FLAG(ALRBF); /* Clear the AlarmB interrupt pending bit */
 PROCESS_AlarmBEvent(); /* Process AlarmB Event */
 }
 If(ALRAF) /* Check if AlarmA triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process AlarmA Event */
 }
}

2.11.4 Calendar initialization may fail in case of consecutive INIT mode entry

Description

If the INIT bit of the RTC_ISR register is set between one and two RTCCLK cycles after being cleared, the
INITF flag is set immediately instead of waiting for synchronization delay (which should be between one and two
RTCCLK cycles), and the initialization of registers may fail.
Depending on the INIT bit clearing and setting instants versus the RTCCLK edges, it can happen that, after
being immediately set, the INITF flag is cleared during one RTCCLK period then set again. As writes to calendar
registers are ignored when INITF is low, a write during this critical period might result in the corruption of one or
more calendar registers.

Workaround

After existing the initialization mode, clear the BYPSHAD bit (if set) then wait for RSF to rise, before entering the
initialization mode again.

 STM32L05xxx STM32L06xxx
RTC and TAMP

ES0251 - Rev 5 page 18/34

Note: It is recommended to write all registers in a single initialization session to avoid accumulating synchronization
delays.

2.11.5 Alarm flag may be repeatedly set when the core is stopped in debug

Description

When the core is stopped in debug mode, the clock is supplied to subsecond RTC alarm downcounter even
though the device is configured to stop the RTC in debug.
As a consequence, when the subsecond counter is used for alarm condition (the MASKSS[3:0] bitfield of the
RTC_ALRMASSR and/or RTC_ALRMBSSR register set to a non-zero value) and the alarm condition is met just
before entering a breakpoint or printf, the ALRAF and/or ALRBF flag of the RTC_SR register is repeatedly set by
hardware during the breakpoint or printf, which makes any tentative to clear the flag(s) ineffective.

Workaround

None.

2.11.6 Detection of a tamper event occurring before enabling the tamper detection is not supported in
edge detection mode

Description

When the tamper detection is enabled in edge detection mode (TAMPFLT=00):
• When TAMPxTRG=0 (rising edge detection): if the tamper input is already high before enabling the tamper

detection, the tamper event may or may not be detected when enabling the tamper detection. The probability
to detect it increases with the APB frequency.

• When TAMPxTRG=1 (falling edge detection): if the tamper input is already low before enabling the tamper
detection, the tamper event is not detected when enabling the tamper detection.

Workaround

The I/O state should be checked by software in the GPIO registers, just after enabling the tamper detection and
before writing sensitive values in the backup registers, in order to ensure that no active edge occurred before
enabling the tamper event detection.

2.12 I2C

2.12.1 10-bit master mode: new transfer cannot be launched if first part of the address is not
acknowledged by the slave

Description

An I2C-bus master generates STOP condition upon non-acknowledge of I2C address that it sends. This applies to
7-bit address as well as to each byte of 10-bit address.
When the MCU set as I2C-bus master transmits a 10-bit address of which the first byte (5-bit header + 2 MSBs of
the address + direction bit) is not acknowledged, the MCU duly generates STOP condition but it then cannot start
any new I2C-bus transfer. In this spurious state, the NACKF flag of the I2C_ISR register and the START bit of the
I2C_CR2 register are both set, while the START bit should normally be cleared.

Workaround

In 10-bit-address master mode, if both NACKF flag and START bit get simultaneously set, proceed as follows:
1. Wait for the STOP condition detection (STOPF = 1 in I2C_ISR register).
2. Disable the I2C peripheral.
3. Wait for a minimum of three APB cycles.
4. Enable the I2C peripheral again.

 STM32L05xxx STM32L06xxx
I2C

ES0251 - Rev 5 page 19/34

2.12.2 Wrong behavior in Stop mode

Description

The correct use of the I2C peripheral is to disable it (PE = 0) before entering Stop mode, and re-enable it when
back in Run mode.
Some reference manual revisions may omit this information.
Failure to respect the above while the MCU operating as slave or as master in multi-master topology enters Stop
mode during a transfer ongoing on the I2C-bus may lead to the following:
1. BUSY flag is wrongly set when the MCU exits Stop mode. This prevents from initiating a transfer in master

mode, as the START condition cannot be sent when BUSY is set.
2. If clock stretching is enabled (NOSTRETCH = 0), the SCL line is pulled low by I2C and the transfer stalled

as long as the MCU remains in Stop mode.
The occurrence of such condition depends on the timing configuration, peripheral clock frequency, and
I2C-bus frequency.

This is a description inaccuracy issue rather than a product limitation.

Workaround

No application workaround is required.

2.12.3 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock period

Description

The I2C-bus specification and user manual specify a minimum data setup time (tSU;DAT) as:

• 250 ns in Standard mode
• 100 ns in Fast mode
• 50 ns in Fast mode Plus

The device does not correctly sample the I2C-bus SDA line when tSU;DAT is smaller than one I2C kernel clock
(I2C-bus peripheral clock) period: the previous SDA value is sampled instead of the current one. This can result in
a wrong receipt of slave address, data byte, or acknowledge bit.

Workaround

Increase the I2C kernel clock frequency to get I2C kernel clock period within the transmitter minimum data setup
time. Alternatively, increase transmitter’s minimum data setup time. If the transmitter setup time minimum value
corresponds to the minimum value provided in the I2C-bus standard, the minimum I2CCLK frequencies are as
follows:
• In Standard mode, if the transmitter minimum setup time is 250 ns, the I2CCLK frequency must be at least

4 MHz.
• In Fast mode, if the transmitter minimum setup time is 100 ns, the I2CCLK frequency must be at least

10 MHz.
• In Fast-mode Plus, if the transmitter minimum setup time is 50 ns, the I2CCLK frequency must be at least

20 MHz.

2.12.4 Spurious bus error detection in master mode

Description

In master mode, a bus error can be detected spuriously, with the consequence of setting the BERR flag of the
I2C_SR register and generating bus error interrupt if such interrupt is enabled. Detection of bus error has no effect
on the I2C-bus transfer in master mode and any such transfer continues normally.

Workaround

If a bus error interrupt is generated in master mode, the BERR flag must be cleared by software. No other action
is required and the ongoing transfer can be handled normally.

 STM32L05xxx STM32L06xxx
I2C

ES0251 - Rev 5 page 20/34

2.12.5 Last-received byte loss in reload mode

Description

If in master receiver mode or slave receive mode with SBC = 1 the following conditions are all met:

• I2C-bus stretching is enabled (NOSTRETCH = 0)
• RELOAD bit of the I2C_CR2 register is set
• NBYTES bitfield of the I2C_CR2 register is set to N greater than 1
• byte N is received on the I2C-bus, raising the TCR flag
• N - 1 byte is not yet read out from the data register at the instant TCR is raised,

then the SCL line is pulled low (I2C-bus clock stretching) and the transfer of the byte N from the shift register to
the data register inhibited until the byte N-1 is read and NBYTES bitfield reloaded with a new value, the latter of
which also clears the TCR flag. As a consequence, the software cannot get the byte N and use its content before
setting the new value into the NBYTES field.

Workaround

• In master mode or in slave mode with SBC = 1, use the reload mode with NBYTES = 1.
• In master receiver mode, if the number of bytes to transfer is greater than 255, do not use the reload mode.

Instead, split the transfer into sections not exceeding 255 bytes and separate them with repeated START
conditions.

• Make sure, for example through the use of DMA, that the byte N - 1 is always read before the TCR flag is
raised.

The last workaround in the list must be evaluated carefully for each application as the timing depends on factors
such as the bus speed, interrupt management, software processing latencies, and DMA channel priority.

2.12.6 Spurious master transfer upon own slave address match

Description

When the device is configured to operate at the same time as master and slave (in a multi- master I2C-bus
application), a spurious master transfer may occur under the following condition:
• Another master on the bus is in process of sending the slave address of the device (the bus is busy).
• The device initiates a master transfer by bit set before the slave address match event (the ADDR flag set in

the I2C_ISR register) occurs.
• After the ADDR flag is set:

– the device does not write I2C_CR2 before clearing the ADDR flag, or
– the device writes I2C_CR2 earlier than three I2C kernel clock cycles before clearing the ADDR flag

In these circumstances, even though the START bit is automatically cleared by the circuitry handling the ADDR
flag, the device spuriously proceeds to the master transfer as soon as the bus becomes free. The transfer
configuration depends on the content of the I2C_CR2 register when the master transfer starts. Moreover, if the
I2C_CR2 is written less than three kernel clocks before the ADDR flag is cleared, the I2C peripheral may fall into
an unpredictable state.

Workaround

Upon the address match event (ADDR flag set), apply the following sequence.
Normal mode (SBC = 0):
1. Set the ADDRCF bit.
2. Before Stop condition occurs on the bus, write I2C_CR2 with the START bit low.
Slave byte control mode (SBC = 1):
1. Write I2C_CR2 with the slave transfer configuration and the START bit low.
2. Wait for longer than three I2C kernel clock cycles.
3. Set the ADDRCF bit.
4. Before Stop condition occurs on the bus, write I2C_CR2 again with its current value.

 STM32L05xxx STM32L06xxx
I2C

ES0251 - Rev 5 page 21/34

The time for the software application to write the I2C_CR2 register before the Stop condition is limited, as the
clock stretching (if enabled), is aborted when clearing the ADDR flag.
Polling the BUSY flag before requesting the master transfer is not a reliable workaround as the bus may become
busy between the BUSY flag check and the write into the I2C_CR2 register with the START bit set.

2.12.7 START bit is cleared upon setting ADDRCF, not upon address match

Description

Some reference manual revisions may state that the START bit of the I2C_CR2 register is cleared upon slave
address match event.
Instead, the START bit is cleared upon setting, by software, the ADDRCF bit of the I2C_ICR register, which does
not guarantee the abort of master transfer request when the device is being addressed as slave. This product
limitation and its workaround are the subject of a separate erratum.

Workaround

No application workaround is required for this description inaccuracy issue.

2.12.8 OVR flag not set in underrun condition

Description

In slave transmission with clock stretching disabled (NOSTRETCH = 1 in the I2C_CR1 register), an underrun
condition occurs if the current byte transmission is completed on the I2C bus, and the next data is not yet written
in the TXDATA[7:0] bitfield. In this condition, the device is expected to set the OVR flag of the I2C_ISR register
and send 0xFF on the bus.
However, if the I2C_TXDR is written within the interval between two I2C kernel clock cycles before and three APB
clock cycles after the start of the next data transmission, the OVR flag is not set, although the transmitted value is
0xFF.

Workaround

None.

2.12.9 Transmission stalled after first byte transfer

Description

When the first byte to transmit is not prepared in the TXDATA register, two bytes are required successively,
through TXIS status flag setting or through a DMA request. If the first of the two bytes is written in the I2C_TXDR
register in less than two I2C kernel clock cycles after the TXIS/DMA request, and the ratio between APB clock
and I2C kernel clock frequencies is between 1.5 and 3, the second byte written in the I2C_TXDR is not internally
detected. This causes a state in which the I2C peripheral is stalled in master mode or in slave mode, with clock
stretching enabled (NOSTRETCH = 0). This state can only be released by disabling the peripheral (PE = 0) or by
resetting it.

Workaround

Apply one of the following measures:
• Write the first data in I2C_TXDR before the transmission starts.
• Set the APB clock frequency so that its ratio with respect to the I2C kernel clock frequency is lower than 1.5

or higher than 3.

 STM32L05xxx STM32L06xxx
I2C

ES0251 - Rev 5 page 22/34

2.13 USART

2.13.1 Non-compliant sampling for NACK signal from smartcard

Description

According to ISO/IEC 7816-3 standard, when a character parity error is detected, the receiver must assert a
NACK signal, by pulling the transmit line low for one ETU period, at 10.3 to 10.7 ETU after the character START
bit falling edge. The transmitter is expected to sample the line for NACK (for low level) from 10.8 to 11.2 ETU after
the character START bit falling edge.
Instead, the USART peripheral in Smartcard mode samples the transmit line for NACK from 10.3 to 10.7 ETU
after the character START bit falling edge. This is unlikely to cause issues with receivers (smartcards) that respect
the ISO/IEC 7816-3 standard. However, it may cause issues with respect to certification.

Workaround

None.

2.13.2 Break request preventing TC flag from being set

Description

After the end of transmission of data (D1), the transmission complete (TC) flag is not set when the following
condition is met:
• CTS hardware flow control is enabled
• D1 transmission is in progress
• a break transfer is requested before the end of D1 transfer
• CTS is de-asserted before the end of D1 transfer
As a consequence, an application relying on the TC flag fails to detect the end of data transfer.

Workaround

In the application, only allow break request after the TC flag is set.

2.13.3 RTS is active while RE = 0 or UE = 0

Description

The RTS line is driven low as soon as RTSE bit is set, even if the USART is disabled (UE = 0) or the receiver is
disabled (RE = 0), that is, not ready to receive data.

Workaround

Upon setting the UE and RE bits, configure the I/O used for RTS into alternate function.

2.13.4 Receiver timeout counter wrong start in two-stop-bit configuration

Description

In two-stop-bit configuration, the receiver timeout counter starts counting from the end of the second stop bit of
the last character instead of starting from the end of the first stop bit.

Workaround

Subtract one bit duration from the value in the RTO bitfield of the USARTx_RTOR register.

 STM32L05xxx STM32L06xxx
USART

ES0251 - Rev 5 page 23/34

2.13.5 Data corruption due to noisy receive line

Description

In UART mode with oversampling by 8 or 16 and with 1 or 2 stop bits, the received data may be corrupted if a
glitch to zero shorter than the half-bit occurs on the receive line within the second half of the stop bit.

Workaround

None.

2.14 LPUART

2.14.1 Break request preventing TC flag from being set

Description

After the end of transmission of data (D1), the transmission complete (TC) flag is not set when the following
condition is met:
• CTS hardware flow control is enabled
• D1 transmission is in progress
• a break transfer is requested before the end of D1 transfer
• CTS is de-asserted before the end of D1 transfer
As a consequence, an application relying on the TC flag fails to detect the end of data transfer.

Workaround

In the application, only allow break request after the TC flag is set.

2.14.2 RTS is active while RE = 0 or UE = 0

Description

The RTS line is driven low as soon as RTSE bit is set, even if the LPUART is disabled (UE = 0) or the receiver is
disabled (RE = 0), that is, not ready to receive data.

Workaround

Upon setting the UE and RE bits, configure the I/O used for RTS into alternate function.

2.14.3 Receiver timeout counter wrong start in two-stop-bit configuration

Description

In two-stop-bit configuration, the receiver timeout counter starts counting from the end of the second stop bit of
the last character instead of starting from the end of the first stop bit.

Workaround

Subtract one bit duration from the value in the RTO bitfield of the LPUARTx_RTOR register.

2.14.4 Data corruption due to noisy receive line

Description

In UART mode with oversampling by 8 or 16 and with 1 or 2 stop bits, the received data may be corrupted if a
glitch to zero shorter than the half-bit occurs on the receive line within the second half of the stop bit.

Workaround

None.

 STM32L05xxx STM32L06xxx
LPUART

ES0251 - Rev 5 page 24/34

2.15 SPI2S

2.15.1 BSY bit may stay high when SPI is disabled

Description

The BSY flag may remain high upon disabling the SPI while operating in:
• master transmit mode and the TXE flag is low (data register full).
• master receive-only mode (simplex receive or half-duplex bidirectional receive phase) and an SCK strobing

edge has not occurred since the transition of the RXNE flag from low to high.
• slave mode and NSS signal is removed during the communication.

Workaround

When the SPI operates in:
• master transmit mode, disable the SPI when TXE = 1 and BSY = 0.
• master receive-only mode, ignore the BSY flag.
• slave mode, do not remove the NSS signal during the communication.

2.15.2 BSY bit may stay high at the end of data transfer in slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in slave mode. This occurs upon coincidence
of internal CPU clock and external SCK clock provided by master.
In such an event, if the software only relies on BSY flag to detect the end of SPI slave data transaction (for
example to enter low-power mode or to change data line direction in half-duplex bidirectional mode), the detection
fails.
As a conclusion, the BSY flag is unreliable for detecting the end of data transactions.

Workaround

Depending on SPI operating mode, use the following means for detecting the end of transaction:
• When NSS hardware management is applied and NSS signal is provided by master, use NSS flag.
• In SPI receiving mode, use the corresponding RXNE event flag.
• In SPI transmit-only mode, use the BSY flag in conjunction with a timeout expiry event. Set the timeout such

as to exceed the expected duration of the last data frame and start it upon TXE event that occurs with the
second bit of the last data frame. The end of the transaction corresponds to either the BSY flag becoming
low or the timeout expiry, whichever happens first.

Prefer one of the first two measures to the third as they are simpler and less constraining.
Alternatively, apply the following sequence to ensure reliable operation of the BSY flag in SPI transmit mode:
1. Write last data to data register.
2. Poll the TXE flag until it becomes high, which occurs with the second bit of the data frame transfer.
3. Disable SPI by clearing the SPE bit mandatorily before the end of the frame transfer.
4. Poll the BSY bit until it becomes low, which signals the end of transfer.

Note: The alternative method can only be used with relatively fast CPU speeds versus relatively slow SPI clocks
or/and long last data frames. The faster is the software execution, the shorter can be the duration of the last data
frame.

 STM32L05xxx STM32L06xxx
SPI2S

ES0251 - Rev 5 page 25/34

2.15.3 Corrupted last bit of data and/or CRC, received in master mode with delayed SCK feedback

Description

In receive transaction, in both I2S and SPI master modes, the last bit of the transacted frame is not captured when
signal provided by internal feedback loop from the SCK pin exceeds a critical delay. The lastly transacted bit of
the stored data then keeps value from the previously received pattern. As a consequence, the last receive data
bit may be wrong and/or the CRCERR flag can be unduly asserted in the SPI mode if any data under check sum
and/or the CRC pattern is wrongly captured.
In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock periods can thus be
tolerated for the internal feedback delay. The I2S mode is more sensitive than the SPI mode, and in particular
when I2S prescaler is set to divide by an odd number and APB clock frequency is half the system clock
frequency.
In this case, margin of the internal feedback delay is lower than one APB clock period.
In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock periods can thus be
tolerated for the internal feedback delay. The I2S mode is more sensitive than the SPI mode. In this case, margin
of the internal feedback delay is lower than 1.5 APB clock period.
Main factors contributing to the delay increase are low VDD level, high temperature, high SCK pin capacitive load
and low SCK I/O output speed. The SPI communication speed has no impact.
The following table gives the maximum allowable APB frequency versus GPIOx_OSPEEDR output speed bitfield
setting for the SCK pin, at 30pF of capacitive load. The operation is safe up to that frequency.

Table 7. Maximum allowable APB frequency at 30 pF load

GPIOx_OSPEEDR[1:0] for SCK pin
Max. APB frequency for SPI mode

[MHz]
Max. APB frequency for I2S mode

[MHz]

11 (very high) 32 32

10 (high) 28 (32 at VDD > 1.8 V) 28 (32 at VDD > 1.8 V)

01 (medium) 12 (14 at VDD > 1.8 V) 8 (10 at VDD > 1.8 V)

00 (low) 1.5 (2 at VDD > 1.8 V) 1 (1.5 at VDD > 1.8 V)

Workaround

The following measures can be adopted, jointly or individually:
• Decrease the APB clock speed.
• Configure the I/O pad of the SCK pin to higher speed.

2.15.4 SPI CRC corruption upon DMA transaction completion by another peripheral

Description

When the following conditions are all met:
• CRC function for the SPI is enabled
• SPI transaction managed by software (as opposed to DMA) is ongoing and CRCNEXT flag set
• another peripheral using the DMA channel on which the SPI is mapped completes a DMA transfer,
the CRCNEXT bit is unexpectedly cleared and the SPI CRC calculation may be corrupted, setting the CRC error
flag.

Workaround

Ensure that the DMA channel on which the SPI is mapped is not concurrently in use by another peripheral.

 STM32L05xxx STM32L06xxx
SPI2S

ES0251 - Rev 5 page 26/34

2.15.5 In I2S slave mode, enabling I2S while WS is active causes desynchronization

Description

In I2S slave mode, the WS signal level is used to start the communication. If the I2S peripheral is enabled while
the WS line is active (low for I2S protocol, high for LSB- or MSB-justified mode), and if the master is already
sending the clock, the I2S peripheral (slave) starts communicating data from the instant of its enable, which
causes desynchronization between the master and the slave throughout the whole communication.

Workaround

Enable I2S peripheral while the WS line is at:

• high level, for I2S protocol.
• low level, for LSB- or MSB-justified mode.

2.15.6 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting of data counters

Description

When SPI is handled by DMA in full-duplex master or slave mode with CRC enabled, the CRC computation may
temporarily freeze for the ongoing frame, which results in corrupted CRC.
This happens when the receive counter reaches zero upon the receipt of the CRC pattern (as the receive counter
was set to a value greater, by CRC length, than the transmit counter). An internal signal dedicated to receive-only
mode is left unduly pending. Consequently, the signal can cause the CRC computation to freeze during a next
transaction in which DMA TXE event service is accidentally delayed (for example, due to DMA servicing a request
from another channel).

Workaround

Apply one of the following measures prior to each full-duplex SPI transaction:
• Set the DMA transmission and reception data counters to equal values. Upon the transaction completion,

read the CRC pattern out from RxFIFO separately by software.
• Reset the SPI peripheral via peripheral reset register.

2.15.7 CRC error in SPI slave mode if internal NSS changes before CRC transfer

Description

Some reference manual revisions may omit the information that the device operating as SPI slave must be
configured in software NSS control if the SPI master pulses the NSS (for (for example in NSS pulse mode).
Otherwise, the transition of the internal NSS signal after the CRCNEXT flag is set might result in wrong CRC
value computed by the device and, as a consequence, in a CRC error. As a consequence, the NSS pulse mode
cannot be used along with the CRC function.
This is a documentation error rather than a product limitation.

Workaround

No application workaround is required as long as the device operating as SPI slave is duly configured in software
NSS control.

2.15.8 Anticipated communication upon SPI transit from slave receiver to master

Description

Regardless of the master mode configured, the communication clock starts upon setting the MSTR bit even
though the SPI is disabled, if transiting from receive‑only (RXONLY = 1) or half‑duplex receive (BIDIMODE = 1
and BIDIOE = 0) slave mode to master mode.

 STM32L05xxx STM32L06xxx
SPI2S

ES0251 - Rev 5 page 27/34

Workaround

Apply one of the following measures:
• Before transiting to master mode, hardware‑reset the SPI via the reset controller.
• Set the MSTR and SPE bits of the SPI configuration register simultaneously, which forces the immediate

start of the communication clock. In transmitter configuration, load the data register in advance with the data
to send.

2.16 USB

2.16.1 Possible packet memory overrun/underrun at low APB frequency

Description

Some data sheet and/or reference manual revisions may omit the information that 10 MHz minimum APB clock
frequency is required to avoid USB data overrun/underrun issues.
Operating the USB peripheral with lower APB clock frequency may lead to:
• Overrun for out transactions - the USB peripheral fails to store the received data into the PBM before the

next byte is received on the USB (PBM overrun). The USB cell detects an internal error condition, discards
the last received byte, stops writing into the PBM, sends no acknowledge (forcing the host to retry the
transaction), and informs the application by setting the PMAOVR flag/interrupt.

• Underrun for in transactions - the USB peripheral fails to read from the PBM the next byte to transmit
before the transmission of the previous one is completed on the USB. The USB cell detects an internal error
condition, stops reading from PBM, generates a bit stuffing error on the USB (forcing the host to retry the
transaction), and informs the application by setting the PMAOVR flag/interrupt.

This is a documentation issue rather than a device limitation.

Workaround

No application workaround is required if the minimum APB clock frequency of 10 MHz is respected.

2.16.2 ESOF interrupt timing desynchronized after resume signaling

Description

Upon signaling resume, the device is expected to allow full 3 ms of time to the host or hub for sending the
initial SOF (start of frame) packet, without triggering SUSP interrupt. However, the device only allows two full
milliseconds and unduly triggers SUSP interrupt if it receives the initial packet within the third millisecond.

Workaround

When the device initiates resume (remote wakeup), mask the SUSP interrupt by setting the SUSPM bit for 3 ms,
then unmask it by clearing SUSPM.

2.16.3 Incorrect CRC16 in the memory buffer

Description

Memory buffer locations are written starting from the address contained in the ADDRn_RX for a number of bytes
corresponding to the received data packet length, CRC16 inclusive (that is, data payload length plus two bytes),
or up to the last allocated memory location defined by BL_SIZE and NUM_BLOCK, whichever comes first. In the
former case, the CRC16 checksum is written wrongly, with its least significant byte going to both memory buffer
byte locations expected to receive the least and the most significant bytes of the checksum.
Although the checksum written in the memory buffer is wrong, the underlying CRC checking mechanism in the
USB peripheral is fully functional.

Workaround

Ignore the CRC16 data in the memory buffer.

 STM32L05xxx STM32L06xxx
USB

ES0251 - Rev 5 page 28/34

2.16.4 USB BCD functionality limited below –20 °C

Description

Primary and secondary detection can return an incorrectly detected port type.
This limitation may be observed on a small number of devices when the temperature is below –20 °C.

Workaround

None.

 STM32L05xxx STM32L06xxx
USB

ES0251 - Rev 5 page 29/34

Revision history

Table 8. Document revision history

Date Version Changes

29-Apr-2014 1 Initial release.

17-Oct-2014 2

Updated Section 2.1.8: Delay after an RCC peripheral clock enabling.

Added:
• Section 2.2.1: Incorrect first ADC conversion result when delay between

two consecutive conversions is too long.
Section 2.5.2: Wrong data sampling when data set-up time (tSU;DAT) is
smaller than one I2CCLK period
Section 2.6.2: BSY bit may stay high at the end of a SPI data transfer in
slave mode
Section 2.8.1: USB BCD functionality limited below -20 °C
Section 2.9.1: Touch sensing channels not available in dynamic voltage
range 3

30-Apr-2015 3

Added revision “Y”.

Updated Section 2.1.8: Delay after an RCC peripheral clock enabling. Added
Section 2.1.9: PB6 and PB7 AF1 alternate functions not available when
LCD controller is enabled, Section 2.1.10: Flash memory wakeup issue when
waking up from Stop or Sleep with Flash in power-down mode, Section 2.1.11:
Unexpected system reset when waking up from Stop mode with regulator
in low-power mode and Section 2.3.2: Output of comparator 2 cannot be
internally connected to input 1 of low-power timer.

Updated Section 2.2.1: Incorrect first ADC conversion result when delay
between two consecutive conversions is too long.

Added Section 2.4: RTC limitations.

Updated Section 2.6.2: BSY bit may stay high at the end of a SPI data
transfer in slave mode.

Added Section 2.6.3: Last data bit or CRC calculation may be corrupted for
the data received in master mode depending on the feedback communication
clock timing with respect to the APB clock (SPI or I2S) and Section 2.6.4:
CRC may be corrupted when a peripheral connected to the same DMA
channel than the SPI completes its DMA transaction.

Added Section 2.7: USART limitations.

11-Feb-2016 4

Removed STM32L063K8 part number.

Added silicon revision “X”.

Added Section 2.1.12: I2C and USART cannot wake up the device from Stop
mode, Section 2.1.13: LDM, STM, PUSH and POP not allowed in IOPORT
bus and Section 2.1.14: BOOT_MODE bits do not reflect the selected boot
mode.

Added Section 2.2.2: Overrun flag might not be set when converted data have
not been read before new data are written.

Added Section 2.3.1: COMP1_CSR and COMP2_CSR lock bit reset by
SYSCFGRST bit in RCC_APB2RSTR register.

Updated Section 2.6.3: Last data bit or CRC calculation may be corrupted for
the data received in master mode depending on the feedback communication
clock timing with respect to the APB clock (SPI or I2S).

07-Dec-2021 5

Merged all STM32L05xxx and STM32L06xxx device errata sheets into one
single document. Added STM32L062C8 and STM32L062T8 part numbers.

Distinction made between device and documentation errata.

Added DMA, DAC, RNG, TIM, and LPTIM errata.

Updated System, ADC, RTC and TAMP, I2C, SPI2S and USB errata.

Distinction made between USART and LPUART and errata updated.

 STM32L05xxx STM32L06xxx

ES0251 - Rev 5 page 30/34

Contents

1 Summary of device errata. .2
2 Description of device errata. .5

2.1 System . 5
2.1.1 Exiting Stop mode on a reset event is not possible when HSI16 is the clock system and it is

selected as wakeup clock . 5

2.1.2 Protection level1 does not work . 5

2.1.3 LSE bypass feature cannot be used in Standby mode . 5

2.1.4 Delay after an RCC peripheral clock enabling . 6

2.1.5 Flash memory wakeup issue when waking up from Stop or Sleep with Flash in power-down
mode. 6

2.1.6 Unexpected system reset when waking up from Stop mode with regulator in low-power
mode. 6

2.1.7 I2C and USART cannot wake up the device from Stop mode . 7

2.1.8 LDM, STM, PUSH and POP not allowed in IOPORT bus . 7

2.1.9 BOOT_MODE bits do not reflect the selected boot mode . 7

2.2 GPIO. 8
2.2.1 Writing in byte mode to the GPIOx_OTYPER register does not work 8

2.2.2 PA4 and PA5 cannot be redirected to comparator 2 minus input . 8

2.2.3 PB14 output speed configuration interferes with PB13 . 8

2.2.4 PB6 and PB7 AF1 alternate functions not available when LCD controller is enabled 9

2.3 DMA . 9
2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global

flag clear . 9

2.3.2 Byte and half-word accesses not supported . 9

2.4 ADC . 10
2.4.1 Overrun flag is not set if EOC reset coincides with new conversion end 10

2.4.2 Writing ADC_CFGR1 register while ADEN bit is set resets RES[1:0] bitfield 10

2.4.3 Out-of-threshold value is not detected in AWD1 Single mode . 10

2.4.4 ADC transfer curve issue at VREF+/2 when VREF+ < VDDA . 10

2.4.5 Incorrect first ADC conversion result when delay between two consecutive conversions is
too long . 11

2.5 DAC . 11
2.5.1 DMA request not automatically cleared by clearing DMAEN . 11

2.5.2 DMA underrun flag not set when an internal trigger is detected on the clock cycle of the
DMA request acknowledge . 12

2.6 COMP. 12
2.6.1 COMP1_CSR and COMP2_CSR lock bit reset by SYSCFGRST bit in RCC_APB2RSTR

register . 12

 STM32L05xxx STM32L06xxx
Contents

ES0251 - Rev 5 page 31/34

2.6.2 Output of comparator 2 cannot be internally connected to input 1 of low-power timer 12

2.7 TSC. 13
2.7.1 Inhibited acquisition in short transfer phase configuration . 13

2.7.2 Touch sensing channels not available in dynamic voltage range 3 13

2.8 RNG . 13
2.8.1 RNG clock error does not stop random numbers . 13

2.9 TIM . 13
2.9.1 PWM re-enabled in automatic output enable mode despite of system break. 13

2.9.2 TRGO and TRGO2 trigger output failure . 14

2.9.3 Consecutive compare event missed in specific conditions . 14

2.9.4 Output compare clear not working with external counter reset . 15

2.10 LPTIM . 15
2.10.1 Device may remain stuck in LPTIM interrupt when entering Stop mode 15

2.10.2 Device may remain stuck in LPTIM interrupt when clearing event flag 15

2.10.3 LPTIM events and PWM output are delayed by 1 kernel clock cycle. 16

2.11 RTC and TAMP . 16
2.11.1 Spurious tamper detection when disabling the tamper channel. 16

2.11.2 RTC calendar registers are not locked properly . 17

2.11.3 RTC interrupt can be masked by another RTC interrupt . 17

2.11.4 Calendar initialization may fail in case of consecutive INIT mode entry 18

2.11.5 Alarm flag may be repeatedly set when the core is stopped in debug 19

2.11.6 Detection of a tamper event occurring before enabling the tamper detection is not
supported in edge detection mode . 19

2.12 I2C . 19
2.12.1 10-bit master mode: new transfer cannot be launched if first part of the address is not

acknowledged by the slave . 19

2.12.2 Wrong behavior in Stop mode. 20

2.12.3 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock
period . 20

2.12.4 Spurious bus error detection in master mode . 20

2.12.5 Last-received byte loss in reload mode . 21

2.12.6 Spurious master transfer upon own slave address match . 21

2.12.7 START bit is cleared upon setting ADDRCF, not upon address match 22

2.12.8 OVR flag not set in underrun condition . 22

2.12.9 Transmission stalled after first byte transfer . 22

2.13 USART . 23
2.13.1 Non-compliant sampling for NACK signal from smartcard. 23

2.13.2 Break request preventing TC flag from being set . 23

2.13.3 RTS is active while RE = 0 or UE = 0 . 23

 STM32L05xxx STM32L06xxx
Contents

ES0251 - Rev 5 page 32/34

2.13.4 Receiver timeout counter wrong start in two-stop-bit configuration 23

2.13.5 Data corruption due to noisy receive line. 24

2.14 LPUART . 24
2.14.1 Break request preventing TC flag from being set . 24

2.14.2 RTS is active while RE = 0 or UE = 0 . 24

2.14.3 Receiver timeout counter wrong start in two-stop-bit configuration 24

2.14.4 Data corruption due to noisy receive line. 24

2.15 SPI2S . 25
2.15.1 BSY bit may stay high when SPI is disabled . 25

2.15.2 BSY bit may stay high at the end of data transfer in slave mode. 25

2.15.3 Corrupted last bit of data and/or CRC, received in master mode with delayed SCK feedback
. 26

2.15.4 SPI CRC corruption upon DMA transaction completion by another peripheral 26

2.15.5 In I2S slave mode, enabling I2S while WS is active causes desynchronization 27

2.15.6 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting of data counters .
. 27

2.15.7 CRC error in SPI slave mode if internal NSS changes before CRC transfer 27

2.15.8 Anticipated communication upon SPI transit from slave receiver to master. 27

2.16 USB. 28
2.16.1 Possible packet memory overrun/underrun at low APB frequency 28

2.16.2 ESOF interrupt timing desynchronized after resume signaling . 28

2.16.3 Incorrect CRC16 in the memory buffer . 28

2.16.4 USB BCD functionality limited below –20 °C . 29

Revision history .30

 STM32L05xxx STM32L06xxx
Contents

ES0251 - Rev 5 page 33/34

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

 STM32L05xxx STM32L06xxx

ES0251 - Rev 5 page 34/34

http://www.st.com/trademarks

	1 Summary of device errata
	2 Description of device errata
	2.1 System
	2.1.1 Exiting Stop mode on a reset event is not possible when HSI16 is the clock system and it is selected as wakeup clock
	2.1.2 Protection level1 does not work
	2.1.3 LSE bypass feature cannot be used in Standby mode
	2.1.4 Delay after an RCC peripheral clock enabling
	2.1.5 Flash memory wakeup issue when waking up from Stop or Sleep with Flash in power-down mode
	2.1.6 Unexpected system reset when waking up from Stop mode with regulator in low-power mode
	2.1.7 I2C and USART cannot wake up the device from Stop mode
	2.1.8 LDM, STM, PUSH and POP not allowed in IOPORT bus
	2.1.9 BOOT_MODE bits do not reflect the selected boot mode

	2.2 GPIO
	2.2.1 Writing in byte mode to the GPIOx_OTYPER register does not work
	2.2.2 PA4 and PA5 cannot be redirected to comparator 2 minus input
	2.2.3 PB14 output speed configuration interferes with PB13
	2.2.4 PB6 and PB7 AF1 alternate functions not available when LCD controller is enabled

	2.3 DMA
	2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag clear
	2.3.2 Byte and half-word accesses not supported

	2.4 ADC
	2.4.1 Overrun flag is not set if EOC reset coincides with new conversion end
	2.4.2 Writing ADC_CFGR1 register while ADEN bit is set resets RES[1:0] bitfield
	2.4.3 Out-of-threshold value is not detected in AWD1 Single mode
	2.4.4 ADC transfer curve issue at VREF+/2 when VREF+ < VDDA
	2.4.5 Incorrect first ADC conversion result when delay between two consecutive conversions is too long

	2.5 DAC
	2.5.1 DMA request not automatically cleared by clearing DMAEN
	2.5.2 DMA underrun flag not set when an internal trigger is detected on the clock cycle of the DMA request acknowledge

	2.6 COMP
	2.6.1 COMP1_CSR and COMP2_CSR lock bit reset by SYSCFGRST bit in RCC_APB2RSTR register
	2.6.2 Output of comparator 2 cannot be internally connected to input 1 of low-power timer

	2.7 TSC
	2.7.1 Inhibited acquisition in short transfer phase configuration
	2.7.2 Touch sensing channels not available in dynamic voltage range 3

	2.8 RNG
	2.8.1 RNG clock error does not stop random numbers

	2.9 TIM
	2.9.1 PWM re-enabled in automatic output enable mode despite of system break
	2.9.2 TRGO and TRGO2 trigger output failure
	2.9.3 Consecutive compare event missed in specific conditions
	2.9.4 Output compare clear not working with external counter reset

	2.10 LPTIM
	2.10.1 Device may remain stuck in LPTIM interrupt when entering Stop mode
	2.10.2 Device may remain stuck in LPTIM interrupt when clearing event flag
	2.10.3 LPTIM events and PWM output are delayed by 1 kernel clock cycle

	2.11 RTC and TAMP
	2.11.1 Spurious tamper detection when disabling the tamper channel
	2.11.2 RTC calendar registers are not locked properly
	2.11.3 RTC interrupt can be masked by another RTC interrupt
	2.11.4 Calendar initialization may fail in case of consecutive INIT mode entry
	2.11.5 Alarm flag may be repeatedly set when the core is stopped in debug
	2.11.6 Detection of a tamper event occurring before enabling the tamper detection is not supported in edge detection mode

	2.12 I2C
	2.12.1 10-bit master mode: new transfer cannot be launched if first part of the address is not acknowledged by the slave
	2.12.2 Wrong behavior in Stop mode
	2.12.3 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock period
	2.12.4 Spurious bus error detection in master mode
	2.12.5 Last-received byte loss in reload mode
	2.12.6 Spurious master transfer upon own slave address match
	2.12.7 START bit is cleared upon setting ADDRCF, not upon address match
	2.12.8 OVR flag not set in underrun condition
	2.12.9 Transmission stalled after first byte transfer

	2.13 USART
	2.13.1 Non-compliant sampling for NACK signal from smartcard
	2.13.2 Break request preventing TC flag from being set
	2.13.3 RTS is active while RE = 0 or UE = 0
	2.13.4 Receiver timeout counter wrong start in two-stop-bit configuration
	2.13.5 Data corruption due to noisy receive line

	2.14 LPUART
	2.14.1 Break request preventing TC flag from being set
	2.14.2 RTS is active while RE = 0 or UE = 0
	2.14.3 Receiver timeout counter wrong start in two-stop-bit configuration
	2.14.4 Data corruption due to noisy receive line

	2.15 SPI2S
	2.15.1 BSY bit may stay high when SPI is disabled
	2.15.2 BSY bit may stay high at the end of data transfer in slave mode
	2.15.3 Corrupted last bit of data and/or CRC, received in master mode with delayed SCK feedback
	2.15.4 SPI CRC corruption upon DMA transaction completion by another peripheral
	2.15.5 In I2S slave mode, enabling I2S while WS is active causes desynchronization
	2.15.6 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting of data counters
	2.15.7 CRC error in SPI slave mode if internal NSS changes before CRC transfer
	2.15.8 Anticipated communication upon SPI transit from slave receiver to master

	2.16 USB
	2.16.1 Possible packet memory overrun/underrun at low APB frequency
	2.16.2 ESOF interrupt timing desynchronized after resume signaling
	2.16.3 Incorrect CRC16 in the memory buffer
	2.16.4 USB BCD functionality limited below –20 °C

	 Revision history

