

25 W, 20 MHz- 6.0 GHz, GaN MMIC, Power Amplifier

Description

Cree's CMPA0060025F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables extremely wide bandwidths to be achieved in a small footprint screw-down package.

PN: CMPA0060025F1 Package Type: 440219

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25$ °C)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	21.4	20.1	19.3	16.7	16.6	16.8	15.7	15.5	dB
Output Power @ P _{IN} = 32 dBm	26.9	30.2	26.3	23.4	24.5	24.0	20.9	18.6	W
Power Gain @ P _{IN} = 32 dBm	12.3	12.8	12.2	11.7	11.9	11.8	11.3	10.7	dB
Efficiency @ P _{IN} = 32 dBm	63	55	40	31	33	31	28	26	%

Note: $V_{DD} = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$

Features

- 17 dB Small Signal Gain
- 25 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- **High Temperature Operation**
- 0.5" x 0.5" total product size

Applications

- **Ultra Broadband Amplifiers**
- **Test Instrumentation**
- **EMC Amplifier Drivers**

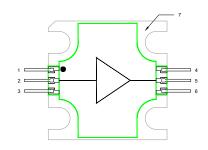


Figure 1.

Absolute Maximum Ratings (not simultaneous) at 25°C

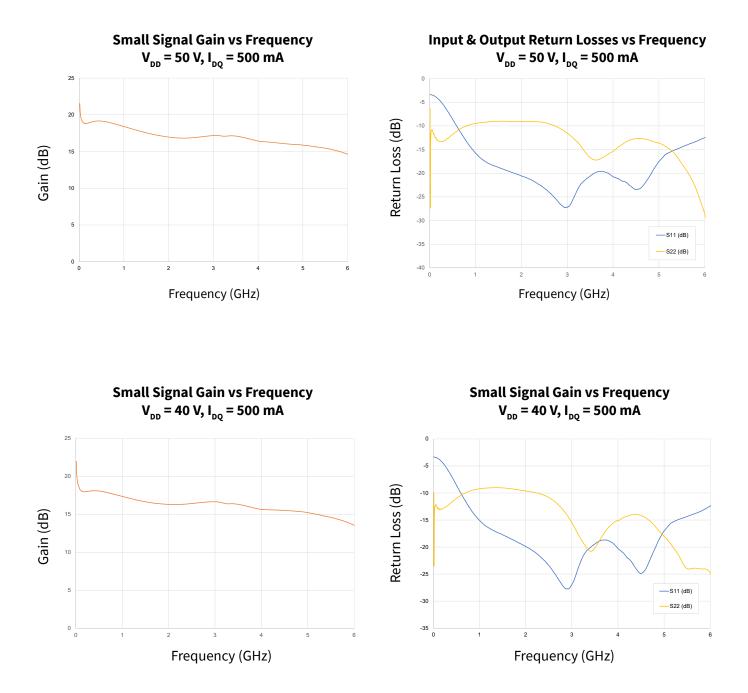
Parameter	Symbol	Rating	Units	
Drain-source Voltage	V _{dss}	84	VDC	
Gate-source Voltage	V _{GS}	-10, +2	VDC	
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	T	225	°C	
Maximum Forward Gate Current	I _{gmax}	6.3	mA	
Soldering Temperature ¹	Τ _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	R _{ejc}	3.3	°C/W	
Case Operating Temperature ²	T _c	-40, +150	°C	

Note:

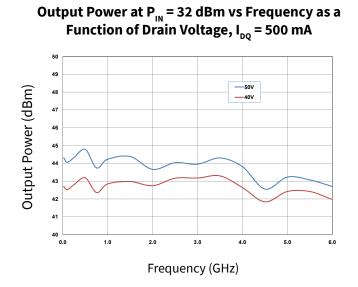
 1 Refer to the Application Note on soldering at wolfspeed.com/rf/document-library 2 Measured for the CMPA0060025F1 at P $_{\rm IN}$ = 32 dBm

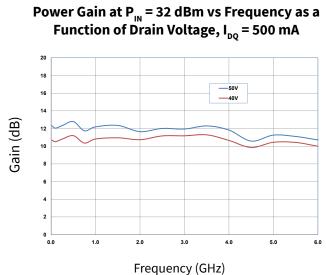
Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage ²	V _{(GS)TH}	-	-3.0	-	V	$V_{\rm DS} = 20 \text{ V}, \Delta I_{\rm D} = 20 \text{ mA}$
Gate Quiescent Voltage	V _{(GS)Q}	-	-2.7	-	VDC	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 500 mA, $P_{_{IN}}$ = 32 dBm
Saturated Drain Current	I _{DC}	-	12	-	А	$V_{DS} = 12 \text{ V}, V_{GS} = 2.0 \text{ V}$
RF Characteristics ¹						
Power Output at P _{out} @ 4.5 GHz	P _{OUT1}	-	42.8	-	dBm	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}, \text{ P}_{IN} = 32 \text{ dBm}$
Power Output at P _{out} @ 5.0 GHz	P _{OUT2}	-	43.3	-	dBm	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 500 mA, $P_{_{IN}}$ = 32 dBm
Power Output at P _{out} @ 6.0 GHz	P _{OUT3}	-	42.9	-	dBm	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}, \text{ P}_{IN} = 32 \text{ dBm}$
Drain Efficiency at P _{out} @ 4.5 GHz	η1	-	24.1	-	%	$V_{_{DD}} = 50 \text{ V}, \text{ I}_{_{DQ}} = 500 \text{ mA}, \text{ P}_{_{IN}} = 32 \text{ dBm}$
Drain Efficiency at P _{out} @ 5.0 GHz	η2	-	28.0	-	%	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 500 mA, $P_{_{IN}}$ = 32 dBm
Drain Efficiency at P _{ουτ} @ 6.0 GHz	η3	-	27.2	-	%	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}, \text{ P}_{IN} = 32 \text{ dBm}$
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 32 dBm

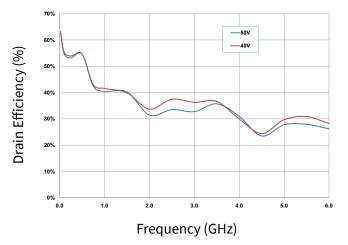

Small Signal RF Characteristics

Frequency	S21 (dB)			S11 (dB)			S22 (dB)	Conditions	
Frequency	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	conditions
0.02 GHz - 0.25 GHz	-	19.3	-	-	-4.1	-	-	-8.5	-	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$
0.25 GHz - 0.5 GHz	-	19.8	-	-	-6.8	-	-	-8.9	-	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$
0.5 GHz - 1.0 GHz	-	18.6	-	-	-15.3	-	-	-6.7	-	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$
1.0 GHz - 2.0 GHz	-	18.6	-	-	-15.3	-	-	-6.7	-	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$
2.0 GHz - 3.0 GHz	-	18.6	-	-	-15.3	-	-	-6.0	-	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$
3.0 GHz - 6.0 GHz	-	16.3	-	-	-14.2	-	-	-12.0	-	$V_{DD} = 50 \text{ V}, I_{DO} = 500 \text{ mA}$

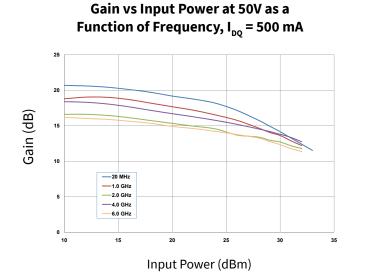

Note:

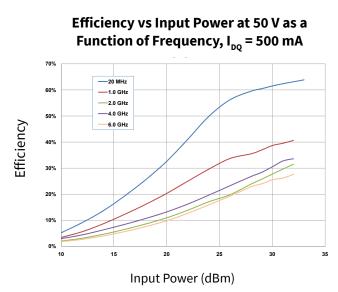

 1 P_{OUT} is defined as P_{IN} = 32 dBm 2 The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure

Typical Performance



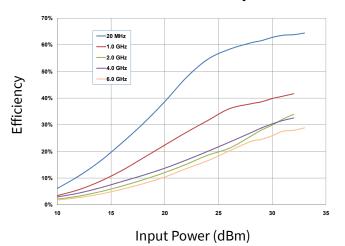
Typical Performance





Drain Efficiency at $P_{IN} = 32 \text{ dBm vs Frequency as a}$ Function of Drain Voltage, $I_{DQ} = 500 \text{ mA}$

Typical Performance



Gain vs Input Power at 40V as a Function of Frequency, I_{bQ} = 500 mA

Input Power (dBm)

Efficiency vs Input Power at 40 V as a Function of Frequency, $I_{pq} = 500 \text{ mA}$

0

General Device Information

The CMPA0060025F1 is a GaN HEMT MMIC Power Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 25 W saturated output power with an associated power added efficiency of better than 20%. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

The CMPA0060025F1-AMP1 and the device were then measured using external Bias-T's, (TECDIA: AMP1T-H06M20 or similar), as shown in Figure 2. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.

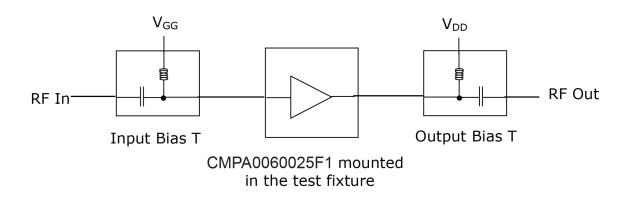
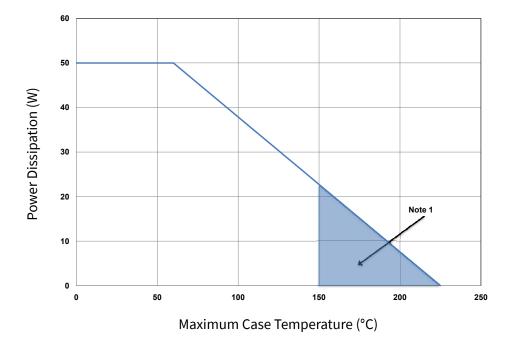
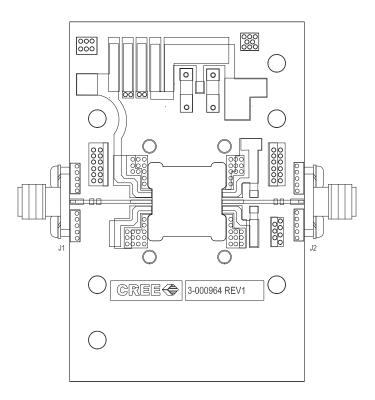



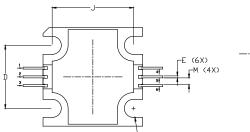
Figure 2. Typical test system setup required for measuring CMPA0060025F1-AMP1


Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2)

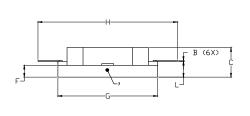
Electrostatic Discharge (ESD) Classifications

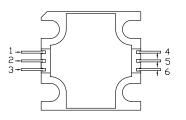
Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500V)	JEDEC JESD22 C101-C

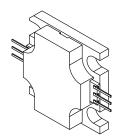
CMPA0060025F1-AMP Demonstration Amplifier Circuit Outline


CMPA0060025F1-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
J1,J2	CONNECTOR, SMA, AMP11052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060025F1	1


Note: An external bias T is required


Product Dimensions CMPA0060025F1 (Package Type – 440219)

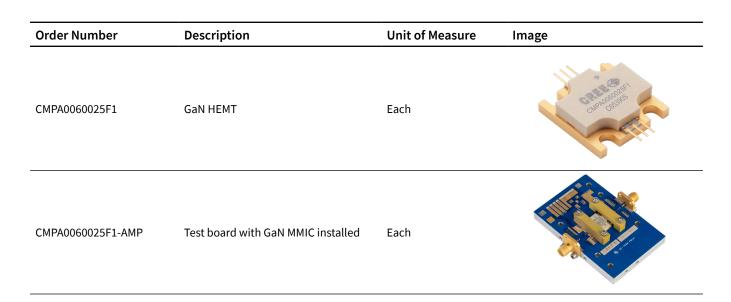

K (4X)

NOT TO SCALE

PIN	Function
1	NC
2	Gate
3	NC
4	NC
5	Drain
6	NC
7	Source

NDTES:

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.


2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

 LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.
ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
А	0.495	0.505	12.57	12.82
В	0.003	0.005	0.076	0.127
С	0.140	0.160	3.56	4.06
D	0.315	0.325	8.00	8.25
Е	0.008	0.012	0.204	0.304
F	0.055	0.065	1.40	1.65
G	0.495	0.505	12.57	12.82
Н	0.695	0.705	17.65	17.91
J	0.403	0.413	10.24	10.49
К	ø.	092	2.3	34
L	0.075	0.085	1.905	2.159
м	0.032	0.040	0.82	1.02

Product Ordering Information

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes

Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

© 2019 - 2020 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.