

Application Note Please read the Important Notice and Warnings at the end of this document V 1.0

www.infineon.com page 1 of 41 2020-04-27

OPTIGA™ TPM Application Note

Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Devices

 OPTIGA™ TPM SLB 9670 TPM2.0

 OPTIGA™ TPM SLI 9670 TPM2.0

 OPTIGA™ TPM SLM 9670 TPM2.0

http://www.infineon.com/

Application Note 2 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

About this document

About this document

Scope and purpose

The world we live in is a connected world. Today we rely on our phones, computers and connected devices to

communicate, buy goods, travel and work. It is expected that these devices increase exponentially.

All these devices that are connected to the internet have one thing in common – They rely on the protocol
called TLS (Transport Layer Security) to protect their information in transit.

TLS is a cryptographic protocol designed to provide secure communication over an insecure infrastructure.
This means that, if this protocol is properly deployed, you can open a communication channel to an arbitrary
service on the internet and be reasonably sure that you’re talking to the correct server, and exchange

information safely knowing that your data will not fall into the wrong hands and that it will be received intact.

This is not the case in the real world. Complex systems along with software bugs can open a back door to an

attacker. Aside from this, the simplicity of the RSA algorithm (which is widely used in most of the systems
running TLS), has known weaknesses, such as the Private Keys being stored in software.

Anyone with the access to the corresponding private key can decrypt the communication between the client
and it. This type of attack does not need to happen in real time. An attacker could establish a long-term
operation and record all the encrypted traffic and wait until he obtains the Key. After the Key has been

compromised, it’s possible to decrypt all previously recorded traffic.

The OPTIGA™ TPM SLx 9670 TPM2.0 is a hardware security controller fully compliant with TCG TPM products
with CC (EAL4+) and FIPS certification that can be used to harden the TLS connection by managing and keeping

the Private Keys secure amongst other security features.

The OPTIGA™ TPM SLx 9670 TPM2.0 products, standard, automotive and industrial versions, differ with regards
to supported temperature range, lifetime, quality grades, test environment, qualification and reliability to fit

the target applications requirements. For more details refer to Infineon’s website [1].

This document contains an overview of what is Transport Security Layer (TLS) and step-by-step instructions on
how to use the TLS Stack Software with the Trusted Platform Module OPTIGA™ TPM SLx 9670 TPM2.0 on a
Raspberry Pi® 3B+/4 Linux environment by using a Server-Client connection.

The described steps to integrate an OPTIGA™ TPM in a Raspberry Pi® 3B+/4 Linux environment can be

performed with one of the Infineon Iridium SLx 9670 TPM2.0 SPI Boards, listed in the Table below.

Iridium Boards:

Supported TPM Order type Order number

OPTIGA™ TPM SLB 9670 TPM2.0 IRIDIUM 9670 TPM2.0 SP001596592

 OPTIGA™ TPM SLI 9670 TPM2.0 IRIDIUM SLI 9670 TPM2.0 SP004232000

 OPTIGA™ TPM SLM 9670 TPM2.0 IRIDIUM SLM 9670 TPM2.0 SP004232004

The 3 Infineon Iridium Boards are referred in the following as “Infineon Iridium SLx 9670 TPM2.0 SPI Board”

Application Note 3 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

About this document

Intended audience

This document is intended for customers who want to increase the security level of their embedded platforms
using a OPTIGA™ TPM SLx 9670 TPM2.0 from Infineon Technologies in combination with the Open Source TPM
Software Stack 2.0 (TSS 2.0) and like to evaluate how to incorporate TLS with the TPM for their target
applications.

This application note was tested using a Raspberry Pi® 3B+/4 and Raspbian Buster with desktop and
recommended software with kernel version 4.19 [7].

Application Note 4 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Table of contents

Table of contents

About this document ... 2

Table of contents .. 4

List of figures ... 5

1 The Transport Layer Security (TLS 1.2) ... 6

2 TLS Hardening by OPTIGA™ SLx 9670 TPM2.0 .. 7

2.1 Using SLx 9670 TPM2.0 to Harden the TLS Session ... 7
2.2 tpm2-tss-engine OpenSSL Plug-In.. 7
2.3 Using tpm2-tss-engine .. 8

2.3.1 Sanity-Test.. 8

2.4 OpenSSL Version ... 9

2.5 Using OpenSSL and the TPM2-TSS Engine to Create PKI Used in TLS session. 9
2.5.1 TPM 2.0 Key Management .. 9
2.5.2 Creating OpenSSL Configuration File .. 10
2.5.3 Creating the Root CA and Its Certificate .. 13

2.5.4 Creating the Intermediate CA and Its Certificate .. 16

2.5.5 Creating Client/Endpoint Key Pair Using SLx 9670 TPM2.0 .. 19
2.5.6 Creating Client/Endpoint CSR Using SLx 9670 TPM2.0 ... 19
2.5.7 Signing Client/Endpoint CSR with RootCA .. 21

2.5.8 Creating Server Certificate ... 22

2.6 Creating an OpenSSL S_Server ... 23

2.7 Creating an OpenSSL S_Client .. 24

3 Decoding SSL/TLS Traffic using TShark .. 29

3.1 Installing TShark.. 29

3.2 Available Network Interfaces to use with TShark .. 29

3.3 Testing the Capture of Network Traffic with TShark ... 30
3.4 Capturing a TLS Session using TShark ... 31

4 References ... 39

Revision history... 40

Application Note 5 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

List of figures

List of figures

Figure 1 Sanity test for TSS Engine ... 9
Figure 2 OpenSSL version ... 9

Figure 3 TPM 2.0 Key Wrapping ... 9
Figure 4 Creating directory structure ... 10
Figure 5 OpenSSL Configuration File .. 10
Figure 6 Copying openssl.cnf reference file ... 13

Figure 7 Root CA Distinguished Name or DN .. 14

Figure 8 Root CA Certificate .. 15
Figure 9 Creating Intermediate CA CSR .. 16
Figure 10 Intermediate CA Certificate Generation ... 17
Figure 11 Verify Intermediate CA vs. Root CA ... 17

Figure 12 Intermediate CA Certificate ... 18
Figure 13 Client/Endpoint Key Pair wrapped by TPM .. 19

Figure 14 Client/Endpoint CSR Information ... 20
Figure 15 Client/Endpoint CSR .. 21
Figure 16 Signing Client CSR with Intermediate CA ... 21

Figure 17 Client Certificate Chain verification .. 21
Figure 18 Client/Endpoint Certificate ... 22
Figure 19 Server Certificate ... 23

Figure 20 Client Certificate Chain verification .. 23

Figure 21 OpenSSL S_Server ... 24

Figure 22 OpenSSL S_Client and S_Server TLS Handshake hardened by OPTIGA™ SLx 9670 TPM2.0 25
Figure 23 OpenSSL S_Client and S_Server TLS Cipher .. 26

Figure 24 OpenSSL S_Client and S_Server TLS session flow ... 27

Figure 25 TShark Install ... 29

Figure 26 Network Interface detected in Raspberry Pi® 3B+/4 .. 29
Figure 27 TShark capturing terminal window .. 30

Figure 28 Terminal window 2 .. 30
Figure 29 Opening S_Server .. 31

Figure 30 Start of TShark capture task ... 31
Figure 31 S_Client transaction .. 32
Figure 32 TShark captured packets .. 32
Figure 33 Reading tls.pcap file using TShark.. 33

Figure 34 TLS Client Hello ... 34

Figure 35 TLS Server Hello .. 35
Figure 36 TLS Handshake Protocol Certificate ... 36
Figure 37 TLS Creation of Session Ticket : All communication are encrypted at this point 37

Application Note 6 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

The Transport Layer Security (TLS 1.2)

1 The Transport Layer Security (TLS 1.2)

TLS are cryptographic protocols designed to provide secure communication over insecure infrastructure. When
these protocols are properly deployed, you can open a communication channel to an arbitrary service on the
Internet and have certain level of security and assurance that it will be talking with the correct server and

exchange information safely (confidentiality). These protocols protect the communication link.

These are the main objectives of TLS:

 Cryptographic Security

o Enables Authentication, Confidentiality and Integrity in a communication between two parties

that exchange information.

 Interoperability

o TLS protocols are not system dependent. They can be used for example in Linux, Android, Bare
Metal systems.

 Extensibility

o TLS is a framework for the development of cryptographic protocols. TLS looks to be
independent from cryptographic primitives, like ciphers and hashing functions.

We will discuss in section 2.1 [Using SLx 9670 TPM2.0 to Harden the TLS Session] some of the disadvantages of
using software based TLS libraries solely and how to achieve a higher level of security and assurance when

using SLx 9670 TPM2.0.

Application Note 7 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

2 TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

At the heart of every TPM software implementation there is the TPM Software Stack (TSS). It is a middleware to
support, improve and simplify TPM usage for programmers. In general, the TSS features a layered design to fit
various requirements from application developers by providing different user APIs with varying abstraction
layers and functionality.

2.1 Using SLx 9670 TPM2.0 to Harden the TLS Session

TLS is used by web services and IoT devices to transmit sensitive information between client/Endpoint and
Server/Cloud applications. TLS provides authenticated key exchange using asymmetric cryptography, data
confidentiality using symmetric encryption and message integrity using message authentication codes scheme.

However, these crypto primitives are stored in system memory and do not provide any trustworthiness
assurance of the involved endpoint.

The drawback is that their implementation is using software library modules that store private keys in
application or secure memory and have proven to contain bugs or vulnerabilities which have been exploited for

the last several years.

By using SLx 9670 we can embed crypto operations inside dedicated fixed TPM 2.0 function calls used by TLS
protocols, like for example using TPM 2.0 as the source of entropy for the TLS required random number.

The scope of this application note is to show the benefit of using SLx 9670 TPM2.0 to protect the private key

involved in the TLS handshake process. This is only one of different ways SLx 9670 TPM2.0 can help harden a

TLS session. Token Biding is another.

Token Binding is an extension to TLS that provides stronger authentication and longer, more robust sessions.

The idea behind token binding is “proof of possession”. The challenge with tokens is that they’re only as secure

as where you store them. Token binding uses cryptographic key pairs and TPM 2.0 for secure storage.

With token binding, man in the middle attacks can’t forward requests or replay credentials because they can’t

prove they have the key bound to the token.

Token Binding will not be covered in this application note. For more information about Token Binding, refer to
[9]

2.2 tpm2-tss-engine OpenSSL Plug-In

Enhanced System API (ESAPI) is part of the open source software stack for TPM 2.0 “TSS”. It makes work easier
for developers who want to use the Trusted Platform Module (TPM) 2.0 – a standardized hardware-based
security solution for securing industrial, automotive and other applications such as network equipment. This is
the first open source TPM middleware that complies with the Software Stack (TSS) Enhanced System API

(ESAPI) specification of the Trusted Computing Group (TCG), providing significant value to the open source
community.

Application Note 8 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

The ease of integration on Linux and other embedded platforms comes with the release of the TPM 2.0 ESAPI
stack which speeds up the adoption of TPM 2.0 in embedded systems such as network equipment and

industrial systems.

You can find the ESAPI TPM 2.0 TSS stack within the tpm2-software open-source project [2].

Note: Before moving on with this application note a pre-requisite is to have the following components of

the tss2-software package installed:

o TPM Software Stack 2.0 (tpm2-tss)

o TPM2 Access Broker & Resource Manager (tpm2-abrmd)

o TPM2 Tools (tpm2-tools)

o TPM2 TSS Engine (tpm2-tss-engine)

o Cryptsetup (cryptsetup)

The details on how to install and test these packages are part of the documentation on GitHub [2] and can be
found within the TPM Evaluation Kit. For more information about the TPM Evaluation Kit, please get in touch

with your local sales.

The tpm2-tss-engine project implements a cryptographic engine for OpenSSL [3] for Trusted Platform
Module (TPM 2.0) [1] using the tpm2-tss [2] software stack that follows the Trusted Computing Groups

(TCG) TPM Software Stack (TSS 2.0) [5]. It uses the Enhanced System API (ESAPI) [6] interface of the TSS 2.0

for downwards communication. It supports RSA decryption and signatures as well as ECDSA signatures.

2.3 Using tpm2-tss-engine

We will be using the tpm2-tss-engine as an OpenSSL engine to harden the TLS channel using TPM 2.0.

The development platform used for this task will be the Raspberry Pi® 3B+/4 along the OPTIGA™ IRIDIUM 9670
TPM2.0 board.

To demonstrate the hardening of the TLS session between a Client/Endpoint and Server/Cloud the OpenSSL
S_Server and S_Client modules will be used along with the local host capability of Linux running on Raspberry

Pi® 3B+/4.

2.3.1 Sanity-Test

The following command can be executed to check if the tpm2-tss-engine has been installed successfully.

Code Listing 1 Sanity test for the TSS Engine

001 openssl engine -t -c tpm2tss

It should retrieve the engine information about the name and the available functions as shown in Figure 1.

https://www.openssl.org/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.github.org/tpm2-software/tpm2-tss
https://trustedcomputinggroup.org/work-groups/software-stack/
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_Version-0.9_Revision-04_reviewEND030918.pdf

Application Note 9 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 1 Sanity test for TSS Engine

2.4 OpenSSL Version

Usage of S_Server with HSM-protected private keys is only supported on OpenSSL 1.1.0 and newer. To

check the installed version of OpenSSL, run the following command.

Figure 2 OpenSSL version

2.5 Using OpenSSL and the TPM2-TSS Engine to Create PKI Used in TLS

session.

2.5.1 TPM 2.0 Key Management

The Trusted Platform Module (TPM) greatest strength is to enable an application the use of cryptographic keys
while keeping them safe inside the TPM. It can both generate and import externally generated keys.

Each key has individual security controls, which can include a password or an enhanced authorization policy.
These keys can be certified by the TPM and used to certify other keys as well.

In order to manage internal memory efficiently, the TPM, has the capability to wrap keys (encrypt) with the

parent Key and store them (the encrypted key) outside TPM and still not compromising the overall security of

the system. When the time comes to use this key, the wrapped Key is loaded into the TPM. Only the specific

TPM used to wrap the key can unwrap it and use it, as shown in Figure 3.

Figure 3 TPM 2.0 Key Wrapping

Application Note 10 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

2.5.2 Creating OpenSSL Configuration File

To establish a TLS session between a Client/Endpoint and the Server/Cloud with OpenSSL and TPM2-TSS
engine we need to create an OpenSSL configuration file. This file will have the configuration we will be using to
create our rootCA, Server/Cloud, Client/Endpoint Certificates and CSRs. These are part of a Public Key
Infrastructure (PKI).

Create a working directory called “tpm_hardened_tls”. Within this directory create the “pki” directory
structure and the “tpm2” directory structure.

Code Listing 2

001 mkdir tpm_hardened_tls

002 cd tpm_hardened_tls

003 mkdir -p pki/{csr,certs,crl,newcerts,private}

004 mkdir -p tpm2/{csr,certs,tpm_wrapped_keys}

Figure 4 Creating directory structure

Create a new file with the name “openssl.cnf”, “index.txt”, “index.txt.attry”, under the tpm_hardened_tls

directory.

Code Listing 3

001 touch ./pki/openssl.cnf

002 touch ./pki/index.txt

003 touch ./pki/index.txt.attry

Figure 5 OpenSSL Configuration File

Then copy and paste the OpenSSL Configuration File [Code Listing 4] into “openssl.cnf”.

Code Listing 4 OpenSSL Configuration File

OpenSSL intermediate CA configuration file.

Copy to `/root/ca/intermediate/openssl.cnf`.

[ca]

Application Note 11 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

`man ca`

default_ca = CA_default

[CA_default]

Directory and file locations.

dir = ./pki

certs = $dir/certs

crl_dir = $dir/crl

new_certs_dir = $dir/newcerts

database = $dir/index.txt

serial = $dir/serial

RANDFILE = $dir/private/.rand

The root key and root certificate.

private_key = $dir/private/rootCA.key

certificate = $dir/private/rootCA.crt

For certificate revocation lists.

crlnumber = $dir/crlnumber

crl = $dir/crl/intermediate.crl

crl_extensions = crl_ext

default_crl_days = 30

SHA-1 is deprecated, so use SHA-2 instead.

default_md = sha256

name_opt = ca_default

cert_opt = ca_default

default_days = 375

preserve = no

policy = policy_loose

[policy_strict]

The root CA should only sign intermediate certificates that match.

See the POLICY FORMAT section of `man ca`.

countryName = match

stateOrProvinceName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[policy_loose]

Allow the intermediate CA to sign a more diverse range of certificates.

See the POLICY FORMAT section of the `ca` man page.

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[req]

Options for the `req` tool (`man req`).

default_bits = 2048

distinguished_name = req_distinguished_name

string_mask = utf8only

SHA-1 is deprecated, so use SHA-2 instead.

default_md = sha256

Application Note 12 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Extension to add when the -x509 option is used.

x509_extensions = v3_ca

[req_distinguished_name]

See <https://en.wikipedia.org/wiki/Certificate_signing_request>.

countryName = Country Name (2 letter code)

stateOrProvinceName = State or Province Name

localityName = Locality Name

0.organizationName = Organization Name

organizationalUnitName = Organizational Unit Name

commonName = Common Name

emailAddress = Email Address

Optionally, specify some defaults.

countryName_default = US

stateOrProvinceName_default = California

localityName_default = Milpitas

0.organizationName_default = Infineon

organizationalUnitName_default = DSS

emailAddress_default =

[v3_ca]

Extensions for a typical CA (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[v3_intermediate_ca]

Extensions for a typical intermediate CA (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true, pathlen:0

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[usr_cert]

Extensions for client certificates (`man x509v3_config`).

basicConstraints = CA:FALSE

nsCertType = client, email

nsComment = "OpenSSL Generated Client Certificate"

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = clientAuth, emailProtection

[server_cert]

Extensions for server certificates (`man x509v3_config`).

basicConstraints = CA:FALSE

nsCertType = server

nsComment = "OpenSSL Generated Server Certificate"

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer:always

keyUsage = critical, digitalSignature, keyEncipherment

extendedKeyUsage = serverAuth

[crl_ext]

Extension for CRLs (`man x509v3_config`).

authorityKeyIdentifier=keyid:always

[ocsp]

Extension for OCSP signing certificates (`man ocsp`).

basicConstraints = CA:FALSE

Application Note 13 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

keyUsage = critical, digitalSignature

extendedKeyUsage = critical, OCSPSigning

Figure 6 Copying openssl.cnf reference file

2.5.3 Creating the Root CA and Its Certificate

At the core of the PKI there is the Root CA where the chain of trust originates. In normal practice you would

use an established CA like for example GlobalSign [10].

For the purpose of this application note we will use OpenSSL to create a Root Certificate Authority. This is

not advised for production purposes.

Within our working directory “tpm_hardened_tls”, create an RSA key pair.

Use OpenSSL to create the Root CA Key pair.

Code Listing 5 Create RootCA key pair

001 openssl genrsa -out ./pki/private/rootCA.key 2048

Creating a Self-Signed RootCA Certificate

Code Listing 6 Self-Signed RootCA Certificate

001 openssl req -config ./pki/openssl.cnf -key

./pki/private/rootCA.key -new -x509 -days 7300 -sha256 -extensions

v3_ca -out ./pki/private/rootCA.crt

002 echo 1000 > ./pki/serial

Application Note 14 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Enter the Root CA certificate information as shown in Figure 7.

Figure 7 Root CA Distinguished Name or DN

Reading our RootCA

Code Listing 7

001 openssl x509 -in ./pki/private/rootCA.crt -noout -text

Application Note 15 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 8 Root CA Certificate

Application Note 16 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

2.5.4 Creating the Intermediate CA and Its Certificate

From a security perspective it is always advised to create an intermediate CA signed by the Root CA.

 Create the Intermediate CA Key Pair.

Code Listing 8

001 openssl genrsa -out ./pki/private/intCA.key 2048

Create a CSR for the Intermediate CA

Code Listing 9

001 openssl req -config ./pki/openssl.cnf -extensions

v3_intermediate_ca -new -sha256 -key ./pki/private/intCA.key -out

./pki/csr/intCA.csr

Enter the CSR information as shown in Figure 9.

Figure 9 Creating Intermediate CA CSR

Create the Intermediate CA certificate

Code Listing 10

001 openssl ca -config ./pki/openssl.cnf -extensions

v3_intermediate_ca -days 3650 -notext -md sha256 -in

./pki/csr/intCA.csr -out ./pki/private/intCA.crt

Application Note 17 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 10 Intermediate CA Certificate Generation

Verify Signature process

Code Listing 11

001 openssl verify -verbose -x509_strict -CAfile

./pki/private/rootCA.crt ./pki/private/intCA.crt

Figure 11 Verify Intermediate CA vs. Root CA

Reading our Intermediate CA Certificate

Code Listing 12

001 openssl x509 -in ./pki/private/intCA.crt -noout -text

Application Note 18 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 12 Intermediate CA Certificate

Note: As mentioned before, the exercise of creating the Root CA and Intermediate CA using OpenSSL are

for demonstration purposes only. In real applications these would be managed by the Certificate

Authority like for example GlobalSign [10].

Application Note 19 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

2.5.5 Creating Client/Endpoint Key Pair Using SLx 9670 TPM2.0

Use SLx 9670 TPM2.0 OpenSSL engine to create a TPM 2.0 key pair for the Client/Endpoint.

Note: As explained in Section 2.5.1, the TPM wraps (encrypts) the private key and stores it outside
the TPM. The encrypted key blob [Figure 13] is encapsulated between “ -----BEGIN TSS2
PRIVATE KEY-----” and “-----END TSS2 PRIVATE KEY-----”

Create the Client/Endpoint key pair with Password Security Policy using SLx 9670 TPM2.0. Set the password to
“abc”. This is only for demonstration purposes. DO NOT USE FOR PRODUCTION.

Code Listing 13

001 tpm2tss-genkey -a rsa -s 2048 ./tpm2/tpm_wrapped_keys/client.key

-p abc

Figure 13 Client/Endpoint Key Pair wrapped by TPM

2.5.6 Creating Client/Endpoint CSR Using SLx 9670 TPM2.0

Create the Client/Endpoint CSR using SLx 9670 TPM2.0. The key pair we just created will be managed by the SLx
9670 TPM2.0.

Note: Remember that the private key is wrapped outside TPM 2.0 and will be loaded in order to be used
for this purpose. Also, the key pair has been configured with a security policy that requires a
password for the key to be used.

Code Listing 14

001 openssl req -keyform engine -engine tpm2tss -config

./pki/openssl.cnf -key ./tpm2/tpm_wrapped_keys/client.key -new -out

./tpm2/csr/client.csr

Application Note 20 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Note: When asked for the password, input the set password “abc”.

Fill the Certificate Request Information as shown in Figure 14.

Figure 14 Client/Endpoint CSR Information

Read the Client/Endpoint CSR

Code Listing 15

001 openssl req -in ./tpm2/csr/client.csr -noout -text

Application Note 21 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 15 Client/Endpoint CSR

2.5.7 Signing Client/Endpoint CSR with RootCA

Use the Intermediate CA to sign the created Client/Endpoint CSR

Code Listing 16

001 openssl x509 -req -days 365 -in ./tpm2/csr/client.csr -CA

./pki/private/intCA.crt -CAkey ./pki/private/intCA.key -CAcreateserial

-out ./tpm2/certs/client.crt

Figure 16 Signing Client CSR with Intermediate CA

To verify the certificate chain, we use the parameter -untrusted for the Intermediate CA certificate file. This is

the parameter OpenSSL has assigned for this verification.

Code Listing 17

001 openssl verify -CAfile ./pki/private/rootCA.crt -untrusted

./pki/private/intCA.crt ./tpm2/certs/client.crt

Figure 17 Client Certificate Chain verification

Read the Client/Endpoint Certificate

Code Listing 18

001 openssl x509 -in ./tpm2/certs/client.crt -noout -text

Application Note 22 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 18 Client/Endpoint Certificate

The just created certificate will be used as part of the TLS handshake process by the client to authenticate the
server.

2.5.8 Creating Server Certificate

Now that we have created our Client/Endpoint key pair and certificate using SLx 9670 TPM2.0, we will replicate
the process to create the needed certificate for the server.

Code Listing 19

001 tpm2tss-genkey -a rsa -s 2048 ./tpm2/tpm_wrapped_keys/server.key

-p abc

002 openssl req -keyform engine -engine tpm2tss -config

./pki/openssl.cnf -key ./tpm2/tpm_wrapped_keys/server.key -new -out

./tpm2/csr/server.csr

003 openssl x509 -req -days 365 -in ./tpm2/csr/server.csr -CA

./pki/private/intCA.crt -CAkey ./pki/private/intCA.key -CAcreateserial

-out ./tpm2/certs/server.crt

004 openssl x509 -in ./tpm2/certs/server.crt -noout -text

Reading Server Certificate

Application Note 23 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 19 Server Certificate

Verifying the Certificate chain

Code Listing 20

001 openssl verify -CAfile ./pki/private/rootCA.crt -untrusted

./pki/private/intCA.crt ./tpm2/certs/server.crt

Figure 20 Client Certificate Chain verification

2.6 Creating an OpenSSL S_Server

We will create now an OpenSSL server. For this purpose, we are using the local host capabilities to run this
example on the same Linux machine.

Create an openssl S_Server instance using a terminal window session.

Application Note 24 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Code Listing 21 OpenSSL S_Server terminal window

001 openssl s_server -www -Verify 1 -cert ./tpm2/certs/server.crt -

key ./tpm2/tpm_wrapped_keys/server.key -keyform engin -engine tpm2tss -

accept 127.0.0.1:8444

Note: When ask for the password to use the key, input the set password during key creation “abc”.

Figure 21 OpenSSL S_Server

2.7 Creating an OpenSSL S_Client

We will create an OpenSSL S_Client and connect through a TLS session with OpenSSL S_Server (The two

terminal windows and services running on the same Linux machine).

Open a new terminal window and go to our root directory for this exercise (tpm_hardened_tls) and run the
following command.

Create an OpenSSL S_Client.

Code Listing 22 OpenSSL S_Client terminal window

001 openssl s_client -cert ./tpm2/certs/client.crt -key

./tpm2/tpm_wrapped_keys/client.key -keyform engine -engine tpm2tss -

connect localhost:8444

Note: Note that both S_Server and S_Client will be using TPM2-TSS Engine alongside SLx 9670 TPM2.0 to
interact and establish a TLS session.

The output of the connection is divided in two parts

a) The TLS handshake

b) TLS Cipher

Note: When using self-signed certificates in OpenSSL, as a precaution it will give a warning stated as an
“error”: Verification error: self-signed certificate in certificate chain.

To verify that our certificate chain is valid we can run the following commands

As shown in Figure 22 and Figure 23 the complete TLS handshake process was successful, and the encrypted

channel established.

Application Note 25 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 22 OpenSSL S_Client and S_Server TLS Handshake hardened by OPTIGA™ SLx 9670 TPM2.0

Application Note 26 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 23 OpenSSL S_Client and S_Server TLS Cipher

As a summary, this was the process that followed the TLS session.

Application Note 27 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

Figure 24 OpenSSL S_Client and S_Server TLS session flow

 Client Hello: The Client Hello is the first message in the TLS handshake from the client to the server.

The Client Hello message includes the highest version of the TLS protocol the client supports, a random

number generated by the client, cipher suites and the compression algorithm supported by the client,
and an optional session identifier.

 Server Hello message is the response from the Server once it receives the Client Hello. The Server
Hello is the first message from the server to the client. To be precise, the Server Hello is the first

message from the server to the client, which is generated at the TLS layer. The Server Hello message

includes the highest version of TLS protocol that both the client and the server can support, a random

number generated by the server, the strongest cipher suite, and the compression algorithm that both
the client and the server can support. The Server can use the TPM as source of entropy, that is, use TPM
to generate the random number.

 Server Certificates: After the Server Hello message is sent to the client, the server sends its public
certificate, along with other certificates, up to the root certificate authority (CA) in the certificate chain.

The client must validate these certificates to accept the identity of the server.

 Key Generation: At this point, the client and the server have exchanged all the required materials to
generate the master secret. The master secret is generated using the client random number, the server

random number, and the premaster secret.

 Change Cipher Spec: Message to the server to indicates that all messages generated from here onward

are protected with the keys already established.

Application Note 28 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TLS Hardening by OPTIGA™ SLx 9670 TPM2.0

 Client Finish Message: Last message from the client to the server. It’s the hash of the complete

message flow in the TLS handshake encrypted by the already-established keys. Once the server
receives the Finished message from the client, it responds back with the Change Cipher
Spec Message. This indicates to the client that the server is ready to start communicating with the

secret keys already established.

 Server Finish Message: This is like the Finished message generated by the client and includes the hash

of the complete message flow in the handshake encrypted by the generated cryptographic keys. This
completes the TLS handshake and here onward both the client and the server can send data over an

encrypted channel.

Note: When the server demands TLS mutual authentication, then the server will request the client
certificate. The client certificate request message from the server includes a list of certificate

authorities trusted by the server and the type of the certificate. After that, the server sends

the Server Hello Done message to the client. This is an empty message that only indicates to the
client that the server has completed its initial phase in the handshake.

 If the server demands the client certificate, now the client sends its public certificate along with

all other certificates in the chain up to the root certificate authority (CA) required to validate the

client certificate.

 Client Key Exchange Message: After the Server Hello message is sent to the client, the server sends its
public certificate, along with other certificates, up to the root certificate authority (CA) in the certificate
chain. The client must validate these certificates to accept the identity of the server.

In the next section will use TShark as a sniffer to capture and log the TLS session. This tool will enable us to see

the actual process that is followed as described in Figure 24.

Application Note 29 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

3 Decoding SSL/TLS Traffic using TShark

TShark is a network protocol analyzer. It lets the capture of data packets from a live network or read packets
from a previously save captured.

TShark native format of captured files is “pcapng”, which is also the format used by WireShark[8].

We will be using TShark to decode the traffic between the S_Server and S_Client. This will allow to monitor and
follow the TLS handshake exchange.

3.1 Installing TShark

Execute the following commands to install TShark on Raspberry Pi® 3B+/4 and verify that it installed correctly.

Code Listing 23

001 sudo apt-get update

002 sudo apt-get install tshark -y

003 tshark -v

Figure 25 TShark Install

3.2 Available Network Interfaces to use with TShark

Displaying available network interfaces that TShark can use

Code Listing 24

001 sudo tshark -D

Figure 26 Network Interface detected in Raspberry Pi® 3B+/4

Application Note 30 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

3.3 Testing the Capture of Network Traffic with TShark

To test that all is working before moving on, we will capture a loopback transaction using the available Local
Host: 127.0.0.1.

Open an additional terminal window (additional to the one we are using for TShark)

Code Listing 25 TShark terminal window

001 tshark -i 4

Code Listing 26 Terminal window 2

001 ping 127.0.0.1

To escape the capturing by TShark and the ping sequence use Linux terminal escape sequence “ctrl + c”

Figure 27 TShark capturing terminal window

At the end of the capture TShark will indicate the number of packets that were captured. In this case 10.

Figure 28 Terminal window 2

Application Note 31 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

3.4 Capturing a TLS Session using TShark

Within the working directory (tpm_hardened_tls), create a new directory name for example “tls_log”.

Additionally, we will open three terminal windows:

1. TShark terminal window

2. S_Server terminal window

3. S_Client terminal window

Code Listing 27 TShark terminal window

001 mkdir tls_log

002 cd tls_log

Open the S_Server as previously demonstrated [Code Listing 21].

Note: Remember that we are using TPM password policy to secure the use of the private key. The

password is “abc”

Code Listing 28 S_Server terminal window

001 openssl s_server -www -Verify 1 -cert ./tpm2/certs/server.crt -

key ./tpm2/tpm_wrapped_keys/server.key -keyform engine -engine tpm2tss

-accept 127.0.0.1:8444

Figure 29 Opening S_Server

On the TShark terminal window we need to start the capturing task.

Tls.pcap will be the log file created by TShark

Code Listing 29 TShark terminal window

001 tshark -s0 -w tls.pcap -i 4

Figure 30 Start of TShark capture task

Application Note 32 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

In our workspace root directory (where OpenSSL conf file and self-signed certificate are located). Open the
S_Client as previously demonstrated [Code Listing 22]

Code Listing 30 S_Client terminal window

001 openssl s_client -cert ./tpm2/certs/client.crt -key

./tpm2/tpm_wrapped_keys/client.key -keyform engine -engine tpm2tss -

connect localhost:8444

We will get the same interaction as in our previous section [Code Listing 22]

Figure 31 S_Client transaction

On the TShark window we will see that 13 packages were captured. Stop the TShark task as we will work with
the captured file

Figure 32 TShark captured packets

On the tls_log directory we will work with the captured file to get the information we want. For
this we will use TShark as well.

Application Note 33 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

Code Listing 31 TShark terminal window

001 tshark -r tls.pcap -V -x -o "ssl.debug_file:ssldebug.log" -o

"ssl.desegment_ssl_records: TRUE" -o

"ssl.desegment_ssl_application_data: TRUE" -o

"ssl.keys_list:127.0.0.1,8444,http,server.pem" >> TLS_HandShake.log

What the above command did is that it read the captured file with TLS handshake process and saved it to

TLS_HandShake.log. The reason we do this is that the file format used by TShark is not readable by normal
means.

Figure 33 Reading tls.pcap file using TShark

Now that we have the transaction between the S_Server and S_Client in a workable form we will filter the
“Secure Socket Layer” interactions which are the ones of interest to us.

Code Listing 32 TShark terminal window

001 grep -A70 "Secure Sockets Layer" TLS_HandShake.log

These are the different steps that happened during the S_Server and S_Client TLS handshake process.

Application Note 34 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

Figure 34 TLS Client Hello

Application Note 35 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

Figure 35 TLS Server Hello

Application Note 36 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

Figure 36 TLS Handshake Protocol Certificate

Application Note 37 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Decoding SSL/TLS Traffic using TShark

Figure 37 TLS Creation of Session Ticket : All communication are encrypted at this point

Application Note 38 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

TShark is a useful tool that enables engineers and hackers to monitor transactions in a network. The important
fact of using OPTIGA™ SLx 9670 TPM 2.0 as hardening element of a TLS session is that the private key used to

enable the session is guarded by OPTIGA™ SLx 9670 TPM 2.0. The use of the Private Key is also protected by a
TPM 2.0 password policy. More complex policies can be created around TPM 2.0 objects. These are out of the

scope of this application note.

As we have mentioned the TLS layer sits on top of the Transport Layer and provides the means of encrypting
the communication channel between two entities. Additionally, TLS is a point to point transaction and not end
to end. In other words, the TLS channel is established between two parties.

A higher level of security can be achieved by implementing Token Binding which is an extension to TLS.Token
Binding Protocol is established by the user-agent generating a Private Key-Public Key pair (managed by TPM)
per target server, and proving possession of the private key on every TLS connection to the target server.

https://ldapwiki.com/wiki/User-agent
https://ldapwiki.com/wiki/Public%20Key
https://ldapwiki.com/wiki/TPM
https://ldapwiki.com/wiki/TLS

Application Note 39 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

References

4 References

[1] http://www.infineon.com/tpm

[2] https://github.com/tpm2-software

[3] https://www.openssl.org/

[4] https://trustedcomputinggroup.org/work-groups/trusted-platform-module/

[5] https://trustedcomputinggroup.org/work-groups/software-stack/

[6] https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_Version-0.9_Revision-

04_reviewEND030918.pdf

[7] https://www.raspberrypi.org/downloads/raspbian/

[8] https://www.wireshark.org/

[9] https://www.rfc-editor.org/rfc/rfc8472.txt

[10] https://www.globalsign.com/en/

https://github.com/tpm2-software
https://www.openssl.org/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/software-stack/
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_Version-0.9_Revision-04_reviewEND030918.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_Version-0.9_Revision-04_reviewEND030918.pdf
https://www.raspberrypi.org/downloads/raspbian/
https://www.wireshark.org/
https://www.rfc-editor.org/rfc/rfc8472.txt
https://www.globalsign.com/en/

Application Note 40 of 41 V 1.0

 2020-04-27

OPTIGA™ TPM Application Note
Integration of TLS Functionality for OPTIGA™ TPM SLx 9670 TPM 2.0

Revision history

Revision history

Document

version

Date of release Description of changes

1.0 27.04.2020 Initial version

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-04-27

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2020 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:
dsscustomerservice@infineon.com

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:dsscustomerservice@infineon.com
http://www.infineon.com/

