MOSFET – Power, Single, **N-Channel** 30 V, 4.1 mΩ, 90 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

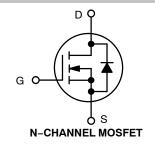
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	30	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	90	Α
Current R _{θJC} (Notes 1 & 3)	Steady	T _C = 100°C		64	
Power Dissipation R _{θJC}	State	T _C = 25°C	P_{D}	57	W
(Note 1)		T _C = 100°C		28	
Continuous Drain		T _A = 25°C	I _D	22	Α
Current R _{θJA} (Notes 1, 2 & 3)	Steady State	T _A = 100°C		16	
Power Dissipation R _{θJA}		T _A = 25°C	P_{D}	3.5	W
(Notes 1 & 2)		T _A = 100°C		1.7	
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	395	Α
Operating Junction and S	T _J , T _{stg}	-55 to 175	°C		
Source Current (Body Did	I _S	75	Α		
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, I _{L(pk)} = 6.9 A)			E _{AS}	133	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

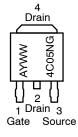
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Note 1)	$R_{\theta JC}$	2.65	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	43	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)}	I _D	
30 V	4.1 mΩ @ 10 V	90 A	
	6.0 mΩ @ 4.5 V	90 K	

DPAK CASE 369C STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

A = Assembly Location

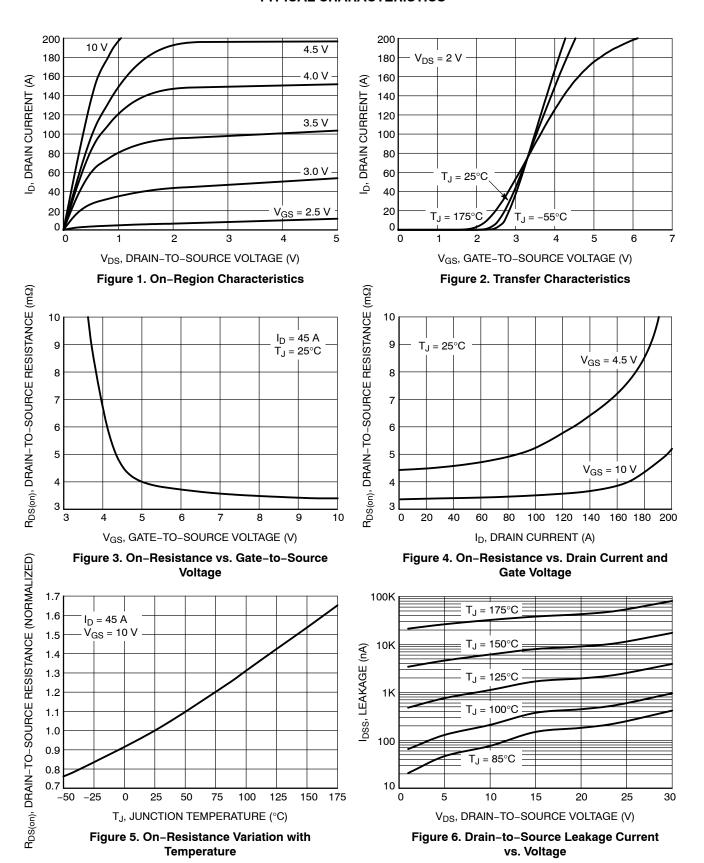
Y = Year

WW = Work Week

4C05N = Device Code

G = Pb-Free Package

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	: 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				14.9		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	Voc = 0 V	T _J = 25°C			1.0	μΑ
		$V_{GS} = 0 V$, $V_{DS} = 24 V$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 4)	•		•		•	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μΑ	1.3		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D$	= 45 A		3.4	4.1	mΩ
		V _{GS} = 4.5 V, I _E	₎ = 45 A		4.5	6.0	
Forward Transconductance	9FS	$V_{DS} = 2 V, I_D$	= 45 A		98		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCES		•		•	•	
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 25 \text{ V}$			1970		pF
Output Capacitance	C _{oss}				725		-
Reverse Transfer Capacitance	C _{rss}				30		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 24 V, I _D = 45 A			31		nC
Total Gate Charge	Q _{G(TOT)}				14		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 24 V, I _D = 45 A			3.3		1
Gate-to-Source Charge	Q _{GS}				6.2		
Gate-to-Drain Charge	Q _{GD}	10 - 40 /	``` 		3.2		
Plateau Voltage	V _{GP}	1			3.1		V
Gate Resistance	R_{G}				1.0		Ω
SWITCHING CHARACTERISTICS (Note 5)	•		•		•	•	
Turn-On Delay Time	t _{d(on)}				11		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{D}$	s = 24 V.		107		
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 45 \rm A, R_{\rm G}$			17		
Fall Time	t _f				6.0		
DRAIN-SOURCE DIODE CHARACTERISTIC	S		•		•	-	
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.9	1.2	V
		I _S = 45 A	T _J = 125°C		0.8		
Reverse Recovery Time	t _{RR}				41		ns
Charge Time	ta	$V_{GS} = 0 \text{ V. dls/dt}$	= 100 A/us.		21		
Discharge Time	tb	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 45 \text{ A}$			20		
Reverse Recovery Charge	Q _{RR}				26		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

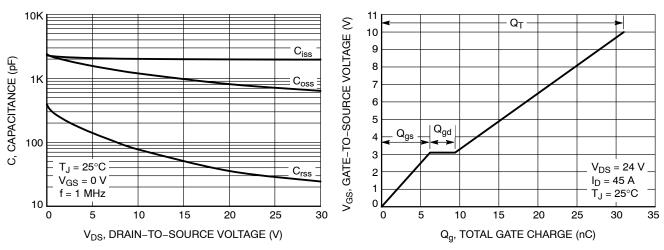


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

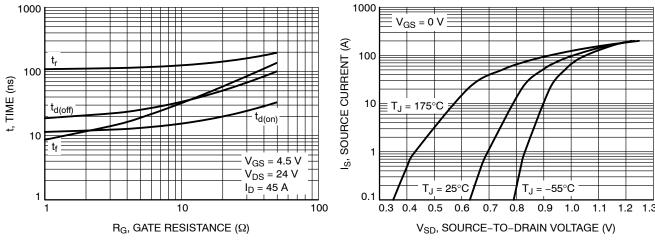


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

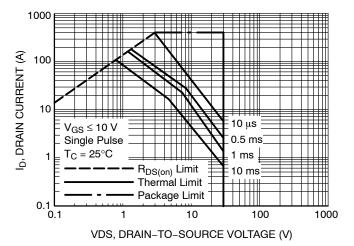


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

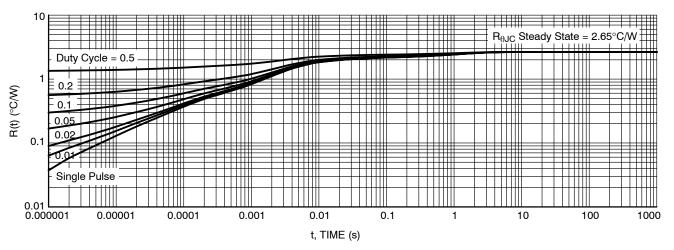


Figure 12. Thermal Impedance (Junction-to-Case)

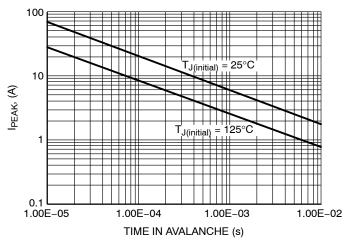


Figure 13. Avalanche Characteristics

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NVD4C05NT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

В

NOTE 7

| \oplus | 0.005 (0.13) lacktriangledown C

Ħ

Α1

- h3

Ո

TOP VIEW

L3

b2 e

L2 GAUGE

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1 Α

DETAIL A

C SEATING

C-

SIDE VIEW

DATE 21 JUL 2015

NOTES:

z

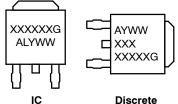
BOTTOM VIEW

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114	0.114 REF		REF	
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

ALTERNATE CONSTRUCTIONS **DETAIL A** ROTATED 90° CW **GENERIC** STYLE 1: STYLE 2: STYLE 3: STYLE 4: STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE PIN 1. GATE 2. DRAIN

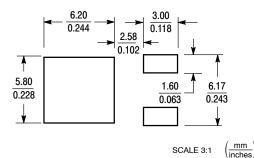

Z

BOTTOM VIEW

С

3. EMITTE 4. COLLE	ER .	3. SOURCE 4. DRAIN	3. AN	ODE THODE	3. GATE 4. ANODE	3.	CATHODE ANODE
STYLE 6: PIN 1. MT1 2. MT2 3. GATE	STYLE 7: PIN 1. GATE 2. COLLE 3. EMITT	PI	'LE 8: N 1. N/C 2. CATHODE 3. ANODE		ODE THODE SISTOR ADJUS	2.	0: CATHODE ANODE CATHODE
4. MT2	COLLE	ECTOR	CATHODE	4. CA	THODE	4.	ANODE

MARKING DIAGRAM*


XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking.

= Pb-Free Package

G

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative