

Ultra Low Power sub 1GHz Multichannels Radio Transceiver

The **RC-CC1310-XXX** module is based on Texas Instruments CC1310F128 component. This device combines a flexible, very low power RF transceiver with a powerful 48 MHz Cortex M3 microcontroller in a platform supporting multiple physical layers and RF standard.

RC-CC1310 - XXX

434=434MHz -----868=868MHz 915=915MHz

Frequency

Antenna Direction

- H

Sub-1Ghz technology is becoming one of the chief driving forces behind the **Internet of Things** (**lot**), in particular this type of module is ideal for this applications basically for the following reasons:

Ultra low power consumption, the consumption of this device is 5.5mA when receiving and 23.5mA when transmitting at +14dBm (13.4mA at +10dBm) in sleep mode the consumption is 0.6µA (microamps).

Long range operations, the sensitivity parameter is -110dBm at data rates of 50 kbps and down to -124dBm when the data rate is 0.625kbps.

Interference from other wireless communications can be overcome with 90dB of blocking. The RF output power levels can reach up to +14dBm.

All this ensure a robust signaling for long range communications.

SimpleLink-Easylink compatibility,ultra-low power platform designed (from TI) to easily implement the long-range connectivity with low power consumption on the Internet of Things projects (IoT).

TI-15.4 Stack, IEEE802.15.4e/g Standard Based Star Networking Software Designed for long range & robust star networks.

6LoWPAN compatibility with mesh network stack for **Contiki**.

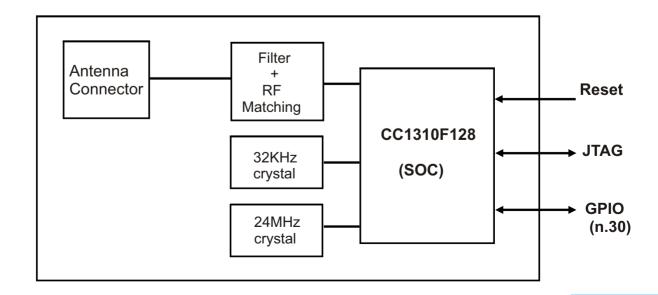
Applications:

- Low-Power Wireless Systems
- Smart Grid and Automatic Meter Reading
- Home and Building Automation
- Wireless Sensor Network
- 6LoWPAN systems

Feature:

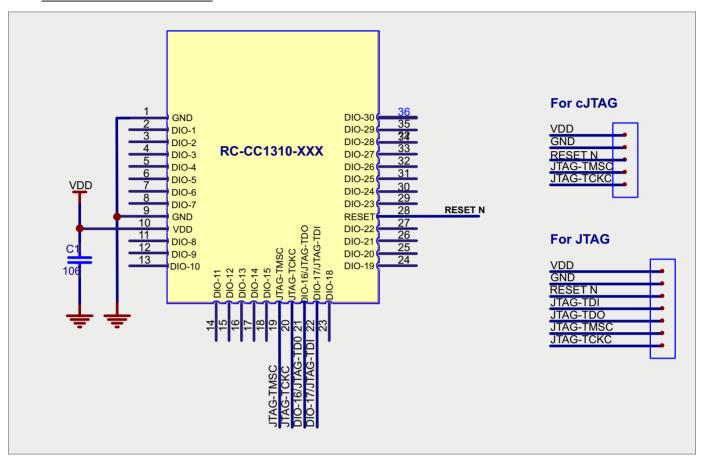
- IEEE 802.15.4g mode switch support
- Ultra Low consumption technology
- Powerful ARM Cortex M3
- Supported by the open platform Contiki 6LoWPAN.
- Very Small size

RC-CC1310-XXX					
Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Voltage	V _{cc}	1.8	3.00	3.8	VDC
Supply Current RX Mode	I _{CRX}		5.50		mA
Supply Current TX Mode +10dBm	I _{CTX1}		13.40		mA
Supply Current TX Mode +14dBm	I _{CTX2}		23.50		mA
Supply Current Standby Mode	I _{CSTB}		0,70		μΑ
Supply Current Shut Down Mode	I _{CSHU}		185		nA
Operative Frequency	F _{of}		433/868/915		MHz
Frequency Error	F		±10		ppm
RF Power Output 50ohm (*)	P _{oo}	-10.0		+14.0	dBm
RF Sensibility 50kbps	S _d		-110.0		dBm
RF Sensibility Long Range Mode 625bps	S _{LR}		-124.0		dBm
Data Rate	D	0,01		4.0	Mbit/s
Operative Temperature	T _{LR}	-30		+75	°C

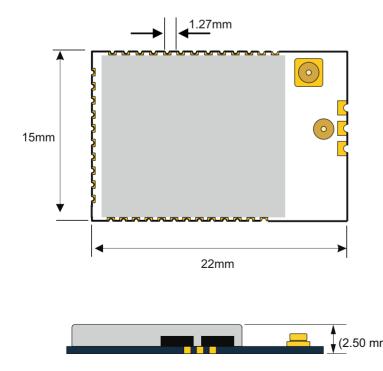

(*) Programmable parameter.

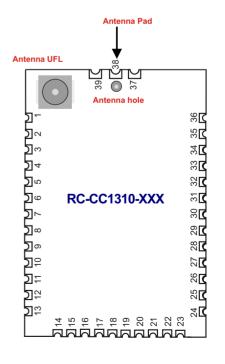
MICROCONTROLLER:

- Power ARM Cortex M3
- Up to 48MHz Clock Speed
- 128KB of On-System Programming Flash
- 8KB of SRAM for Cache (or as General-Purpose RAM)
- 20KB of Ultralow Leakege SRAM
- Support Over-the-Air Upgrade (OTA)


For more information and details, please refer to the CC1310 Texas Instruments datasheet.

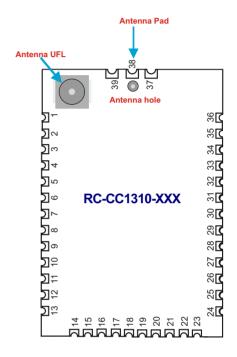
Block Diagram



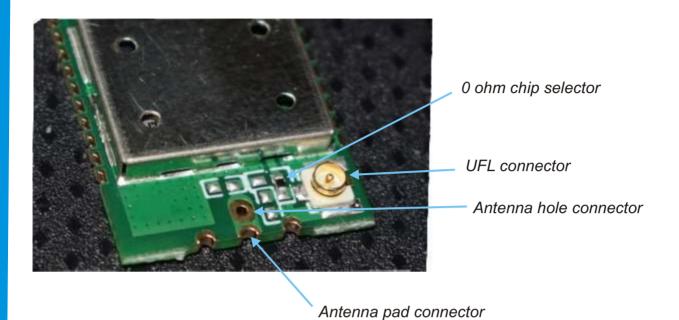


Reference Schematics

Mechanical Dimension



RC-CC1310-XXX-H


Terminal description RC-CC1310-XXX

Pads	Name	Description
1	GND	Ground
2	DIO-1	GPIO,Sensor Controller, High drive capability
3	DIO-2	GPIO, Sensor Controller, High drive capability
4	DIO-3	GPIO, Sensor Controller, High drive capability
5	DIO-4	GPIO, Sensor Controller, High drive capability
6	DIO-5	GPIO, Sensor Controller, High drive capability
7	DIO-6	GPIO, Sensor Controller, High drive capability
8	DIO-7	GPIO, Sensor Controller, High drive capability
9	GND	Ground
10	VDD	Power
11	DIO-8	GPIO
12	DIO-9	GPIO
13	DIO-10	GPIO
14	DIO-11	GPIO
15	DIO-12	GPIO
16	DIO-13	GPIO
17	DIO-14	GPIO
18	DIO-15	GPIO
19	JTAG-TMSC	JTAG TMSC, High drive capability
20	JTAG-TCKC	JTAG TCKC
21	DIO-16	GPIO,JTAG -TDO, High drive capability
22	DIO-17	GPIO,JTAG-TDI, High drive capability
23	DIO-18	GPIO
24	DIO-19	GPIO
25	DIO-20	GPIO
26	DIO-21	GPIO
27	DIO-22	GPIO
28	RESET-N	RESET, (Active low)
29	DIO-23	GPIO, Sensor Controller, Analog
30	DIO-24	GPIO, Sensor Controller, Analog
31	DIO-25	GPIO, Sensor Controller, Analog
32	DIO-26	GPIO, Sensor Controller, Analog
33	DIO-27	GPIO, Sensor Controller, Analog
34	DIO-28	GPIO, Sensor Controller, Analog
35	DIO-29	GPIO, Sensor Controller, Analog
36	DIO-30	GPIO, Sensor Controller, Analog
37	GND	Ground
38	Antenna	Antenna PAD
39	GND	Ground

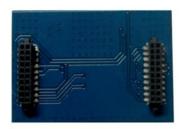
Type of Antenna connection

RC-CC1310-XXX-H

- Without UFL Connector
- Resistor direct on pcb antenna (hole and pad)

RC-CC1310-XXX

- With UFL Connector
- Resistor direct on the UFL connector

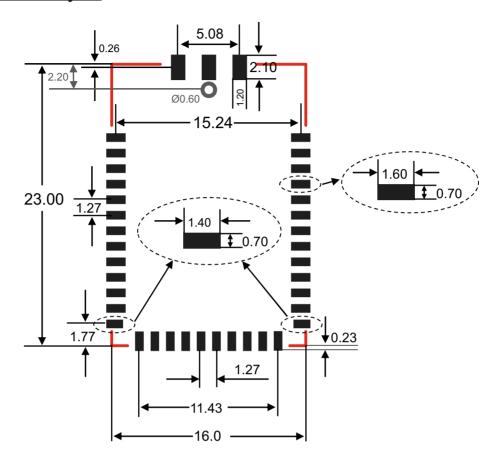


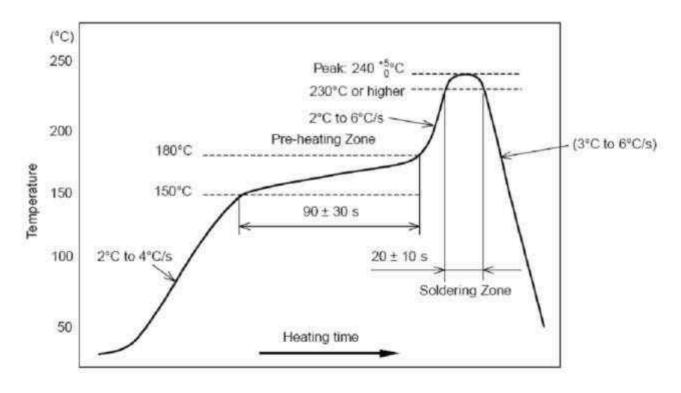
RC-CC1310-XXX Adapter board

To make immediate usable the RC-CC1310-XXX module with TI development systems has been realized the following board adapter.

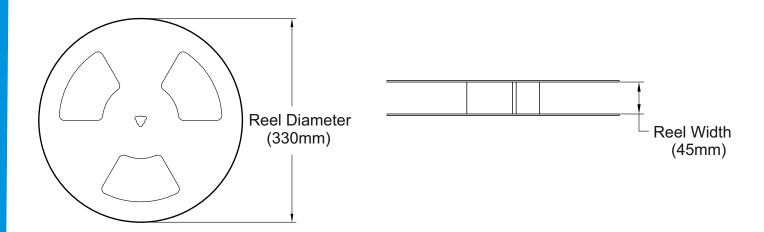
Adapter board front

Adapter board rear

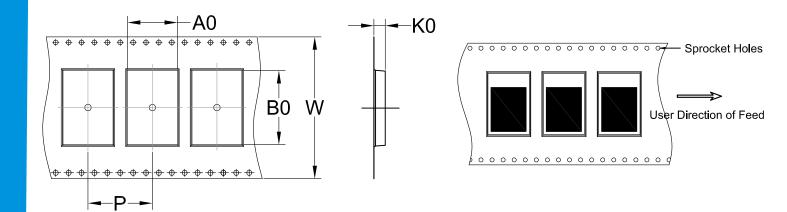

SMART RF06 Evaluation board (TI)


RC-CC1310-DK Evaluation kit

Recommended PCB Layout



Recommended Reflow Profile for Lead Free Solder



REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width	15.5mm	± 0.10mm
В0	Dimension designed to accommodate the component length	23.0mm	± 0.10mm
K0	Dimension designed to accommodate the component thickness	3.5mm	± 0.10mm
W	Overall width of the carrier tape	44.0mm	± 0.30mm
Р	Pitch between successive cavity centers	20.0mm	± 0.10mm