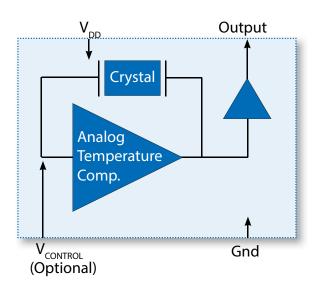


l Oscillator (TCXO) is a quartz stabilized. Clipr

Vectron's VT-860 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, Clipped sine wave output, analog temperature compensated oscillator, operating off a 3.3, 2.8, 2.5 or 1.8 volt supply in a hermetically sealed 2.0 x 1.6 mm ceramic package.


Features

- 13.000 52.000 MHz Output Frequency
- ±0.5 ppm Temperature Stability over -40 °C to 85 °C
- Optional Frequency Tuning
- Fundamental Crystal Design
- Gold over nickel contact pads
- Hermetically Sealed 2.0 x 1.6 mm Ceramic SMD package
- Product is compliant to RoHS directive
 and fully compatible with lead free assembly

Applications

- GNSS Modules
- LoRa Base Station
- Wireless Connectivity
- Point to Point Radio
- Manpack Radio
- Test and Measurement

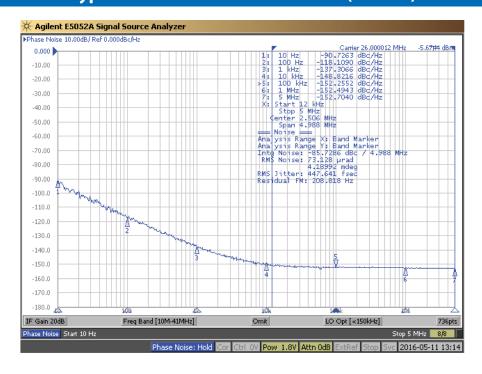
Block Diagram

Specifications

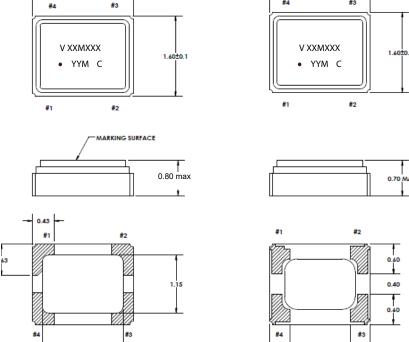
Table 1. Electrical Performance, Clipped Sine Wave							
Parameter	Symbol	Min.	Тур	Max	Units		
Output Frequency ¹ , Ordering Option	f_o	13		52	MHz		
Supply Voltage ² , Ordering Option	$V_{_{ m DD}}$	+1.8,	+1.8, +2.5, +2.8, +3.0, +3.3				
Supply Current	l _{DD}			2.3	mA		
Operating Temperature, Ordering Option	T _{OP}		°C				
	Frequency	y Stability					
Stability Over T _{OP} ³ , Ordering Option	F _{STAB}		±0.50, ±1.00		ppm		
Frequency Tolerance ⁴	F _{TOL}			±2.0	ppm		
Power Supply Stability, ±5%	F _{pwr}			±0.1	ppm		
Load Stability, ±10%	F _{LOAD}			±0.2	ppm		
Static Hysteresis	HYS			±0.6	ppm		
Aging / 1st year	F _{AGE}			±1.0	ppm		
Fred	quency Tuning (E	FC), Ordering Opt	tion				
Tuning Range⁵	PR	±	ppm				
Tuning Slope	ning Slope Positive						
Control Voltage to reach Pull Range 1.8V Supply Voltage Option 2.5V, 2.8V, 3.0V and 3.3V Supply Voltage Option	V _c	0.3 0.5	0.9 1.5	1.5 2.5	V V		
Linearity	Lin			10	%		
Control Voltage Impedance		500			Kohm		
	RF Output , Clip	ped Sine Wave					
Output Level High	V₀ p-p	0.8			V		
Output Load	C _L		10k 10pF				
Start Up Time	t _{su}			2	ms		
	Phase	Noise					
Phase Noise, 26.00MHz ⁶ 10Hz 100Hz 1kHz 10kHz 100kHz	0 _N		-90 -112 -132 -145 -147		dBc/Hz		
Integrated Phase Jitter, 26.00MHz (12k-5MHz) ⁷	0 _J		0.4	1.0	ps		

^{1.} Refer to Table 7 for Standard Frequencies. Other Frequencies are available on request. Check with factory.

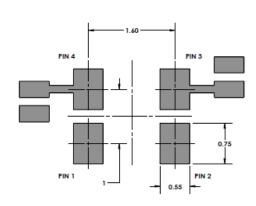
^{2.} The VT-860 power supply pin (Pin4) should be filtered using a by-pass capacitor of 0.1uF for optimal performance.


^{3.} Referenced to the midpoint between minimum and maximum frequency value over Operating Temperature Range.

^{4.} Frequency measured at 25 °C, 1 hour after 2 IR reflows.


^{5.} Referenced to Mid Control Voltage.

^{6.} Measured at room ambient temperature using Agilent E5052B Signal Source Analyzer.


Typical Phase Noise Performance (26MHz)

Package Outline Drawing & Pad Layout

Table 2.	Table 2. Pinout								
Pin #	Symbol	Function							
1	Vc or NC	Vc or NC TCXO Control Voltage or No Connect							
2	GND	GND Ground							
3	OUT	RF Output							
4	V _{DD}	Supply Voltage							

Marking Information

PRIMARY PACKAGE

V = Vectron

XXMXX = Frequency (Example: 26M000)

YY = Year of Manufacture

M = Month of the Year (M = A-Jan, B-Feb....K-Nov, L-Dec)

C = Manufacturing Location

• = Pin 1 Indicator

Note:

0.1uF capacitor is a by-pass power supply filter capacitor placed between Pin4 (Vdd) and Ground for optimal performance. Optional 1000pF DC cut capacitor can be used in the output.

OPTIONAL PACKAGE

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

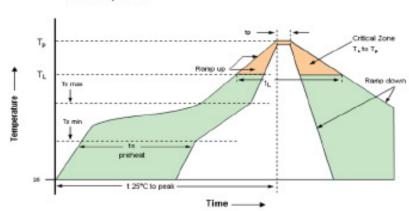
Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Although ESD protection circuitry has been designed into the VT-860, proper precautions should be taken when handling and mounting, Vectron employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 3. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	$T_{_{STORE}}$	-55/125	۰C
Supply Voltage	$V_{_{\mathrm{DD}}}$	-0.6/6	V
Control Voltage	V _c	-0.6/V _{DD} +0.6	V
Enable/Disable Voltage	E/D	-0.6/V _{DD} +0.6	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

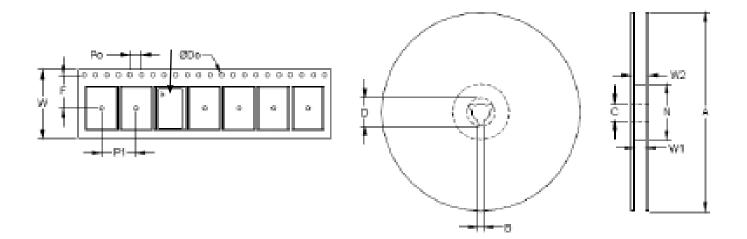
Reliability

Table 4. Environmental Compliance	
Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002
Mechanical Vibration	MIL-STD-883 Method 2007
Temperature Cycle	MIL-STD-883 Method 1010
Solderability	MIL-STD-883 Method 2003
Fine and Gross Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2015
Moisture Sensitivity Level	MSL1
Contact Pads	Gold (0.3 um min -1.0 um max)over Nickel
Weight	8 mg

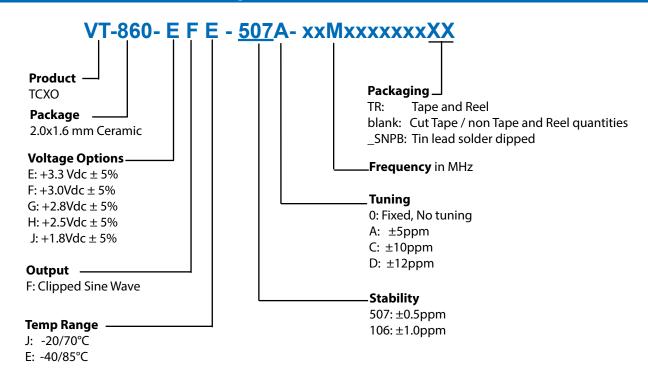

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.


Table 5. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	$R_{_{\mathrm{UP}}}$	3°C/sec Max
Time above 217C	t _L	150 sec Max
Time to Peak Temperature	t _{25C to peak}	480 sec Max
Time at 260C	t _p	30 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	$R_{_{DN}}$	6°C/sec Max

Solderprofile:



Tape & Reel

Table 6.	Tape and	Reel Info	rmation									
Tape Dimensions (mm)				Reel Dimensions (mm)								
W	F	Do	Ро	P1	Α	В	С	D	N	W1	W2	#/Reel
8	3.5	1.5	4	4	180	2.0	13	20.2	60	9.0	11.4	1000

Ordering Information

*Note: not all combination of options are available. Other specifications may be available upon request.

Example:

VT-860-EFE-507A-26M0000000TR VT-860-EFE-507A-26M0000000 VT-860-EFE-507A-26M0000000_SNPB Tape and Reel
Cut Tape
Tin lead solder dipped

Standard Frequencies & Capability Chart

Table 7. Sta	Table 7. Standard Frequencies (MHz)								
12.000	12.288	16.000	16.368	16.369	19.200	20.000	24.000	26.000	32.000
32.736	38.400	40.000	48.000						

Note: Other Frequencies may be available on request.

Revision History

Revision Date	Approved	Description
May 10, 2016	VN	Rev 0.1 - VT-860 Preliminary Datasheet - Internal Verification, Factory Approval, Product Launch
May 19, 2016	VN	Rev 0.2 - Updated Features and Application section
June 27, 2016	VN	Rev 0.3: Corrected marking information and updated standard frequency table (Table 7)
August 10, 2018	FB	Rev 0.4: Update logo and contact information, update PCB layout, add "SNPBDIP" ordering option
May 24, 2019	FB	Rev 0.5: Update logo, contact information and ordering information, update "SNPBDIP" to "SNPB" ordering option
April 30, 2020	FB	Add tape an reel ordering option

Contact Information

USA:

100 Watts Street Mt Holly Springs, PA 17065 Tel: 1.717.486.3411

Fax: 1.717.486.5920

Europe:

Landstrasse 74924 Neckarbischofsheim Germany Tel: +49 (0) 7268.801.0

Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.