

Qwiic pHAT for Raspberry Pi Hookup Guide

Introduction

This Qwiic pHAT for Raspberry Pi is based on the Qwiic Hat. The board adds the quickest and easiest way to utilize SparkFun's Qwiic ecosystem while still using that Raspberry Pi that you've come to know and love. This Qwiic pHAT connects the I²C bus (GND, 3.3V, SDA, and SCL) on your Raspberry Pi to an array of Qwiic connectors. Since the Qwiic system allows for daisy chaining (as long as your devices are on different addresses), you can stack as many sensors as you'd like to create a tower of sensing power!

SparkFun Qwiic pHAT for Raspberry Pi ● DEV-15351

Product Showcase: SparkFun Qwiic pHAT for Raspberry Pi

Required Materials

To follow along with this tutorial, you will need the following materials. You may not need everything though depending on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

Single Board Computer

You will need Raspberry Pi with 2x20 male headers installed.

Raspberry Pi 3 B+ • DEV-14643

A Pi Zero W will also work but you will need to make sure to solder some male headers to it.

Raspberry Pi GPIO Male Header - 2x20 PRT-14275 Raspberry Pi Zero W • DEV-14277

Or you could stack it on any single board computer (like the NVIDIA Jetson Nano) that utilizes the 40-pin Raspberry Pi header footrpint.

NVIDIA Jetson Nano Developer Kit O DEV-15297

Qwiic Board

Now you probably didn't buy the Qwiic pHAT if you didn't have any Qwiic products to use with it, right? If you don't have any Qwiic products, the following might not be a bad place to start.

SparkFun Spectral Sensor Breakout - AS7262 Visible (Qwiic) • SEN-14347 SparkFun Qwiic Adapter • DEV-14495

Finally, you'll need our handy Qwiic cables to easily connect sensors to your Qwiic pHAT. Below are a few options.

Qwiic Cable - 100mm PRT-14427

Qwiic Cable - 500mm Θ PRT-14429

Qwiic Cable - 200mm PRT-14428 Qwiic Cable - 50mm PRT-14426

Required Setup Tools

As a desktop, these devices are required:

- USB Mouse
- USB Keyboard
- HDMI monitor/TV/adapted VGA
- 5V Power Supply

Suggested Reading

If you aren't familiar with the Qwiic system, we recommend reading here for an overview.

Qwiic Connect System

We would also recommend taking a look at the following tutorials if you aren't familiar with them.

I2C

An introduction to I2C, one of the main embedded communications protocols in use today.

Serial Terminal Basics

This tutorial will show you how to communicate with your serial devices using a variety of terminal emulator applications.

Hardware Overview

The Qwiic pHAT has 4x Qwiic connect ports, all on the same I^2C bus. A **3.3V** regulator is included to regulate voltage down for any Qwiic boards connected.

There are built-in pull-up resistors on board. If necessary, you can cut the traces to disable depending on the number of boards connected to the I^2C bus.

spanklun e	
	*

Hardware Assembly

To get started with your Qwiic pHAT, simply plug it into the headers on the Raspberry Pi with the letters facing you.

Once the pHAT is plugged in, you can start plugging in any Qwiic enabled sensors you might have on either side.

Depending on your project, you can mount a qwiic enabled board on the mounting holes using standoffs.

Note: The Qwiic pHat is also compatible with single board computers (like the NVIDIA Jetson Nano or the Google Coral) that utilize the 40-pin Raspberry Pi header footprint.

Note: When placing a Raspberry Pi and the pHat in an enclosure (like the Pi Tin), we noticed that the pHAT was not fully inserted in Pi's header pins. You will need an additional stackable header for a secure connection depending on your enclosure. Otherwise, the original Qwiic HAT would be better if you need to using the boards in an enclosure.

Note: When placing a Raspberry Pi and the pHat in an enclosure (like the Pi Tin), we noticed that the pHAT was not fully inserted in Pi's header pins. You will need an additional stackable header for a secure connection depending on your enclosure.

I2C on Raspberry Pi

OS and Library Install

If you're starting from scratch, with a blank microSD card, you'll want to install Raspbian. If you've already got a working Raspbian system, skip ahead to step 3.

- 1. Download the NOOBS image. As of this writing, it's at version 2.4.4.
- 2. Follow the official installation instructions.
- 3. Follow the Wiring Pi Instructions to get *git*, update and upgrade your Rasbpian packages, then install WiringPi.

Be patient -- each of these steps takes a while.

Once you've got wiringPi installed, run the gpio commands shown below.

>gpio -v >gpio readall

It should respond with some information about the wiringPi version and the Pi that its running on, then draw a table illustrating the configuration for the pins in the 40-pin connector.

Configuration

Like the SPI peripheral, I2C is not turned on by default. Again, we can use raspi-config to enable it.

- 1. Run sudo raspi-config.
- 2. Use the down arrow to select 5 Interfacing Options
- 3. Arrow down to P5 I2C.
- 4. Select yes when it asks you to enable I2C
- 5. Select OK and then Finish

Once you return to terminal, enter this command:

```
>ls /dev/*i2c*
```

The Pi should respond with:

/dev/i2c-1

Which represents the user-mode I2C interface.

Utilities

There is a set of command-line utility programs that can help get an I2C interface working. You can get them with the apt package manager.

sudo apt-get install -y i2c-tools

In particular, the i2cdetect program will probe all the addresses on a bus, and report whether any devices are present. Call i2cdetect -y 1 to probe the first I^2C bus, which is what the Qwiic pHAT is connected to.

```
pi@raspberrypi:~/$ i2cdetect -y 1
    0123456789abcd
                                               f
                                            е
00:
                                _ _ _ _ _
10: -- -- --
                 - -
                          - -
                             - -
                                -- -- -- -- --
20: -- --
30: -- --
40: -- -- -- --
50: -- --
         - -
60: 60 -- -- --
70: -- --
```

This map indicates that there is a peripheral at address **0x60**. We can read and write its registers using the i2cget, i2cset and i2cdump commands.

Resources and Going Further

For more information, check out the resources below:

- Schematic (PDF)
- Eagle Files (ZIP)
- GitHub Repo
- SFE Product Showcase

Now that you have your Qwiic pHAT ready to go, it's time to check out some of Qwiic enabled products.

Qwiic JST Connector - SMD 4-pin PRT-14417

Qwiic Cable - Grove Adapter (100mm) PRT-15109

SparkFun Edge Development Board - Apollo3 Blue © DEV-15170

But I Already Have Sensors!

If you already have a handful of SparkFun sensors and parts? SparkFun has been putting our standard GND/VCC/SDA/SCL pinout on all our I²C boards for many years. This makes it possible to attach a Qwiic Adapter that will get your SparkFun I²C sensor or actuator onto the Qwiic system.

Here is the list of the boards that have the standard I²C pinout and will work with the Qwiic adapter board:

- 9DoF Stick IMU LSM9DS1
- 9DoF IMU MPU-9250
- 6DoF IMU LSM303C
- 6DoF IMU LSM6DS3
- Triple Axis Accelerometer LIS3DH
- Triple Axis Magnetometer MAG3110
- Triple Axis Magnetometer MLX90393
- Compass Module HMC6343
- Atmospheric Sensor BME280
- Barometric Pressure Sensor MS5803-14BA
- Barometric Pressure Sensor T5403
- Humidity and Temperature Sensor Si7021
- Digital Temperature Sensor TMP102
- Particle Sensor MAX30105
- Air Quality Sensor CCS811
- ToF Range Finder VL6180
- Haptic Motor Driver DRV2605L
- Micro OLED Display
- RGB and Gesture Sensor APDS-9960
- RGB Light Sensor ISL29125
- LED Driver LP55231
- DAC Breakout MCP4725
- 16 Output I/O Expander SX1509
- Battery Babysitter BQ24075

Check out this related tutorial:

Raspberry Pi SPI and I2C Tutorial

OCTOBER 29, 2015

Learn how to use serial I2C and SPI buses on your Raspberry Pi using the wiringPi I/O library for C/C++ and spidev/smbus for Python.