
ADXL345 Digital Accelerometer
Created by Bill Earl

Last updated on 2019-06-03 10:11:46 PM UTC

Overview

The ADXL345 is a low-power, 3-axis MEMS accelerometer modules with both I2C and SPI interfaces. The Adafruit
Breakout boards for these modules feature on-board 3.3v voltage regulation and level shifting which makes them
simple to interface with 5v microcontrollers such as the Arduino.

The ADXL345 features 4 sensitivity ranges from +/- 2G to +/- 16G. And it supports output data rates ranging from 10Hz
to 3200Hz.

ADXL345 datasheet (https://adafru.it/c5e)

How it Works:

 (https://adafru.it/c5f)MEMS - Micro Electro-Mechanical Systems
The sensor consists of a micro-machined structure on a silicon wafer. The structure is suspended by polysilicon
springs which allow it to deflect smoothly in any direction when subject to acceleration in the X, Y and/or Z axis.
Deflection causes a change in capacitance between fixed plates and plates attached to the suspended structure. This
change in capacitance on each axis is converted to an output voltage proportional to the acceleration on that axis.

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 3 of 18

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://learn.adafruit.com/adafruit-analog-accelerometer-breakouts#mems-micro-electro-mechanical-systems
http://learn.adafruit.com/adxl345-digital-accelerometer/programming#repeat

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 4 of 18

Assembly and Wiring

The board comes with all surface-mount components pre-soldered. The included header strip can be soldered on for
convenient use on a breadboard or with 0.1" connectors. However, for applications subject to extreme accelerations,
shock or vibration, locking connectors or direct soldering is advised.

Assembly:

Position the Header:
Cut the header to size if necessary. Then plug the

header - long pins down - into a breadboard to stabilize

it for soldering.

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 5 of 18

https://learn.adafruit.com/assets/6363

Add the Breakout:
Align the breakout board and place it over the header

pins on the breadboard.

And Solder!
Be sure to solder all pins to assure good electrical

contact.

I2C Wiring:
The ADXL345 Breakout has an I2C address of 0x53. It can share the I2C bus with other I2C devices as long as each
device has a unique address. Only 4 connections are required for I2C communication:

GND->GND
VIN->+5v
SDA->SDA (Analog 4 on "Classic Arduinos")
SCL->SCL (Analog 5 on "Classic Arduinos")

The Adafruit breakout has level shifting and regulation circuitry so you can power it from 3-5V and use 3V or 5V logic
levels for i2c

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 6 of 18

https://learn.adafruit.com/assets/6364
https://learn.adafruit.com/assets/6365

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 7 of 18

Programming and
Calibration

Install the Library:
Download the ADXL345 library (https://adafru.it/aZn) and install it. You will also need the Adafruit Sensor
Library (https://adafru.it/aZm) if you do not already have it installed.

This guide (https://adafru.it/aYM) will help you with the install process.

Test:
Click "File->Examples->Adafruit_ADXL345->sensortest" to load the example sketch from the library.

Then click on the compile/upload button to compile and upload the sketch to the Arduino. You should see output
similar to below. Watch the values change as you move the board around.

Calibrate:
The ADXL chips are calibrated at the factory to a level of precision sufficient for most purposes. For critical applications
where a higher degree of accuracy is required, you may wish to re-calibrate the sensor yourself.

Calibration does not change the sensor outputs. But it tells you what the sensor output is for a known stable reference
force in both directions on each axis. Knowing that, you can calculate the corrected output from a sensor reading.

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 8 of 18

https://github.com/adafruit/Adafruit_ADXL345
https://github.com/adafruit/Adafruit_Sensor
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Gravity as a Calibration Reference
Acceleration can be measured in units of gravitational force or "G", where 1G represents the gravitational pull at the
surface of the earth. Gravity is a relatively stable force and makes a convenient and reliable calibration reference for
surface-dwelling earthlings.

Calibration Method:
To calibrate the sensor to the gravitational reference, you need to determine the sensor output for each axis when it is
precisely aligned with the axis of gravitational pull. Laboratory quality calibration uses precision positioning jigs. The
method described here is simple and gives surprisingly good results with just a block of wood.

Mount the Sensor:
FIrst mount the sensor securely to a block or a box. The size is not important, as long as all the sides are at right
angles. The material is not important as long as it is fairly rigid.

Load the Calibration Sketch:
Load and run the Calibration sketch below. Open the Serial Monitor and wait for the prompt.

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 9 of 18

Position the Block:
Place the block on a firm flat surface such as a sturdy

table. Type a character in the Serial Monitor and hit

return. The sketch will take a measurement on that axis

and print the results.

Reposition the Block:
Turn the block so a different side is flat on the table and

type another key to measure that axis.

 (https://adafru.it/c5g)

Repeat:
Repeat for all six sides of the block to measure the

positive and negative aspects of each axis.

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 10 of 18

https://learn.adafruit.com/assets/6465
https://learn.adafruit.com/assets/6467
https://learn.adafruit.com/assets/6468

(Hint:)
For the sides obstructed by the breakout board and/or

wires, press the block up against the bottom of the table

while taking the reading.

Calibration Results:
Once all six sides have been sampled, the values printed in the Serial Monitor will represent actual measurements for
+/- 1G forces on each axis. These values can be used to re-scale readings for better accuracy.

Calibration Sketch:

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 11 of 18

https://learn.adafruit.com/assets/6469

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL345_U.h>

/* Assign a unique ID to this sensor at the same time */
Adafruit_ADXL345_Unified accel = Adafruit_ADXL345_Unified(12345);

float AccelMinX = 0;
float AccelMaxX = 0;
float AccelMinY = 0;
float AccelMaxY = 0;
float AccelMinZ = 0;
float AccelMaxZ = 0;

void setup(void)
{
 Serial.begin(9600);
 Serial.println("ADXL345 Accelerometer Calibration");
 Serial.println("");

 /* Initialise the sensor */
 if(!accel.begin())
 {
 /* There was a problem detecting the ADXL345 ... check your connections */
 Serial.println("Ooops, no ADXL345 detected ... Check your wiring!");
 while(1);
 }
}

void loop(void)
{
 Serial.println("Type key when ready...");
 while (!Serial.available()){} // wait for a character

 /* Get a new sensor event */
 sensors_event_t accelEvent;
 accel.getEvent(&accelEvent);

 if (accelEvent.acceleration.x < AccelMinX) AccelMinX = accelEvent.acceleration.x;
 if (accelEvent.acceleration.x > AccelMaxX) AccelMaxX = accelEvent.acceleration.x;

 if (accelEvent.acceleration.y < AccelMinY) AccelMinY = accelEvent.acceleration.y;
 if (accelEvent.acceleration.y > AccelMaxY) AccelMaxY = accelEvent.acceleration.y;

 if (accelEvent.acceleration.z < AccelMinZ) AccelMinZ = accelEvent.acceleration.z;
 if (accelEvent.acceleration.z > AccelMaxZ) AccelMaxZ = accelEvent.acceleration.z;

 Serial.print("Accel Minimums: "); Serial.print(AccelMinX); Serial.print(" ");Serial.print(AccelMinY); Serial.print(" "); Serial.print(AccelMinZ); Serial.println();
 Serial.print("Accel Maximums: "); Serial.print(AccelMaxX); Serial.print(" ");Serial.print(AccelMaxY); Serial.print(" "); Serial.print(AccelMaxZ); Serial.println();

 while (Serial.available())
 {
 Serial.read(); // clear the input buffer
 }
}

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 12 of 18

Typical Calibration Output:

The results of the calibration sketch can be used to do a two-point calibraton as described here: Two Point
Calibration (https://adafru.it/Dva)

ADXL345 Accelerometer Calibration

Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 0.00
Accel Maximums: 0.12 0.20 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 -0.24
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: 0.00 0.00 -0.24
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: 0.00 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: 0.00 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...
Accel Minimums: -1.18 -1.22 -0.27
Accel Maximums: 0.12 1.37 1.14
Type key when ready...

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 13 of 18

https://learn.adafruit.com/calibrating-sensors/two-point-calibration

Library
Reference

Constructor:
Adafruit_ADXL345(int32_t sensorID = -1)

Constructs an instance of the ADXL345 device driver object. 'sensorID' is a device identifier. It will be returned in the
sensor_event in each call to getEvent(). The sensorID has no effect on the operation of the driver or device, but is
useful in managing sensor events in systems with multiple sensors.

Initialization()
bool begin(void)

The begin() function initializes communication with the device. The return value is 'true' if it succeeds in connecting to
the ADXL345.

Sensor Details:
void getSensor(sensor_t*);

The getSensor() function returns basic information about the sensor. For details about the sensor_t structure, refer to
the ReadMe file (https://adafru.it/aZm) for the Adafruit Sensor Library.

Getting and Setting the operating range:
void setRange(range_t range)

The setRange() function sets the operating range for the sensor. Higher values will have a wider measurement range.
Lower values will have more sensitivity.

Valid range constants are:

ADXL345_RANGE_16_G
ADXL345_RANGE_8_G
ADXL345_RANGE_4_G
ADXL345_RANGE_2_G (default value)

range_t getRange(void);

The getRange() function returns the current operating range as set by setRange()

Getting and Setting the Data Rate:
void setDataRate(dataRate_t dataRate);

The setDataRate() function sets the rate at which the sensor output is updated. Rates above 100 Hz will exhibit
increased noise. Rates below 6.25 Hz will be more sensitive to temperature variations. See the data
sheet (https://adafru.it/c5e) for details.

Valid data rate constants are:

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 14 of 18

https://github.com/adafruit/Adafruit_Sensor
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

ADXL345_DATARATE_3200_HZ
ADXL345_DATARATE_1600_HZ
ADXL345_DATARATE_800_HZ
ADXL345_DATARATE_400_HZ
ADXL345_DATARATE_200_HZ
ADXL345_DATARATE_100_HZ
ADXL345_DATARATE_50_HZ
ADXL345_DATARATE_25_HZ
ADXL345_DATARATE_12_5_HZ
ADXL345_DATARATE_6_25HZ
ADXL345_DATARATE_3_13_HZ
ADXL345_DATARATE_1_56_HZ
ADXL345_DATARATE_0_78_HZ
ADXL345_DATARATE_0_39_HZ
ADXL345_DATARATE_0_20_HZ
ADXL345_DATARATE_0_10_HZ (default value)

dataRate_t getDataRate(void);

The getDataRate() function returns the current data rate as set by setDataRate().

Reading Sensor Events:
void getEvent(sensors_event_t*);

The getEvent() function returns the next available reading in the form of a sensor_event. The sensor_event contains
the sensor_id as passed to the constructor as well as the X, Y and Z axis readings from the accelerometer. For more
information about sensor_events, see the ReadMe file (https://adafru.it/aZm) for the Adafruit Sensor Library.

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 15 of 18

https://github.com/adafruit/Adafruit_Sensor

Downloads

Files

ADXL345 datasheet (https://adafru.it/c5e)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files on GitHub (https://adafru.it/rEH)

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 16 of 18

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit_ADXL345_PCB

© Adafruit Industries https://learn.adafruit.com/adxl345-digital-accelerometer Page 17 of 18

© Adafruit Industries Last Updated: 2019-06-03 10:11:46 PM UTC Page 18 of 18

	Guide Contents
	Overview
	How it Works:
	(https://adafru.it/c5f)MEMS - Micro Electro-Mechanical Systems

	Assembly and Wiring
	Assembly:
	Position the Header:
	Add the Breakout:
	And Solder!

	I2C Wiring:
	Programming and Calibration
	Install the Library:
	Test:
	Calibrate:
	Gravity as a Calibration Reference
	Calibration Method:
	Mount the Sensor:
	Load the Calibration Sketch:
	Position the Block:
	Reposition the Block:
	(https://adafru.it/c5g)
	Repeat:
	(Hint:)
	Calibration Results:
	Calibration Sketch:
	Typical Calibration Output:

	Library Reference
	Constructor:
	Initialization()
	Sensor Details:
	Getting and Setting the operating range:
	Getting and Setting the Data Rate:
	Reading Sensor Events:
	Downloads
	Files
	Schematic & Fabrication Print

