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1 smartrekvmc changelog
Version 3.0

— IMPROVEMENT Proper string escape sequences
— IMPROVEMENT Various improvements to the type system
— IMPROVEMENT Various changes to the cast system
— IMPROVEMENT New standard library functions
— IMPROVEMENT LSP server improvements
— FEATURE Pointers
— FEATURE Lambdas and explicit closures.
— FEATURE Support for the STVM MMU
— FEATURE Experimental STVM JIT Support
— BUGFIX Errors when casting from/to Object
— BUGFIX Better Indexing Lexing
— BUGFIX The LSP Server stopped scanning for errors prematurely in some cases

Version 2.4

— FEATURE: Reflection
— FEATURE: Declare native function handles in source files

Version 2.3

— IMPROVEMENT: Faster SMK900 Sercom Reads
— IMPROVEMENT: Faster dynamic method call
— IMPROVEMENT: Optimize some STDLIB functions
— FEATURE: Nwk SMK900 interface
— FEATURE: Boost clock function
— FEATURE: JIT API
— BUGFIX: SPI reads are sometimes dropped
— BUGFIX: Error in Short.reverseBytes

Version 2.1

— IMPROVEMENT: Do not include unused static variables
— IMPROVEMENT: Increase maxiumum number of methods
— IMPROVEMENT: Included default STDLIB
— FEATURE: Inline CL statements
— FEATURE: String functions
— FEATURE: LSP Server Support
— BUGFIX: SMK900 lib SPI read

Version 1.7

— IMPROVEMENT: Bytecode optimization of arithmetic
— IMPROVEMENT: AST optimization improvement
— FEATURE: Add support for new GC

Version 1.6

— IMPROVEMENT: Improve ELF output
— IMPROVEMENT: Typechecking improvements in return types.
— IMPROVEMENT: Remove unused progmem arrays
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— IMPROVEMENT: Various bytecode optimisations
— FEATURE: STDLIB Math functions
— FEATURE: Added break and continue in loops
— BUGFIX: Inline functions

Version 1.5

— IMPROVEMENT: Better string interpolation (e.g. \n to represent a newline)
— IMPROVEMENT:More accurate typechecking of function arguments
— IMPROVEMENT: Better detection of duplicate declarations
— IMPROVEMENT: Better inference of numeric types
— FEATURE: Boxed types STDLIB implementation
— FEATURE: Per method Inline pragma
— FEATURE: Interrupts
— FEATURE: Coroutines
— FEATURE: Eval compiler option
— FEATURE: Casts will perform conversion between types by default.
— BUGFIX: Patch operations on float type
— BUGFIX: Parser bugfix edgecases
— BUGFIX:Multiple typechecking bugfix
— Bugfix and improvements

Version 1.4

— IMPROVEMENT: Ast optimization
— IMPROVEMENT: Constant folding
— IMPROVEMENT: Dead branch removal
— IMPROVEMENT: Better typechecking in multiple places
— FEATURE: Annotations
— BUGFIX: Float stack corruption (require firmware update)
— BUGFIX: Lexer edge cases
— BUGFIX: Patch autocompile script for Windows
— BUGFIX: Type casting bug in some local variable declaration
— BUGFIX: Array indexing error when using integer types other than int
— BUGFIX:Multiple bugs regarding inline functions
— Bugfix and improvements

Version 1.3

— Automated tests with full simulator stack starting with this version
— ELF and CLF output formats
— IMPROVEMENT: Better error messages
— IMPROVEMENT: Better energy management when using the stdlib EPD class.
— FEATURE: RAM function support
— FEATURE: Operator overloading (U8, U32 and U64)
— FEATURE: Compiler options and tuning. (e.g. -O2 vs -Os)
— STDLIB: Emulator class
— BUGFIX:Wrong fixity when mixing unary and binary operators
— Bugfix and improvements

Version 1.2

— IMPROVEMENT: Optimization for the EPD class
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— IMPROVEMENT: The compiler will immediately abort when trying to compile non‐
existing files

— IMPROVEMENT: Function inlining
— IMPROVEMENT: Loop unrolling
— IMPROVEMENT: Dead code removal in static blocks
— IMPROVEMENT: Bytecode level optimizations
— FEATURE: SMK900 EIC (Interrupt Controller) Support
— FEATURE: Hardware SPI
— FEATURE: --nodebug flag to disable debugger trap
— FEATURE: Terminal standard library support to print characters through EPD
— FEATURE: Bytecode Assembly Syntax support
— FEATURE: CircBuf class for data acquisition.
— BUGFIX: Circular buffer will throw error on read when empty
— Bugfix and improvements

Version 1.1

— BUGFIX:Multiple bugfix regarding bytecode generation

Version 1.0

— IMPROVEMENT: Dead code removal
— IMPROVEMENT: Better error logging
— FEATURE: static final variable support
— FEATURE: Array initializer support
— FEATURE:Windows x86_64 support
— BUGFIX: Local variable will generate garbage code in some cases
— BUGFIX:Multiple bugfix regarding bytecode generation
— BUGFIX:Multiple bugfix regarding implicit this

Version 0.1

— Initial release

2 Getting Started

2.1 Obtain the compiler
The latest version of the compiler can be obtained from ourwebsitehttps://smartrek.
io

2.2 Use the Compiler
To compile your source file(s), use the following command

smartrekvmc --stdlib /path/to/smk900/ -o <output>.vmf <input1> <input2>

This will compile the <input1> and <input2> files, linking with the standard library located
at /path/to/smk900/ into the binary file <output>.vmf

10
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Please note that the vmf format is a binary format and is not compatible directly with the
USB bootloader of the modules. A converter is also provided to convert from vmf to uf2,
the latter being the format recognized by the USB bootloader. See the documentation for
the conversion tool for more details.

2.3 Compiler options

2.3.1 -h, --help
Print the help text of the compiler.

2.3.2 --stdlib ARG
Sets the location of the standard library. This should always point to the version of the
smk900/ folder matching the version of the compiler. Any other configuration is untested
and prone to breaking.

Note the trailing slash at the end of the path. It is mandatory.

By default, this argument does not need to be specified and a version of the standard library
is included with the compiler and is used by default

2.3.3 --nostdlib
Do not use any standard library, including the one included with the compiler.

2.3.4 -o, --output ARG
Sets the output path of the compiler. Depending on the file extension specified, the com‐
piler will either output a vmf or elf file.
The default for this value is empty, that is the compiler will compile all files and perform
linking, but will not output the resulting binary to disk.

2.3.5 -c, --dump-clf ARG
Output the CLF (internal intermediate representation) to the given file. When using the
compiler as a library, this representation can be read back as a clf object and used as a
starting point for further compilation.

2.3.6 -O [0, 2, s]
Sets the optimization level, this will tune the compiler to produce code optimized for speed
(with -O 2) or size (-O s)
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2.3.7 --eval STRING
Evaluate the given Common lisp STRING before starting compilation. This can be used to
load user compiler patches and features at runtime.

2.3.8 --keep-dead-code
This option will cause the compiler to skip the dead code removal step, note that this will
cause the resulting file to be too large for the Portia target when using the standard library.

2.3.9 --inline-complexity ARG
Specifies the eagerness of the compiler to inline functions. A larger number means that the
compiler will perform inlining in more cases.

This value is an integer above 0. A sane default value would be around 10.

2.3.10 -d, --debug
By default, most errors such as parse errors, typecast errors, syntax errors, etc. are trapped
and logged to stdout in a standard format. With this flag, no errors are trapped, and the
debugger will always activate when an error is triggered.

Note here that the debugger mentioned is the debugger for the smartrekvmc program,
not a debugger for the VM bytecode.

2.3.11 -n, --nodebug
Disable the debugger completely, when an error is triggered. The compiler will simply exit
on error. Useful in scripts

2.3.12 --optimize-ast, --no-optimize-ast
Enable/Disable the AST optimization pass.

2.3.13 --reflection
Include reflection data in the VMF. This allows the VM and the VMHost to access variables
and methods by name, but takes a lost of additionnal space in the VMF.

2.3.14 --types-are-a-suggestion
Disable type checking in most places. The compiler will not report unsound cast (e.g.(int)
string), nor casts that have potential non critical issues (e.g. (unsigned) int). The
compiler will manage types similarly to version 1.3 with this option, the types only sug‐
gesting certain optimization to the compiler. This option is provided primarly to enable
legacy code to be used with the new version of the compiler. We recommend fixing the
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typechecking issues by adding casts or additional checks instead of using this option.

3 The STVM language
This section is a reference for the STVM language, the input language of the Smartrek
Virtual Machine Compiler. This language is statically typed and object‐oriented. It is most
similar to Java but has a few differences.

3.1 Types

3.1.1 Void
The void type is the unit type. It is not stored in memory since it has only one inhabitant.
Values of type void cannot be created directly from code.
Values of type void can be created by coercing any other value to void. Note that this will
leak stack, since the void value will never be popped from the stack because the compiler
will assume it is not being stored.

static void foo () {
@Coerce(void) 4;

}

3.1.2 Boolean
boolean is a true/false type. Its literals aretrue and false. Internally, any non‐zero value
is considered as true, but truth values created by the compiler are always represented
internally as 0 and 1.

3.1.3 Numeric types
Table 2 describes the different numeric types supported by the compiler. Some of them
are native types and some of them are emulated by the compiler or the standard library.
Non‐native numeric types can’t be used as arrays directly.

Table 2: Numeric types supported by the STVM language.
VM Name Description Size (Bits) Native
byte signed 8 Yes
u8 unsigned 8 Compiler
short signed 16 Yes
int signed 32 Yes
unsigned unsigned 32 Compiler
U64 unsigned 64 Stdlib
float IEEE‐754 32 Yes
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Number literals are always of type int and can then be casted to the desired type. The
exception to that are literals containing a decimal point, which are of type float. Number
literals can be specified in any of the following formats:

0x1fCAb87;
0b1001010;
217
-10
813.72

In some cases, the compiler can automatically lower the types of the literals. For instance,
the following is valid:

byte b = 3;

But the following is a warning:

byte b = 2000;

All numbers regardless of their types are stored internally as 32‐bit integers (except stdlib
based types, which are actually objects). This has some unexpected side effects as shown
in the stack section.

Another syntax for int literals is to enclose a char between single quotes. The character
ASCII value is used as the value of the literal.

int i = 'a';

3.1.4 Objects
Objects are created from a class with the new syntax.

Object object = new Object();

All classes are all subclasses of the Object class. Field Variables for an instance are ac‐
cessed using the dot syntax.

object.field

By convention, all native types start with a lowercase letter and all object types start with
an uppercase letter (e.g Object, String).

3.1.5 Arrays
Arrays are a homogenous collection of known length. Not all types can be used as arrays.
Allowed types are:

— Any object type
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— byte
— short
— int
— float

Array types are indicated by appending [] to the type. For instance an int array is of type
int [] and a byte array is type byte [].
Arrays, contrary to the stack representation, store its content packed. That is a byte []
uses 1 byte per element, a short [] uses 2 bytes per element, and everything else use
4 bytes per element.

To create array instances, two types of syntax are provided. The first, simply allocates an
array of the given type and length:

int array_length = 4;
new byte[10];
new int[array_length];

In this case the created array’s content is set to 0 before the expression returns the array
pointer. Array literals can also be used to predefine the array’s content:

new byte[] { (byte) 0x00, (byte) 0xFF, (byte) 0x45 };
new int[] { 100, 3000, -19};

Array indexing is done with the [] syntax:

int [] arr = new int [] { 0, 1, 2 };
int element = arr[2];
arr[3] = 4;

The length of an array can be obtained by using the following syntax:

int len = arr.length;

3.1.6 PROGMEM
Progmem byte and int arrays act as read only arrays. Their content is stored directly in
the VMF output and is never copied to RAM. They are completely implemented on the
compiler side and every lookup is converted to the appropriate FLASH memory lookup
native call.

Progmem arrays must be static variables defined with an array literal. The content of those
variables will be compiled as the bytecode for a non‐callable function. This will allow code
to index their content directly from flash. Here is an example of creation for a progmem
byte array:

static progmem byte[] varName = new byte[] {
// Include content (comma separated bytes)
0x00, 0x01, 0x05, 0xFF, 0x82, ...
};
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Pointers to progmem byte arrays can be passed around to functions using the following
syntax:

void useProgmemArray(progmem byte arr, int length) {
for(int i = 0; i < length; i++) {

dosomething(arr[i]);
}

}

Note that the length is passed as an argument too, since it is not possible to get the length
for a progmem array. The above example also show that the read syntax for progmem
arrays is the same as for traditional arrays.

useProgmemArray(varName, 0x100);

3.1.7 String
Strings in the STVM language are objects of the native class type String but have custom
syntax allowing them to be manipulated more easily. Strings literals are enclosed in double
quotes:

String s = ”This is a string”;

Strings are immutable by default, but may be transformed into a character or byte array
by using the String functions getBytes or asCharArray. In most cases the compiler
is able to optimize these calls to a no op and thus require no copy.

Strings can be appended to numbers and other Strings to create a new String :

String sb = ””;
String s = sb.append(42.627);
System.out.println(s);

The compiler will automatically use the append functions when combining Strings with
the + operator. The following is equivalent to the last example:

System.out.println(”” + 42.627);

The same native functions will be called in both cases.

Strings included in source code can contain escape sequences to include special characters
in the string.

”Newline:\n,Tab:\t,Backslash:\\,Hex code:\x55, etc”
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3.1.8 Pointers
Pointer types allow user code to pass stack locations around to be used as a output pa‐
rameter. Note that while in C arrays are represented by contiguous regions of memory, it
is not the case for STVM arrays. This means that it is not possible to obtain a pointer to the
location &array[3] for instance.
Pointers are used automatically when closure capture arguments by reference:

int acc = 0;
Method m = [&acc]() { *acc = *acc + 1; };

But they may also be created and passed manually to functions in order to provide output
parameters:

int out2;
int * ptr = &out2;
int out1 = someFunctionWithTwoOutputs(ptr);
// or directly: someFunctionWithTwoOutputs(&out2)

Pointers are created using the & unary operator. The compiler will try to find the location of
the given element and will return the pointer if the location is on stack. Elements typically
stored on the stack by the STVM are static variables and local variables.

Most objects are implicitly stored and passed by pointers in the STVM. The pointer con‐
struct defines explicit pointers. For instance, although a String object is stored using a
pointer on the stack, it is not a pointer object and cannot be dereferenced. The reference
to this pointer on stack can be obtained with the & operator, resulting in a String*.
In particular, the new operator creates an object of an implicit pointer type. This is why you
have

Object o = new Object();

and not

Object * o = new Object();

3.1.9 Method
Functions and methods in the STVM language can be manipulated and stored in variables.
A variable of type Method holds a pointer to a STVM function.
In order to create a Method value, the pragma @Method can be used. The syntax is
@Method CLASS.NAME where CLASS is the name of the class the method is contained
in and NAME is the name of the method. In case the method is overloaded, it is possible
that the name is not sufficient to uniquely identify a method. In that case, if we have the
class

class Cls {
static void F(int i) {...}
static void F(float i) {...}

}
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We can distinguish the two F method with:

@Method{ (I) } Cls.F
@Method{ (F) } Cls.F

The standard library specifies methods that can be used on Method objects, allowing them
to be called dynamically for instance.

Other ways to create method objects is by reflection on a method name by using

Method.fromName(”ClassName.MethodName.”)

or by loading an array of bytecode and defining its calling convention using

Method.fromBytecode(numberOfArgs, numberOfLocals, arrayOfBytecode)

Finally, explicit closures also result in a Method object.

3.2 Operators
The available operators are described in this section. The described specifications for the
operators match the action on native types. Compiler and Stdlib based types overload these
operators to change their meaning in the context of these types. For instance, addition on
two u8 numbers a and b is compiled as 0xFF & (a + b).
Furthermore, if any arithmetic operator is used on a float and an int, the int will be
converted to float before the operation takes place with two floats.
Table 3 show the precedence of the operators. An operator with a higher precedence
(higher in the table) binds more strongly than an operator with a lower precedence.

Table 3: Operator Precedence Table
Operators Description
++ – Postfix Incrementation
! ‐ ~ Unary operators
* / % Multiplicative operators
+ ‐ Additive operators
<< >> >>> Shift operators
< > <= >= Relational comparator
== != Relational equality
& Bitwise and
^ Bitwise xor
| Bitwise or
&& Logical and
|| Logical or
= Assignment (and variations)
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3.2.1 Ternary operator
condition ? ifTrue : ifFalse;

Depending on the value of condition, evaluating as a boolean, the expression returns
ifTrue or ifFalse. This operator is short‐circuiting, meaning that only the selected
branch is actually evaluated.

3.2.2 Assignment
Assignment to a location is done through the = operator, or one of the following variations:

+= -= *= /= %=
<<= >>= >>>=
&= |= ^=
&&= ||=

The LHS must evaluate to an lvalue, which can contain array indexing and field access. The
final targets are any non‐final variable type or array location. Here are some examples:

foo = 12;
arr[0] = false;
this.obj[2].field = 0.5;

3.2.3 Postfix Incrementation
The postfix incrementation operators ++ and -- are placed just after an lvalue. The value
returned by the operator is the current value of the lvalue. After the value is returned by
the operator, the value of the lvalue is incremented by 1. Here is an example:

i++

3.2.4 !
Performed on a boolean, returns the opposite value. Internally, it is implemented as !x
equal to 1 - x. Here is an example

if (!condition) { .... }

3.2.5 Unary ‐
Takes the negative value of its argument. Internally, it is implemented as - x equal to 0 -
x. Here is an example:

- 200;
- (arr[0])
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3.2.6 ~
Binary not. Invert each bit in the 32 bit internal representation of the number. Here is an
example:

~ 0xFFFFFFFF

3.2.7 +
Perform addition on the given 32 bit internal representation of the arguments.

If the first operand is a String, the String is instead appended with the given String,
int or float.

// simple addition
5 + 7;
// 7 will be converted to 7.0 before the addition
5.2 + 7;
// Simple addition
5.2 + 7.8;
// Result in ”foobar”, this is a new object, ”foo” is not modified
”foo” + ”bar”;
// Result in ”foo7”, this is a new object, ”foo” is not modified
”foo” + 7;

3.2.8 Binary ‐
Perform subtraction on the given 32 bit internal representation of the arguments.

3.2.9 Unary *
Get the value of a pointer to a stack location. Can be used as a Lvalue of assignment.

int foo = 0;
int * ptr = &foo;
*ptr = *ptr + 7; // Increment the value of foo
System.out.print(*ptr); // Print the value of foo (7)

3.2.10 *
Perform signed multiplication on the given 32 bit internal representation of the arguments.

3.2.11 /
Perform signed division on the given 32 bit internal representation of the arguments. If the
right argument is zero, a DIVBY0 error is thrown by the VM engine.
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3.2.12 %
Perform the remainder operation on the two arguments. It matches the % operation on two
int32_t for the C compiler used to compile the VM engine. The operation is done on the
internal 32bit representation of the arguments.

3.2.13 <<
Perform a left shift. The left argument is shifted by the amount of bits corresponding to the
value of the right argument. The operation is done on the internal 32bit representation of
the arguments

3.2.14 >>
Perform an arithmetic right shift. That is a right shift with sign‐extension. The left argument
is shifted by the amount of bits corresponding to the value of the right argument. The
operation is done on the internal 32bit representation of the arguments.

3.2.15 >>>
Perform an unsigned right shift. That is a right shift with zero‐extension. The left argument
is shifted by the amount of bits corresponding to the value of the right argument. The
operation is done on the internal 32bit representation of the arguments.

3.2.16 Unary &
Syntax to get the reference of a stack location. Results in a pointer

class Eg {
static int loc1;
static void f() {

int * loc1_ptr = &loc1; // Pointer to loc1
int ** loc1_ptr = &loc1_ptr; // Pointer to the local variable

loc1_ptr↪→

int v = 7;
int * var_ptr = &v; // Pointer to the local variable v

}
}

3.2.17 &
Performs the binary and operation on each of the bits in the 32bit internal representation
of the arguments.

3.2.18 &&
Takes two booleans and perform the logical operation and on them. Contrary to other
languages, this operator is not short‐circuiting, both sides of the operator will always be
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executed.

3.2.19 |
Performs the binary or operation on each of the bits in the 32bit internal representation of
the arguments.

3.2.20 ||
Takes two booleans and perform the logical operation or on them. Contrary to other lan‐
guages, this operator is not short‐circuiting, both sides of the operator will always be exe‐
cuted.

3.2.21 ^
Performs the binary xor operation on each of the bits in the 32bit internal representation
of the arguments.

3.2.22 <
Returns a boolean indicating whether the LHS is strictly smaller than the RHS

3.2.23 >
Returns a boolean indicating whether the LHS is strictly larger than the RHS

3.2.24 <=
Returns a boolean indicating whether the LHS is smaller or equal to the RHS

3.2.25 >=
Returns a boolean indicating whether the LHS is larger or equal to the RHS

3.2.26 ==
Returns a boolean indicating whether the LHS is equal to the RHS

3.2.27 !=
Returns a boolean indicating whether the LHS is unequal to the RHS
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3.3 If
The if (condition) { ... } else { ... } statement can be used to write con‐
ditional code.

Just the if part:

if (condition) {
// statements

}

Both if and else:

if (condition) {
// statements

} else {
// statements

}

In both cases, condition has to evaluate to a boolean.

3.4 Loops
Inside of a loop, the break and continue statements can be used to exist the loop, or
to skip to the next iteration, respectively.

3.4.1 While
The while loop will continuously evaluate as long as the condition is true.

while (condition) {
// statements

}

The condition has to evaluate to a boolean

3.4.2 For
The for loop provide an initializer, where a local variable can be declared, a stop condition
set, and an increment statement.

An example of usage:

for (int i = 0; i < length; i++) {
// statement

}
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3.4.3 Dowhile
The do while loop acts the same as the while loop, but the condition is only checked at the
end of the loop’s body.

do {
// statements

} while (condition);

Here, condition must evaluate to a boolean.

3.5 Explicit closures
STVM supports explicit closures, also called lambda functions or just lambda in STVM, are
anonymous functions where the captured values are explicitly enumerated. Values can be
captured by value or by pointers.

The basic syntax for a Lambda function is:

[capture1, capture2, ...] ( type1 arg1, type2 arg2, ... ) { code }

Capture can be either a local variable name, or a reference to a local variable name. If other
type of data need to be captured, they can be moved to a local variable beforehands.

As with other Methods, the Method.call family of functions are used to call a method.

class ClosureEg {
public static void foreach(int[] arr, Method m) {

for(int i = 0; i < arr.length; i++) {
m.vcall(arr[i]);

}
}
static void foo() {

// Simple lambda without a capture
foreach(new int[]{1,2,3,5,8,13},

[] (int arg) {
System.out.println(arg + 7);

});
// Close over local i.
int i = 42;
foreach(new int[]{1,2,3,5,8,13},

[i] (int arg) {System.out.println(arg + i);} );
// Close over reference to accumulator
int accumulator = 0;
foreach(new int[] {1,2,3,5,8,13},

[&accumulator] (int arg) { *accumulator = *accumulator + arg;
});↪→

}
}

Note that everytime a function containing a lambda is called, a heap allocation is required
for the frame containing the captures.
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3.6 Variables

3.6.1 Local Variables
Local variables are temporary variables created on the stack. These variables are defined in
the content of a method or static block.

void methodName (int arg1) {
int local2 = 10;
Object local3;
String local4;
// implicit this is local variable 0

}

Note that method arguments (including the implicit this) are stored in the same way as
local variables, but their values is automatically set when the method is called. These vari‐
ables are scoped to the nearest block, this means that accessing local variables outside its
scope will be prevented by the compiler.

int method () {
if (condition) {

int foo = 7;
}

return foo;
}

This scoping allow the compiler to reuse local variables in different branches, reducing the
amount of stack required to call a function:

void method () {
if (condition) {

int foo = 7;
} else {

float bar = 0.82;
}

}

It this example the compiler will choose to use the local variable slot 1 for both foo and
bar (the slot 0 being taken by the implicit this).

3.6.2 Field Variables
Field variables are the member data of a class. They are defined (with or without a default
value) directly in the body of the class.

class ObjName {
int field0 = 0;
float field1;

...
}
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Fields are accessed as in the following example.

ObjName obj = new ObjName();
int fieldValue = obj.field0;

Inside a non static method, the this argument can be used to access the current instance’s
fields.

float method () {
this.field0 += 100;
return this.field0 + this.field1;

}

In many cases the this can be elided and the field variable can be used as if it were a local
variable:

float method2 () {
field0 += 100;
return field0 + field1;

}

3.6.3 Static Variables
Static variables are global variables that are only attached to a class lexically. They are
created inside the body of the class they are attached to. If a default value is specified, the
expression and variable assignment will be evaluated at the initialization of the VM. Static
variables without a default value are set to 0 instead.

class ObjName {
static int static0 = 100;
static float static1;

...
}

Static variables are accessed by prepending the name of the class before them:

float method () {
ObjName.static0 += 100;
return ObjName.static0 + ObjName.static1;

}

Inside the class, in static methods, static variables can be accessed directly as if they were
local variables:

static float method2 () {
static0 += 100;
return static0 + static1;

}
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3.6.4 Static Final Variables
static final or final variables are class‐level entities that are not actually stored in
memory but are replaced directly at their usage site. This makes the following

static final int foo = 4;

Equivalent to the usage of a C define:

#define foo (4)

The expression on the RHS of the final definition is simply inlined into each usage site. For
example, the following two example will produce the exact same bytecode:

// Example 1, using final variables
class eg1 {

// Or equivalently: static final int foo = 4;
final int foo = 4;

static {
perform_action(foo);
something_else(foo);

}
}

// Example 2, inlining the value 4 directly.
class eg2 {

static {
perform_action(4);
something_else(4);

}
}

Since this variable type is simply an inline expression, enclosed function calls are repeated
each time the variable is used:

class eg3 {
static int counter = 0;
static int next() {

return counter++;
}
final int foo = eg3.next();

void main (String args[]) {
System.out.print(”Counter: ” + foo); // Counter: 0
System.out.print(”Counter: ” + foo); // Counter: 1

}
}

As expected during normal usage, final variables are not writable, since (assuming static
final foo = 4;) foo = 10;would be compiled into 4 = 10;which is a syntax error.
But, if the expression given to the final variable is an lvalue, the expansion result would look
like the following:
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class abusing_final_variables {
static byte[] tx_buffer = new byte[5];
final byte rssi = tx_buffer[0];
final byte voltage = tx_buffer[1];
final int sensor_value = ((int[]) tx_buffer)[1];

static void main(String[] args) {
...
rssi = VM.GetRSSI();
voltage = SleepCtrl.ReadVoltage();
sensor_value =
VM.Send(tx_buffer)
...

}
}

But expansion of finals in an lvalue location is explicitly forbidden by the compiler.

3.7 Cast
A cast from one type to another can be performed. A cast will, if required, perform the
conversion between the source and target types. The syntax of a cast is as follows:

(<type>) <exp>

Where <type> is the type to which the expression <exp> is to be cast to.
For instance, the following cast:

int v = ...;
(float) v

Will convert the integer stored in variable v to a float.
This:

int v = -2000;
byte b = (byte)v;

Will convert the integer to a byte. The byte value will be truncated to 8 bits and the value
will now be: 0xFFFFFFD0, or ‐208. Note that all stack values are sign‐extended to 32bits,
so the number is actually 0xFFFFFFD0 and not 0xD0.
If the target type can’t be reasonably obtained from the type of the expression without
conversion, the compiler will throw an error. To force the compiler to accept unsafe con‐
versions, use the coerce annotation. If the @Coerce annotation is used, the cast will not
alter the data or perform conversion, it only changes the type marker in the code.

3.8 Classes
In the STVM language, everything has to be contained in a class. Typically, user code will
be composed of a single file containing a single abstract class, but it does not have to be
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the case. Exactly one class need to have a static method called main that takes a single
argument, a String array. Currently, the radio firmware always pass a null pointer as the
argument to the function.

class ClassName {
...

}

Classes can contain different type of field and variable definitions, such as field variables,
static variables and progmem arrays. Classes also contain functions. The different allowed
type of functions are described in the following versions.

Since the number of classes that can be instantiated is limited to 14, it is desirable to mark
classes that are not to be instantiated as abstract, so they don’t use a spot that could
be used by other classes. Note that since inheritance is not supported, methods can’t be
marked as abstract, contrary to other languages such as Java.

3.8.1 Static Blocks
Static blocks contain code to be evaluated at the initialization of the VM.

class ClassName {
static {

...
}
...

}

In most cases this code will want to check for the BOOTUP trigger, to evaluate code only at
the radio module bootup sequence, and not after every error recovery. A more complete
example would look like:

class ClassName {
static {

...
int execType = VM.GetExecType();
if(execType == EVM.EXECTYPE_BOOTUP){

....
}

}
...

}

3.8.2 Class Methods
Class methods can be defined to extend the possible operation on an instance of a class:

class ClassName {
int method (int arg) {

return arg + 1;
}
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int method2 () {
return method (10);

}
...

}

Class methods are accessible through their instances. When inside another class method of
the same class, the implicit object this can be omitted when calling other class methods
or accessing field variables.

ClassName obj = new ClassName();
int ret = obj.method(10);
int ret2 = obj.method2();

3.8.3 Native methods
In order to expose native host methods to STVM, they can be bound to a path in a class.
The following syntax is used:

abstract class Classname {
static native ReturnType functionName(Arg0Type arg0, Arg1Type arg1, ...)
= 0x1734;↪→

}

This relults in the method at Classname.functionName to call the native function with
id 0x1734, which must be defined by the host.

3.8.4 Static Methods
Static methods are methods attached to a class but that do not take an instance of the
class as a first implicit argument. Static methods are marked by prepending the keyword
static to the method declaration.

class ClassName {
static int method (int arg) {

return arg + 1
}
static int method2 () {

return method (10);
}

}

Static methods are accessible by prepending the class name to the method call. When
inside another static method of the same class, the class name can be omitted, as well as
for static variables.

int ret = ClassName.method(10);
int ret2 = ClassName.method2();
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3.8.5 Constructors
Constructors are methods that are called automatically at the creation of an object.

The object creation process is as follows

1. A heap object of the right size is allocated
2. Default values for field variables are computed
3. The selected constructor is called

The syntax for a constructor is as follows, note that the name of the class and the name of
the constructor must match. Constructors can’t be used inside abstract classes.

class ClassName {
ClassName (int a, int b) {

...
}
ClassName () {

...
}
...

}

The above example define two constructors. The constructor that will be call depend on
the types and number of the arguments inside the new expression:

ClassName constructor1 = new ClassName(1, 2);
ClassName constructor2 = new ClassName();

3.9 Annotations
Annotations can be added at various places in the code to direct the compiler in a more
favorable direction.

3.9.1 @Inline
ALWAYS inline the current function call. This annotation should be placed just before a
function call.

public class A {
public static void main(String args []) {
@Inline lowCostFunction(1, otherFunction(2));

}

static int otherFunction(int a) {return a + 1;}
static int lowCostFunction(int a, int b) {return a + b;}

}

Here in any case, lowCostFunction will be inlined. otherFunction might or might not be
inlined, depending on compiler options
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3.9.2 @Coerce
Make any cast succeed without any second thought. This can be used for pointer casting or
other shenanigans in versions above 1.3 where typechecking might throw errors on some
cast that were previously (wrongly) accepted.

// Ok, but will leak stack space
(void) 12;
// Ok, it is a downcast
(short) 12;

// Ok, it is an upcast (done automatically in most cases)
byte b;
(int) b;

// Errors, types not compatible
(Object[]) true;

// Compiles, but you will probably never want that to happen
@Coerce (Object[]) true;

// In this case, coerce won't have any effect since the cast is already safe
@Coerce (int) 100;;

To lower the severity of unsafe casts to a warning locally, you can specify
the error type to throw with the annotation:↪→

// Will throw a warning but still compiles
@Coerce{:warn} (Object[]) true;
// Default behavior
@Coerce{:error} (Object[]) true;

3.9.3 @on-parse
Evals the argument of the annotation at parsing time. The annotation needs to be placed
in a valid position. Can be used to set compiler options locally or to perform fine‐tuning of
the parsing process.

@on-parse{(format t ”I will be printed when the expression is parsed”)}
someCode();

3.9.4 Hints for Methods
Both class and static methods can contain annotations that will hint some possible opti‐
mizations for the compiler.

1. Inlining
With @Inline or @NoInline it is possible to force the compiler to inline the func‐
tion at every call site or to force the compiler to never inline the function.
The default is to let the compiler decide when to inline method calls.
public class InlineHints {

static void @Inline func() {
// This function will be inlined everytime

}
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int @NoInline otherFunc() {
// This function will never be inlined

}
}

2. Keep
With the @Keep annotation, the method will not be removed from the compilation
result, even if the method is not directly used elsewhere.
public class Keep {

static void dontKeep() {}

static void @Keep keep1() {}

// Multiple annotations can be used if desired
static void @NoInline @Keep keep2() {}

static void main(String[] args) {
// No use of dontKeep, keep1 and keep2
// Only dontKeep will be deleted

}
}

3.10 Namespacing
The STVM language does not support namespacing, packages or encapsulation.

3.11 Reflection
When the compiler is invoked with the --reflection flag, reflection data is included in
the .VMF file.
This is used to provide named functions and variables as might be required by the host. For
instance, a host might decide to call the method System.onTick every time a specific
event happen, or read the value of a static variable named Class.Name to determine
some configuration value.

Reflection data is also available from the STVM itself by using the native functions:

static native String JVM.refract(int ref, int type);
static native int JVM.reflect(String ref);
static native String JVM.prism(String ref);
static native boolean JVM.reflectionAvailable();

With these functions, it is possible to get the name of a static variable, field, class or method.
The opposite is also possible: obtain a method from a name (facilitated by the method
Method.fromName).
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3.12 Intermediate Assembly Language
Internally the compiler translates the STVM language code to an intermediate represen‐
tation before generating the opcodes. This layer of abstraction is useful because it makes
linking the different method together much easier. Additionally, the user can leverage this
internal representation through a special syntax to directly emit intermediate opcodes.

An example for the Intermetiate Assembly Language (IAL) is shown below. Note that since
the compiler requires every stack operations be balanced (in terms of the amount of push
and pop) at compile time, the stack impact of the IAL snippet should be specified. A IAL
snippet is parsed as an expression and can be used wherever an expression is expected.
The content of the IAL is not checked and can thus cause compiler errors as well as hard to
debug runtime errors. Thus, this syntax should be used sparingly. A IAL snippet is assumed
to be of type void by the compiler, if that is not the case, the

// Example of the usage of the emulation instruction.
// A stack impact of -1 is specified since the OP_EMULATION opcode that is
// generated by the IAL opcode EMULATION pops one value from the stack.
@-1{EMULATION};

A good example of usage of this syntax is in the standard library implementation of the
Emulator, a class that can run code from RAM. This function is included with the relevant
parts commented.

public void run() {
...

// Reserve stack space for user level code.
// The instructions by the user are not known
// ahead of time, so in some cases, the EMULATION
// opcode will trigger a stack push or pop.
// This will make sure extra stack is reserved
// for such cases.
@32{};

while(pc < length) {
tmp = 0xFF & buffer[pc];

// Goto modifies PC
if (tmp == Emulator.OP_GOTO) {

...
} else if (tmp >= Emulator.OP_IFEQ && tmp <= Emulator.OP_IF_ICMPLE){

// By coercing to void the compiler is forced not to pop the
// value from the stack at the end of the statement. As such,
// the value computed here is used by the next IAL snippet
@Coerce (void) (tmp | (3 << 16));
// The pop of the above value is performed here (-1 stack
// impact). This will balance the stack push and pops for
// the compiler.
@-1{EMULATION};
// This is a IAL level goto. Labels are resolved internally
// by the linker. Labels must be unique. Note that no number
// is specified before the IAL code. This is because if the
// stack impact is 0, it can be omitted.
@{ (goto ”Emulator/run/end”) };
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pc += ((0xFF & buffer[pc+1]) << 8) + (0xFF & buffer[pc+2]);
} else {

// Like above, this builds the instruction for the
// IAL snippet below.
@Coerce (void) (tmp + ((buffer[pc+1] & 0xFF) << 24)

+ ((buffer[pc+2] & 0xFF) << 16));
// Run the instruction, as above
@-1{EMULATION};
// This IAL snippet defines a label at the current position.
@{ (l ”Emulator/run/end”) };
pc += pc_inc(tmp);

}
}

// Release the stack space reserved above
@-32{};

}

The IAL syntax is loosely related to the supported opcodes. The table 4 shown the mapping
between IAL syntax and the generated OPCODES.

Table 4: Intermediate Assembly Level Syntax

IAL Opcodes
Generic operations

NOP OP_NOP
POP OP_POP
POP2 OP_POP2
DUP OP_DUP
DUP2 OP_DUP2
SWAP OP_SWAP
EMULATION OP_EMULATION OP_NOP OP_NOP

Pushing constants
(LIT b) Smallest possible immediate for the integer b
(BIPUSH b) OP_BIPUSH b
(SIPUSH s) OP_SIPUSH s:msb s:lsb
(CONST -1) OP_ICONST_M1
(CONST 0) OP_ICONST_0
(CONST 1) OP_ICONST_1
(CONST 2) OP_ICONST_2
(CONST 3) OP_ICONST_3
(CONST 4) OP_ICONST_4
(CONST 5) OP_ICONST_5
(CONST 0.0) OP_FCONST_0
(CONST 1.0) OP_FCONST_1
(CONST 2.0) OP_FCONST_2
(LDC arg) OP_LDC arg

Variables
(LOAD ix) Smallest instruction to load local ix
(STORE ix) Smallest instruction to store local ix
(IINC ix bl) OP_IINC ix bl

Continued on next page
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Continued from previous page
IAL Opcodes
(GETSTATIC static) OP_GETSTATIC static:msb static:lsb
(PUTSTATIC static) OP_PUTSTATIC static:msb static:lsb
(GETFIELD field) OP_GETFIELD field:msb field:lsb
(PUTFIELD field) OP_PUTFIELD field:msb field:lsb

Arithmetic
IADD OP_IADD
+ OP_IADD
FADD OP_FADD
- OP_ISUB
FSUB OP_FSUB
* OP_IMUL
FMUL OP_FMUL
/ OP_IDIV
FDIV OP_FDIV
% OP_IREM
INEG OP_INEG
FNEG OP_FNEG
<< OP_ISHL
>> OP_ISHR
>>> OP_IUSHR
and OP_IAND
or OP_IOR
xor OP_IXOR
I2F OP_I2F
F2I OP_F2I

Conditionals
FCMP OP_FCMPL
(IF EQ label 0) OP_IFEQ plus the appropriate label position
(IF NE label 0) OP_IFNE plus the appropriate label position
(IF LT label 0) OP_IFLT plus the appropriate label position
(IF GT label 0) OP_IFGT plus the appropriate label position
(IF GE label 0) OP_IFGE plus the appropriate label position
(IF LE label 0) OP_IFLE plus the appropriate label position
(IF EQ label) OP_IF_ICMPEQ plus the appropriate label position
(IF NE label) OP_IF_ICMPNE plus the appropriate label position
(IF LT label) OP_IF_ICMPLT plus the appropriate label position
(IF GT label) OP_IF_ICMPGT plus the appropriate label position
(IF GE label) OP_IF_ICMPGE plus the appropriate label position
(IF LE label) OP_IF_ICMPLE plus the appropriate label position
(GOTO label) Generate OP_GOTO inst. plus the appropriate label position

Calling
(RETURN T) OP_IRETURN
RETURN OP_RETURN
(CALL loc) Generate OP_INVOKESTATIC plus the id for the method loc
(NEW class) OP_NEW static:msb static:lsb

Continued on next page
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Continued from previous page
IAL Opcodes
CALLCONT OP_CALLCONT
YIELD OP_YIELD
CONTRET OP_CONTRET (Return from interrupt)

Arrays
(ALOAD type) Generate the correct array load inst. for type
(ASTORE type) Generate the correct array store inst. for type
(NEWARRAY type) Generate the array creation inst. matching type
ARRAYLENGTH OP_ARRAYLENGTH

Linker control
(L label) Generate the given label at the current position
(LABEL label) Generate the given label at the current position
(PUSHCALL loc) Push the method number for loc to the stack.
(PUSHW label) Push the label offset to the stack

4 The VM Execution Environment
This section describes the internals of the VM engine and its interaction with the firmware
of the radio module. The environment you use might not be a SpiderMesh radio module
and although this section contains useful information, not everything will be applicable.
The Resources section describes the memory resources of the virtual machine and how
the VM uses them to store the objects. The VM State and Entrypoints section describes
the conditions under which the VM is started and interrupted.

4.1 Resources
The flash and RAM sizes that are reserved for user VM code varies between radio firmware
revisions. Typical values are about 8 KiB of space for flash and 8 KiB of space for RAM. To
get the actual RAM amount, the native function JVM.freeHeapAmount()will return the
size of the free heap block in bytes.

The ram space is used by both the stack and the heap. Most directly accessible values are
stored on the stack while indirectly accessed object are stored in the heap.

4.1.1 Stack
All stack objects are 32 bits. Local variables, static variables and intermediary computation
values are located on the stack. The unobvious side effect are for native integer types
smaller than 32 bits. Both byte and short are stored sign extended to 32 bits. Non‐
native software unsigned types can be used if unsigned types are really needed.

Let’s say we have the following array: byte arr[] = new byte[] {0x01, 0xF0};
which contain the 16 bit L‐E number 0x01F0. An apparent way to get that value could be:

short leNumber = arr[1] + (arr[0] << 8);
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But let’s see what happens in the stack:

arr[1] // pushes 0xF0 to the stack.
//But remember it is sign extended,
// we get { 0xFFFFFFF0 } in the stack

arr[0] // pushes 0x01 to the stack.
// So we get { 0x00000001 } in the stack

8 // push the constant 8 to the stack
// { 0x00000008, 0x00000001, 0xFFFFFFF0 }

<< // Performs the shift
// { 0x00000100, 0xFFFFFFF0 }

+ // Perform the addition
// { 0x000000F0 }

In this case, we get the wrong result.

The solution is to use U8 numbers, or manually clipping the sign extension with a bitwise
and operator.

int leNumber = U8.convert(arr[1]) + (U8.convert(arr[0]) << 8);

The stack is normally growing from the bottom of the heap region except inside of a corou‐
tine, where the stack grows inside of the heap memory region inside the continuation.
When a continuation is allocated, it must contain enough stack space for its execution. If
this is not the case, heap corruption will occur and crash the VM engine. No checks are
performed to ensure the stack is large enough.

4.1.2 Heap
Pointer type content is allocated in the heap. The pointer type is an integer id that repre‐
sents a location in the heap. This pointer can be stored in the stack to indicate the location
of an object or of an array. Heap locations use a simple header that contain the id, the
length of the memory block and whether the block is an object or an array.

Arrays have a 1 byte type id before their content. The memory footprint of an array is thus:

sizeof(VM_heapHeader_t) + 1 + length * sizeof(arraytype)

So for instance, a byte[10] has a memory footprint of 15 bytes. But, a pointer to this
array is probably somewhere in stack, so an additional 4 bytes are used there.

Objects use a 4 byte class id. Then, the class fields are stored (4 bytes each). The memory
footprint of an object is thus:

sizeof(VM_heapHeader_t) + 4 * ( 1 + number_of_class_fields )

For instance, the following class

class Eg {
int a;
short arr[22];
byte b;

static int hello = 7;
}
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Has three class fields (static variables don’t count and are stored separately on the stack)
The memory allocation is thus 20 bytes. But, the short array must also be allocated on the
heap, Its heap entry will use 49 bytes. Also, the class instance pointer is probably stored
somewhere in stack, so an additional 4 bytes are used there too.

1. Heapsearch
A heapsearch happens when a 32bit VM pointer is converted to a RAM pointer. This
is necessary to access or edit the content of any heap object. Both arrays and objects
are stored on the VM heap. This means that indexing can be quite time‐consuming
for nested types. For instance, accessing the inner integer in a type class {int
field[];}[] (written as objarray[ix].field[ix2]) does 3 heap searches.
(a) Locate objarray’s content.
(b) Locate the content of the object at position ix in the array.
(c) Locate the field’s content.
Since the heap is implemented similarly to a linked list, the time required to lookup
an object is dependent on the number of objects in the heap and on the freshness of
the object. (Older objects are further on the list)

4.1.3 MMU
The MMU, or Memory Management Unit of the VM is a virtual memory mapping between
VM numbers and real hardware pointers, providing sandboxing for VM programs.

The heap is mapped at 0x80000000-0x80007FFF with each value in this range repre‐
senting the

Other MMU mappings can be created by either the host or from the VM. If no methods
are provided in a library using the MMU, or if such a library is being developed, the way
to work with other pages of the MMU is to coerce the coresponding pointer to the right
object type.

For instance, if a memory region inmapped to theMMUpage0x20000000-0x3FFFFFFF,
it can be used:

byte[] rawArray = @Coerce(byte[])0x20000000;
rawArray[0] = 5;
System.out.println(rawArray[10000]);

Note that heap specific features will result in an error. For instance, the length of an array is
computed from its heap block size. Since no such block exist for memory regions outside
of the heap, calling rawArray.length from the sample above would result in an error.
Objects can be created outside of the heap on MMU pages using this syntax:

class Eg { int a; Eg(int i) { a = i; } }
Eg o = (@Coerce(Eg)0x20000100) new Eg(144);
System.out.println(rawArray[256]); // -> 144
System.out.println(o.a); // -> 144

Note how the array created in the previous example overlaps with the object. This is due
to the fact that no memory management is done for object outside of the heap, the user
is resposible to manage memory locations themselves.
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Finally, it is possible to create MMU mappings directly from STVM code. This can be used
to abstract over some piece of hardware, or to provide a way to easily access memory in a
generic way.

Here is an example, mapping a SPI peripheral’s registers to a contiguous accessible memory
region:

class SPIMMU {
static Spi spi;

static unsigned readFunction(int ptr, int ix, int size) {
ptr += ix; // Consider offset, ptr+ix is the real location requested

by the user.↪→

unsigned ret;
spi.start();
// Perform SPI Calls to read SIZE bytes from the spi port.
...
ret = ...;
spi.stop();
return ret;

}

static unsigned writeFunction(int ptr, int ix, int size, int value) {
ptr += ix; // Consider offset, ptr+ix is the real location requested

by the user.↪→

spi.start();
// Perform SPI Calls to write SIZE bytes to the spi port.
...
spi.stop();
// Always return 0 from the writeFunction
return 0;

}

static void init(Spi connection) {
spi = connection;
JVM.MMU_attach(1, // Page number, page 4 is reserved for the Heap

@Method SPIMMU.readFunction,
@Method SPIMMU.writeFunction);

}
}

Once the page is attached, pointers inside of this page can be safely used and access will
cause a call to the SPIMMU.readFunction and SPIMMU.writeFunction.

4.2 Configuration
For the VM to be used as the execution environment, multiple configuration actions must
be performed.

1. Set the VM Engine Selection register to JVM. EVM, the default, is the legacy VM
engine.

2. Enable the desired VM triggers registers (register 15)
3. Upload the VM code to the radio module.

In order to set the registers, the SpiderMesh IDE software can be used. This software is
available from our website https://smartrek.io. The figure 1 shows the configuration
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of these registers. See the SpiderMesh IDE documentation for more details on using the
software to set register values.

Figure 1: Configuration of the Virtual Machine Parameters from the SpiderMesh IDE Soft‐
ware

After these three conditions are met, the VM will execute starting from the next reset.

4.3 VM State and Entrypoints
There are two types of VM events, where the radio firmware will call user code under
certain circumstances:

1. Bootup
2. Virtual Machine Triggers (such as ENTER_SEEKMODE or AIRCOMMAND)

There are three types of VM entrypoints, code constructs that determine where in the VM
code the execution will start.

1. Static initializers (static{} blocks and static variable initialization)
2. Main function call (Call from the start of the static void main (String args

[]) function)
3. Main function resume (The execution will continue at the last instruction executed
at the last event)

Table 5 present the properties of the different entrypoints regarding their execution and
the action when the engine is killed or interrupted. In this context, an interruption is when
the VM return control to the main firmware in a non‐normal way. A normal way would be
for instance to return from the main function. A non‐normal way would be if the engine
is stopped when its time limit is reached, or when it is interrupted from software with the
native function JVM.softwait()
After power‐on, the radio module will trigger a bootup VM event. This event will call the
static initializer entry point to init the virtual machine. Then the VM is placed in stopped
mode.
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Table 5: Interruption effect on the different entrypoints

Entrypoint Timeout will interrupt Action when interrupted
Static initializers No Error
Main function call Yes Pause
Main function resume Yes Pause
When in a critical region Yes Error

Figure 2: State Diagram of the Virtual Machine during its Execution Cycle



When a virtual machine trigger happen afterwards, the entrypoint selected to react to the
event will depend on the current VM state. The VM can be in any of the following states
when a VM trigger occurs

— Stopped
— Paused
— Error

If the VM is in error mode, the VM has to be reinited. This may fail, or cause a desync, as
there might not be enough time to proceed to the full initialization. To fix this, keep static
initializer code as small as possible when the VM trigger is not EXECTYPE_BOOTUP. After
the initialization is complete, the VM is placed in stopped mode and the VM trigger check
is performed again.

If the VM is in stopped mode, the main function is called. The VM is immediately paused
at the first instruction of the main function. Then the VM trigger check is performed again.

Finally, if the VM is in paused mode, the execution is resumed at the pause point.

The figure 2 show the different entrypoint and event interaction.

4.3.1 VM Supervisor
The supervisor automatically places the VM in pause mode when there is no more time for
execution. This can happen if the radio module has to take control to perform an action
such as a SpiderMesh broadcast cycle. The supervisor is also needed for multiple native
functions to function correctly such as VM.Delay, JVM.softwait, or any function re‐
lated to timing.

A call to a supervisor enabled function while the supervisor is not running will stop JVM
execution and crash the module which will cause a WDT Reset.

The WDT is always enabled during the VM execution and can reset the radio module in
some cases, even if the VM does not run for more time than allowed, such as bootup.
Bootup code may take a long time, or can even never end if desired. In this case, manual
calls to VM.ResetWathdog() are required to prevent a hardware reset at least every 5
seconds. Table 6 shows the state of the supervisor during the different possible entrypoints.
When the supervisor is allowed to pause the VM, it will also automatically reset the WDT.

Table 6: Supervisor properties for the different entrypoints
Entrypoint Supervisor running Supervisor can pause VM
Static init (bootup) Yes No
Static init (after error) No No
VM triggered main() execution Yes Yes

4.3.2 Critical Region
In some cases, code needs to finish execution before the end of trigger, such as when the
ENTER_SEEKMODE trigger is used to reset control signals when communication is lost. In
this case, the critical region can be used by the programmer to force an error whenever the
VM is stopped by the supervisor.
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The function JVM.EnterCriticalRegion() and JVM.LeaveCriticalRegion()
can be used to control the critical region state.

4.4 The Garbage Collector
The garbage collector frees unused heap blocs. A bloc is unused when the RAM does not
contain an active pointer to it.

The GC is triggered whenever an allocation operation fails because of a lack of memory.
The allocation is tried again after the GC completes. The GC can also be triggered manually
with the native function JVM.gc()
The GC is relatively slow, but shouldn’t leak memory. In order to reduce the load on the
GC, check the subsection Preventing allocation.

As of version 1.7, the GC more optimally collects small amount of objects. By manually
keeping the generated garbage low (by calling JVM.gc() frequently for instance), the en‐
gine can execute code involving heap objects much quicker.

The GC can’t run inside of a continuation.

4.4.1 Preventing allocation
Both allocation and garbage collection is a very slow process. A common pattern when
developing VM code for a sensor is allocating an array, filling it, and then sending it using
the standard library function VM.Send(byte[]).

class Sensor {
static void main(String [] args){

byte[] tx_buffer = new byte[5];
tx_buffer [0] = ...;
...
VM.Send(tx_buffer);

}
}

This will allocate a new array on every main call, eventually filling the memory and requiring
a GC pass every few executions. This is not a problem, unless your main function is time
sensitive, but the allocation is easy to prevent by reusing the same array every time:

class Sensor {
static byte[] tx_buffer = new byte[5];
static void main(String [] args) {

...
tx_buffer[0] = ...;
...
VM.Send(tx_buffer);
...

}
}

Another example of allocation is when using the serial port to help debug VM code:
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System.out.println(”foo: ” + foo);

This statement will create multiple copies and allocations, as explained in the String and
StringBuilder section. It is possible to split the call to println in such a way that no allocation
or copy is performed.

System.out.print(”foo: ”);
System.out.println(foo);

This can reduce the strain on the GC when the print operation is done often.

4.5 VM Errors
The virtual machine will abort on many types of errors. When that happens, the VM will
restart as described in SECTION. The error value is stored internally and can be accessed by
the user through the int JVM.GetError() function. For debugging, a print statement
could be used at JVM initialization that outputs the error code to the serial port.

System.out.println(”[SMK900] VM Init :” + JVM.GetError());

The table 7 show the error types that can be triggered by the VM and why.

4.6 Opcodes
The table 8 list the opcodes supported by the VM environment

Every instruction of the STVM language is encoded on 8 bits. Furthermore, up to two bytes
can follow the instruction that are used as arguments for the instruction. In the table below,
shortcuts are used to refer to these bytes

— bh: The upper byte of the argument, or pc+1
— bl: The lower byte of the argument, or pc+2
— w: The 16 bit representation of bh, bl, bl being the LSB and bh being the MSB

Most instructions affect the stack directly. In the table below, shortcuts are used to refer
to different stack elements:

— TOS the most recent entry to the stack
— NOS the second most recent entry to the stack
— stack[-i] The ith most recent entry to the stack
— locals[i] The ith local variable (locals being though of here as a pointer to the
first local in the stack)

— static[i] The ith static variable (static being though of here as a pointer to the
first static in the stack)

If NOS and TOS are used, they are popped after the instruction if appropriate.
Some pseudo functions are used in the pseudocode description of the opcodes:

— push(x): Push x to the stack. x becomes the TOS and the old TOS becomes the
NOS

45



Revision History 46

Table 7: Virtual Machine Error Codes
ID Name Description
0 NO_ERROR
1 HEAP_CORRUPTED The heap format is invalid
2 HEAP_OOM No space to alloc requested memory
3 HEAP_OOM_ID All possible memory ids are used
4 HEAP_OOR Could not find heap pointer in RAM
5 STACK_OOM Can’t reserve stack memory
6 STACK_UNDERRUN Stack has a negative length
7 STACK_CORRUPTED Return from method PC is invalid
8 ARRAY_TYPE Trying to create an array of an invalid type
9 UNKNOWN_METHOD Trying to call an invalid method
10 UNKNOWN_CLASS Class or method not found
11 UNCALLABLE Calling a non callable Object (not a closure)
12 FILE_FORMAT Code too large
13 SEGFAULT Used when a memory copy uses an invalid segment
14 OPCODE Invalid opcode
15 DIVBY0 Division by 0
16 USER1 User reserved error code
17 USER2 User reserved error code
18 Reserved
19 Reserved
20 STACK_OVERRUN Internal stack management error
21 JIT_COMPILE JIT Compilation failed
22 JIT_LINK JIT Linking Step failed
23 JIT_OTHER Other JIT related errors



— pop(x): Returns the TOS and pops it from the stack
— jump(x): Sets pc to x
— call(x): Sets pc to the start of the given method.
— return: Return from a void method
— return(x): Return the value x from a non void method

Note that opcodes starting with OP_I acts on int and opcodes starting with OP_F acts
on float.

Table 8: Opcodes Supported in the VMExecution Environment

Mnemonic Opcode # Args Description
Generic operations
OP_NOP 0x00 0 No operation
OP_POP 0x57 0 pop()
OP_POP2 0x58 0 pop() pop()
OP_DUP 0x59 0 push(TOS) (TOS not popped)
OP_DUP2 0x5c 0 push(NOS) push(TOS) (TOS/NOS not popped)
OP_SWAP 0x5f 0 push(TOS) push(NOS)
OP_EMULATION 0xcb 0 See section OP_EMULATION
Pushing constants
OP_ICONST_M1 0x02 0 push(-1)
OP_ICONST_0 0x03 0 push(0)
OP_ICONST_1 0x04 0 push(1)
OP_ICONST_2 0x05 0 push(2)
OP_ICONST_3 0x06 0 push(3)
OP_ICONST_4 0x07 0 push(4)
OP_ICONST_5 0x08 0 push(5)
OP_FCONST_0 0x0b 0 push(0.0)
OP_FCONST_1 0x0c 0 push(1.0)
OP_FCONST_2 0x0d 0 push(2.0)
OP_BIPUSH 0x10 1 bh push(bh)
OP_SIPUSH 0x11 2 w push(w)
OP_LDC 0x12 1 bh See section OP_LDC
Variables
OP_ILOAD 0x15 1 bh push(locals[bh])
OP_FLOAD 0x17 1 bh push(locals[bh])
OP_ILOAD_0 0x1a 0 push(locals[0])
OP_ILOAD_1 0x1b 0 push(locals[1])
OP_ILOAD_2 0x1c 0 push(locals[2])
OP_ILOAD_3 0x1d 0 push(locals[3])
OP_FLOAD_0 0x22 0 push(locals[0])
OP_FLOAD_1 0x23 0 push(locals[1])
OP_FLOAD_2 0x24 0 push(locals[2])
OP_FLOAD_3 0x25 0 push(locals[3])
OP_ISTORE 0x36 1 bh locals[bh] = pop()
OP_FSTORE 0x38 1 bh locals[bh] = pop()
OP_ISTORE_0 0x3b 0 locals[0] = pop()
OP_ISTORE_1 0x3c 0 locals[1] = pop()

Continued on next page
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Continued from previous page
Mnemonic Opcode # Args Description
OP_ISTORE_2 0x3d 0 locals[2] = pop()
OP_FSTORE_0 0x44 0 locals[0] = pop()
OP_FSTORE_1 0x44 0 locals[1] = pop()
OP_FSTORE_2 0x45 0 locals[2] = pop()
OP_IINC 0x84 2 bh bl locals[bh] = locals[bh] + bl
OP_GETSTATIC 0xb2 2 w push(static[w]))
OP_PUTSTATIC 0xb3 2 w static[w] = pop()
OP_GETFIELD 0xb4 2 w Push the field w of the object at TOS
OP_PUTFIELD 0xb5 2 w Sets the field w of object NOS to TOS
OP_DEREFGET 0x18 0 Dereferentiate the pointer at the given location
OP_DEREFSET 0x19 0 Sets the value in the pointer at the given location
OP_LOCALREF 0x1e 2 w Get the offset of the given local variable
Arithmetic
OP_IADD 0x60 0 push(NOS + TOS)
OP_FADD 0x62 0 push(NOS + TOS)
OP_ISUB 0x64 0 push(NOS - TOS)
OP_FSUB 0x66 0 push(NOS - TOS)
OP_IMUL 0x68 0 push(NOS * TOS)
OP_FMUL 0x6a 0 push(NOS * TOS)
OP_IDIV 0x6c 0 push(NOS / TOS)
OP_FDIV 0x6e 0 push(NOS / TOS)
OP_IREM 0x70 0 push(NOS % TOS)
OP_INEG 0x74 0 push(-TOS)
OP_FNEG 0x76 0 push(-TOS)
OP_ISHL 0x78 0 push(NOS <<TOS)
OP_ISHR 0x7a 0 push(NOS >>TOS)
OP_IUSHR 0x7c 0 push(NOS >>>TOS)
OP_IAND 0x7e 0 push(NOS & TOS)
OP_IOR 0x80 0 push(NOS | TOS)
OP_IXOR 0x82 0 push(NOS ^ TOS)
OP_I2F 0x86 0 Convert TOS from int to float
OP_F2I 0x8b 0 Truncate TOS from float to int
Conditionals
OP_FCMPL 0x95 0 NOS < TOS ? -1 : NOS > TOS ? 1 : 0
OP_FCMPG 0x96 NOS < TOS ? -1 : NOS > TOS ? 1 : 0
OP_IFEQ 0x99 2 w if(pop() eq 0): jump(w)
OP_IFNE 0x9a 2 w if(pop() neq 0): jump(w)
OP_IFLT 0x9b 2 w if(pop() < 0): jump(w)
OP_IFGE 0x9c 2 w if(pop() ge 0): jump(w)
OP_IFGT 0x9d 2 w if(pop() > 0): jump(w)
OP_IFLE 0x9e 2 w if(pop() le 0 ): jump(w)
OP_IF_ICMPEQ 0x9f 2 w if(NOS eq TOS): jump(w)
OP_IF_ICMPNE 0xa0 2 w if(NOS neq TOS): jump(w)
OP_IF_ICMPLT 0xa1 2 w if(NOS < TOS): jump(w)
OP_IF_ICMPGE 0xa2 2 w if(NOS ge TOS): jump(w)

Continued on next page

48



Continued from previous page
Mnemonic Opcode # Args Description
OP_IF_ICMPGT 0xa3 2 w if(NOS > TOS): jump(w)
OP_IF_ICMPLE 0xa4 2 w if(NOS le TOS ): jump(w)
OP_GOTO 0xa7 2 w jump(w)
Calling
OP_IRETURN 0xac 0 return(pop())
OP_FRETURN 0xae 0 return(pop())
OP_RETURN 0xb1 0 return
OP_INVOKESPECIAL 0xb7 0 See the section on the Invoke opcode
OP_INVOKESTATIC 0xb8 2 bh bl See the section on the Invoke opcode
OP_NEW 0xbb 2 w Alloc a pointer for an object of class w
Arrays
OP_IALOAD 0x2e 0 push(NOS[TOS]])
OP_FALOAD 0x30 0 push(NOS[TOS]])
OP_AALOAD 0x32 0 push(NOS[TOS]])
OP_BALOAD 0x33 0 push(NOS[TOS]])
OP_SALOAD 0x35 0 push(NOS[TOS]])
OP_IASTORE 0x4f 0 stack[-2][NOS] = TOS
OP_FASTORE 0x51 0 stack[-2][NOS] = TOS
OP_AASTORE 0x53 0 stack[-2][NOS] = TOS
OP_BASTORE 0x54 0 stack[-2][NOS] = TOS
OP_SASTORE 0x56 0 stack[-2][NOS] = TOS
OP_NEWARRAY 0xbc 1 bh Alloc a pointer for an array of type bh (length TOS)
OP_ANEWARRAY 0xbd 0 Alloc a pointer for an object array of length TOS
OP_ARRAYLENGTH 0xbe Push the length of the array pointed at by TOS

4.6.1 OP_LDC
Since instructions are limited to a 16 bit argument, the largest immediate that can be loaded
from code is a 16 bit value, as the instruction OP_SIPUSH is doing. When a larger constant
has to be loaded, the constant page is used. A flash section of the VMF is reserved for 32bit
constant values. These values are stored in a continuous block of memory. The OP_LDC
instruction will index this memory and push the 32bit value located at the given position.
The position is given as a 1 bit argument bh. See the following example that show a possible
opcode compilation for two example constants:

class ClassName {
static void main (String [] args) {

int x = 0x66554433;
// OP_LDC 0x00 ; Load the first constant in memory, 0x66554433
// OP_ISTORE_1 ; Write the constant to the local variable

System.out.print (”This is a string”);
// OP_LDC 0x01 ; Load the pointer to the string,
// a 32bit constant
// OP_INVOKESTATIC <System.out.print(LString;)>
// ; Call the function

}
}
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4.6.2 OP_INVOKEXXX
The invoke family of opcodes are used to call native functions, static methods and class
methods. The two opcodes in this family OP_INVOKESPECIAL and OP_INVOKESTATIC
work in the sameway and differ only onwhere themethod to call is located.OP_INVOKESTATIC
takes a 16 bit argument representing the id of the method or function to call. This id is
predefined for native functions and determined at linking time by the compiler for user
defined methods. OP_INVOKESPECIAL pops an argument from the stack and uses it as
the method id. This opcode is mainly used in the call methods for the Method object.
A native call will simply hook into C level firmware code and continue to the next instruction.

A method call will push to the stack information required to return from the function and
also will reserve the right amount of stack for the called method. This amount of memory
is calculated ahead of time by the compiler.

A jit method will use the target specific calling convention for jit methods.

The arguments to the method, including the leading this object for class methods are to
be pushed to the stack prior to the invoke instruction. The last argument is the TOS (after
the method id is popped by OP_INVOKESPECIAL if applicable) and older arguments are
to be pushed first.

4.6.3 OP_EMULATION
The emulation instruction pop a 32 bit value from the stack. The value is interpreted as in
table 9

Table 9: OP_EMULATION Opcode Value Interpretation Format
Bits Description

24‐31 bh (MSB of w)
16‐23 bl (LSB of w)
8‐15 Unused
0‐7 Opcode

Note that if the emulated instruction is a call, the return instruction normally return to
pc+3, since in a typical invoke instruction, there are two bytes that are arguments and
not instructions after the invoke opcode byte. Note that other instructions that expect
arguments will also advance pc by their expected number of arguments. In any case, it is
always preferred to append two OP_NOP opcodes after any OP_EMULATION instruction to
make sure the VM interpreter stays aligned to an instruction and doesn’t start to interpret
argument data as instructions.

4.7 Intricacies
This section describes corner cases in the VM execution. Some examples of optimizations
here may already be done by the compiler.
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4.7.1 Getting bytes of an integer
The representation of a int array is

Byte: 0 1 2 3 4 5 6 7 8
Value: 10 < arr[0] > < arr[1] >

The representation of a byte array is:

Byte: 0 1 2 3 4 5 6 7 8
Value: 8 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

By coercing from int[] to byte[] and back, it is easy and space efficient to access and
modify the bytes of an int or int array. By using such a cast:

int[] iarr = new int[1];
iarr[0] = 0x11223344;
byte[] barr = iarr; // (GET__ iarr)

// (STORE barr)
barr[2] = 0x55; // (LOAD barr)

// I_CONST_2
// (BIPUSH 0x55)
// BASTORE

System.out.println(iarr[0]); // 0x11553344

Without including the local variable, we see that the write only require a single instruction
BASTORE
The traditional way would produce:

int[] iarr = new int[1];
iarr[0] = 0x11223344;
iarr[0] = (iarr[0] // (LOAD iarr)

// I_CONST_0
// (LOAD iarr)
// I_CONST_0
// IALOAD

& 0xFF00FFFF) // (LDC 0xFF00FFFF)
// IAND

| (0x55 << 16); // (BIPUSH 0x55)
// (BIPUSH 16)
// ISHL
// IOR
// IASTORE

System.out.println(iarr[0]); // 0x11553344

And require the allocation of constants for the mask and for simplifying 0x55 « 16 into
0x00550000 when possible.

4.7.2 Static Init Evaluation Order
Static variables initialization values (e.g. static int foo = 3;) and static blocks (e.g.
static { foo(); }) are evaluated whenever the VM gets initialized. The compiler

51



guarantees that all static variables will be defined before the static blocks are executed.
The order of evaluation of static variables initialization values and static block are unde‐
fined and is subject to change between versions.

The current version evaluates both the static variables and static blocks in reverse order.
For instance if we compile the two following files:

// file1.java
class file1 {

static int A = C;
static int B = A;

}

// file2.java
class file2 {

static int C = 8;
static {

// Block D
}
static int E = 1;

}

with the following command line:

smartrekvmc file1.java file2.java

The evaluation order is as follows

— Static variables initialization
– file2.java, as the evaluation is reverse
* E gets assigned to 1
* C gets assigned to 8

– file1.java
* B gets assigned to the value of A, most likely 0 at this time of the execution,
but the actual value is undefined

* A gets assigned to the value of C, which is 8
— Static blocks are executed

– The block D executes
To prevent the error for B, it is possible to move the variable declaration, but the recom‐
mended approach is to use static final variables for constants, which are replaced at compile
time

Note that the standard library files are added at the end of the file list when added to the
compilation is started. This means that every standard library static initializer is executed
before any user code.

This is an example for a recent version of the compiler, but execution order should not be
relied upon.
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5 Standard library
The standard library is documented using JavaDoc like comments on the methods and
classes of the library. Please refer to your implementation of the stdlib for details. Most
native functions are also documented there.
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