

Adafruit PCF8523 Real Time Clock

Created by lady ada

https://learn.adafruit.com/adafruit-pcf8523-real-time-clock

Last updated on 2023-03-06 10:00:31 AM EST

©Adafruit Industries Page 1 of 26

3

6

10

13

15

20

23

24

Table of Contents

Overview

Pinouts

• Power Pins:

• I2C Logic pins:

• STEMMA QT Connectors:

• Other Pins:

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Real Time Clock

• What is a Real Time Clock?

• Battery Backup

RTC with Arduino

• Wiring

• Talking to the RTC

• First RTC test

• Setting the time

• Reading the time

RTC with CircuitPython

• Wiring

• Adafruit CircuitPython Library Install

• Usage

• Setting the time

Python Docs

Downloads

• Datasheets and Files

• Schematic and Fab Print for STEMMA QT Version

• Schematic and Fab Print for HVSON Chip Package Version

• Schematic and Fab Print for SOIC-8 Chip Package Version

©Adafruit Industries Page 2 of 26

Overview

This is a great battery-backed real time clock (RTC) that allows your microcontroller

project to keep track of time even if it is reprogrammed, or if the power is lost. Perfect

for datalogging, clock-building, time stamping, timers and alarms, etc. Equipped

with PCF8523 RTC - it can run from 3.3V or 5V power & logic!

We've had a breakout board version of this RTC for a while (), but we want to make it

even easier for folks to use, so now it comes with STEMMA QT connectors for plug-

and-play simplicity.

The blue header-only version of this board may come with the PCF8523 chip in

an HVSON or SOIC-8 chip package. Both are identical functionality!

©Adafruit Industries Page 3 of 26

https://www.adafruit.com/product/3295

Works great with an Arduino using our RTC library () or with a Raspberry Pi (or similar

single board linux computer) ()

PCB & header are included

Plugs into any breadboard, or you can use wires

Two mounting holes

Will keep time for 5 years or more

•

•

•

•

©Adafruit Industries Page 4 of 26

https://github.com/adafruit/RTClib
file:///home/adding-a-real-time-clock-to-raspberry-pi
file:///home/adding-a-real-time-clock-to-raspberry-pi

To make life easier so you can focus on your important work, we've taken the sensor

and put it onto a breakout PCB along with support circuitry to let you use it with 3.3V

(Feather/Raspberry Pi) or 5V (Arduino/ Metro328) logic levels. Additionally, since it

speaks I2C you can easily connect it up with two wires (plus power and ground!).

We've even included SparkFun qwiic () compatible STEMMA QT () connectors for the

I2C bus so you don't even need to solder! QT Cable is not included, but we have a

variety in the shop (). Just wire up to your favorite micro and you can use our

CircuitPython/Python or Arduino drivers () to easily interface with the PCF8523.

The PCF8523 is simple and inexpensive but not a high precision device. It may lose

or gain up to 2 seconds a day. For a high-precision, temperature compensated

alternative, please check out the DS3231 precision RTC (http://adafru.it/3013). If you

need a DS1307 for compatibility reasons, check out our DS1307 RTC breakout (http://

adafru.it/3296)

There are two versions of this board - the STEMMA QT version shown below (the

black PCB), and the original header-only version shown above (the blue PCB).

Code works the same on both!

©Adafruit Industries Page 5 of 26

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://github.com/adafruit/Adafruit_DPS310
https://www.adafruit.com/products/3013
http://www.adafruit.com/products/3296

Pinouts

©Adafruit Industries Page 6 of 26

The PCF8523 is a I2C device. That means it uses the two I2C data/clock wires

available on most microcontrollers, and can share those pins with other sensors as

long as they don't have an address collision.

For future reference, the default I2C address is 0x68. You cannot change it.

©Adafruit Industries Page 7 of 26

Power Pins:

VCC - this is the power pin. This chip can

be powered by 3-5VDC so there is now

on-board regulator. To power the board,

give it the same power as the logic level of

your microcontroller - e.g. for a 5V micro

like Arduino, use 5V

GND - common ground for power and

logic

©Adafruit Industries Page 8 of 26

https://learn.adafruit.com//assets/47719
https://learn.adafruit.com//assets/47719
https://learn.adafruit.com//assets/103709
https://learn.adafruit.com//assets/103709

I2C Logic pins:

SCL - I2C clock pin, connect to your

microcontrollers I2C clock line.

SDA - I2C data pin, connect to your

microcontrollers I2C data line.

STEMMA QT Connectors:

STEMMA QT () - These connectors allow

you to connect to dev boards with

STEMMA QT connectors or to other things

with various associated accessories ()

On the STEMMA QT version of the breakout only!

©Adafruit Industries Page 9 of 26

https://learn.adafruit.com//assets/47721
https://learn.adafruit.com//assets/47721
https://learn.adafruit.com//assets/103712
https://learn.adafruit.com//assets/103712
https://learn.adafruit.com//assets/103713
https://learn.adafruit.com//assets/103713
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Other Pins:

The SQW pin is for square-wave output if

you enable it

Assembly

©Adafruit Industries Page 10 of 26

https://learn.adafruit.com//assets/47722
https://learn.adafruit.com//assets/47722
https://learn.adafruit.com//assets/103714
https://learn.adafruit.com//assets/103714

Assembly is really easy, you can use straight or 'right-angle' style headers to attach to

the PCB. We'll be using the plain straight headers included

The board comes with all surface-mount components pre-soldered. The included

header strip can be soldered on for convenient use on a breadboard or with 0.1"

connectors. You can also skip this step and solder on wires.

Prepare the header strip:

Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:

Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 11 of 26

https://learn.adafruit.com//assets/48408
https://learn.adafruit.com//assets/48408
https://learn.adafruit.com//assets/48409
https://learn.adafruit.com//assets/48409

And Solder!

Be sure to solder all 5 pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 12 of 26

https://learn.adafruit.com//assets/48410
https://learn.adafruit.com//assets/48410
https://learn.adafruit.com//assets/48411
https://learn.adafruit.com//assets/48411
https://learn.adafruit.com//assets/48412
https://learn.adafruit.com//assets/48412
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints

visually and continue onto the next steps.

Real Time Clock

What is a Real Time Clock?

When logging data, it's often really really useful to have timestamps! That way you

can take data one minute apart (by checking the clock) or noting at what time of day

the data was logged.

The Arduino IDE does have a built-in timekeeper called millis() (CircuitPython has

time) and theres' also timers built into the chip that can keep track of longer time

periods like minutes or days. So why would you want to have a separate RTC chip?

Well, the biggest reason is that millis()/time only keeps track of time since the board

was last powered - that means that when the power is turned on, the millisecond

timer is set back to 0. The board doesn't know its 'Tuesday' or 'March 8th' all it can tell

is 'Its been 14,000 milliseconds since I was last turned on'.

OK so what if you wanted to set the time? You'd have to program in the date and time

and you could have it count from that point on. But if it lost power, you'd have to reset

the time. Much like very cheap alarm clocks: every time they lose power they blink 12:

00

While this sort of basic timekeeping is OK for some projects, a data-logger will need

to have consistent timekeeping that doesnt reset when the power goes out or is

reprogrammed. Thus, we include a separate RTC! The RTC chip is a specialized chip

that just keeps track of time. It can count leap-years and knows how many days are in

©Adafruit Industries Page 13 of 26

https://learn.adafruit.com//assets/48413
https://learn.adafruit.com//assets/48413

a month, but it doesn't take care of Daylight Savings Time (because it changes from

place to place)

This image shows a computer motherboard with a Real Time Clock called the DS1387

(). Theres a lithium battery in there which is why it's so big.

The RTC we'll be using is the PCF8523 ()

Battery Backup

As long as it has a coin cell to run it, the RTC will merrily tick along for a long time,

even when the Feather loses power, or is reprogrammed.

Use any CR1220 3V lithium metal coin cell battery:

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380

You MUST have a coin cell installed for the RTC to work, if there is no coin cell, it

will act strangely and possibly hang the Arduino when you try to use it, so

ALWAYS make SURE there's a battery installed, even if it's a dead battery.

©Adafruit Industries Page 14 of 26

http://www.maxim-ic.com/app-notes/index.mvp/id/503
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380

RTC with Arduino

Wiring

Wiring it up is easy, connect it up as shown below.

GND to GND (black wire on STEMMA QT

version) on your board

VCC (red wire on STEMMA QT version) to

the logic level power of your board (on

classic Arduinos & Metros use 5V, on 3.3V

devices use 3.3V)

SDA to the SDA (blue wire on STEMMA QT

version) i2c data pin

SCL to the SCL (yellow wire on STEMMA

QT version) i2c clock pin

There are internal 10K pull-ups on the

PCF8523 on SDA and SCL to the VCC

voltage

pcfmetro Fritzing

©Adafruit Industries Page 15 of 26

https://learn.adafruit.com//assets/103717
https://learn.adafruit.com//assets/103717
https://learn.adafruit.com//assets/103718
https://learn.adafruit.com//assets/103718
https://learn.adafruit.com//assets/103719
https://learn.adafruit.com//assets/103719
https://cdn-learn.adafruit.com/assets/assets/000/047/734/original/pcfmetro.fzz?1509306338

Talking to the RTC

The RTC is an i2c device, which means it uses 2 wires to to communicate. These two

wires are used to set the time and retrieve it.

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library, which is

available on GitHub (). You can do that by visiting the github repo and manually

downloading or, easier go to the Arduino Library Manager

Type in RTClib - and find the one that is by Adafruit and click Install

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

There are a few different 'forks' of RTClib, make sure you are using the

ADAFRUIT one!

©Adafruit Industries Page 16 of 26

https://github.com/adafruit/RTClib
https://github.com/adafruit/RTClib

Once done, restart the IDE

First RTC test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC

once a second. We'll also show what happens if you remove the battery and replace it

since that causes the RTC to halt. So to start, remove the battery from the holder

while the Feather is not powered or plugged into USB. Wait 3 seconds and then

replace the battery. This resets the RTC chip. Now load up the matching sketch for

your RTC

Open up Examples->RTClib->pcf8523

Upload it to your board with the PCF8523 breakout board or FeatherWing connected

Now open up the Serial Console and make sure the baud rate is set correctly at

57600 baud you should see the following:

©Adafruit Industries Page 17 of 26

Whenever the RTC chip loses all power (including the backup battery) it will reset to

an earlier date and report the time as 0:0:0 or similar. Whenever you set the time, this

will kickstart the clock ticking.

So, basically, the upshot here is that you should never ever remove the battery once

you've set the time. You shouldn't have to and the battery holder is very snug so

unless the board is crushed, the battery won't 'fall out'

Setting the time

With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

 if (! rtc.initialized()) {

 Serial.println("RTC is NOT running!");

 // following line sets the RTC to the date & time this sketch was compiled

 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

This line is very cute, what it does is take the Date and Time according the computer

you're using (right when you compile the code) and uses that to program the RTC. If

your computer time is not set right you should fix that first. Then you must press the U

pload button to compile and then immediately upload. If you compile and then upload

later, the clock will be off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

©Adafruit Industries Page 18 of 26

From now on, you won't have to ever set the time again: the battery will last 5 or more

years

Reading the time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Let's look

at the sketch again to see how this is done

void loop () {

 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);

 Serial.print('/');

 Serial.print(now.month(), DEC);

 Serial.print('/');

 Serial.print(now.day(), DEC);

 Serial.print(" (");

 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);

 Serial.print(") ");

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.println();

©Adafruit Industries Page 19 of 26

There's pretty much only one way to get the time using the RTClib, which is to call no

w(), a function that returns a DateTime object that describes the year, month, day,

hour, minute and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and

RTC.hour() to get the current year and hour. However, there's one problem where if

you happen to ask for the minute right at 3:14:59 just before the next minute rolls

over, and then the second right after the minute rolls over (so at 3:15:00) you'll see the

time as 3:14:00 which is a minute off. If you did it the other way around you could get

3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying

the time pretty often - we take a 'snapshot' of the time from the RTC all at once and

then we can pull it apart into day() or second() as seen above. It's a tiny bit more effort

but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which

counts the number of seconds (not counting leapseconds) since midnight, January 1st

1970

 Serial.print(" since 2000 = ");

 Serial.print(now.unixtime());

 Serial.print("s = ");

 Serial.print(now.unixtime() / 86400L);

 Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since

then as well. This might be useful when you want to keep track of how much time has

passed since the last query, making some math a lot easier (like checking if it's been

5 minutes later, just see if unixtime() has increased by 300, you dont have to worry

about hour changes)

RTC with CircuitPython

Wiring

Wiring it up is easy, connect it up as shown below.

©Adafruit Industries Page 20 of 26

GND to GND on your board

VCC to the logic level power of your board

- every CircuitPython board uses 3.3V

SDA to the SDA i2c data pin

SCL to the SCL i2c clock pin

There are internal 10K pull-ups on the

PCF8523 on SDA and SCL to the VCC

voltage

Adafruit CircuitPython Library Install

To use the RTC sensor with your Adafruit CircuitPython () board you'll need to install

the Adafruit_CircuitPython_PCF8523 () module on your board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our introduction guide has a great page on how to install the library bundle () for

both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the

necessary libraries from the bundle:

adafruit_bus_device folder

adafruit_register folder

adafruit_pcf8523.mpy

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_pcf8523.mpy module, the adafruit_register folder, and the adafruit_bus_device

folder copied over.

•

•

•

©Adafruit Industries Page 21 of 26

file:///home/welcome-to-circuitpython/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523
file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries

Usage

To demonstrate the usage of the PCF8523 module you can connect to your board's

serial REPL to see the output while saving our example sketch to code.py

Next connect to the board's serial REPL ()so you are at the CircuitPython >>> prompt.

Then save this script to code.py (back up or remove whatever was there before)

import busio

import adafruit_pcf8523

import time

import board

myI2C = busio.I2C(board.SCL, board.SDA)

rtc = adafruit_pcf8523.PCF8523(myI2C)

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday")

if False: # change to True if you want to write the time!

 # year, mon, date, hour, min, sec, wday, yday, isdst

 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))

 # you must set year, mon, date, hour, min, sec and weekday

 # yearday is not supported, isdst can be set but we don't do anything with it

at this time

 print("Setting time to:", t) # uncomment for debugging

 rtc.datetime = t

 print()

while True:

 t = rtc.datetime

 #print(t) # uncomment for debugging

 print("The date is %s %d/%d/%d" % (days[t.tm_wday], t.tm_mday, t.tm_mon,

t.tm_year))

 print("The time is %d:%02d:%02d" % (t.tm_hour, t.tm_min, t.tm_sec))

 time.sleep(1) # wait a second

©Adafruit Industries Page 22 of 26

file:///home/welcome-to-circuitpython/the-repl

Setting the time

The first time you run the program, you'll need to set the time

find these lines:

if False: # change to True if you want to write the time!

 # year, mon, date, hour, min, sec, wday, yday, isdst

 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))

 # you must set year, mon, date, hour, min, sec and weekday

 # yearday is not supported, isdst can be set but we don't do anything with it

at this time

Change the False to True in the first line, and update the time.struct_time to have

the current time starting from year to weekday . The last two entries can stay at -1

Re-run the sketch by saving and you'll see this out of the REPL:

Note the part where the program says it is Setting time to:

Now you can go back and change the if True to if False and save, so you don't re-set

the RTC again.

The script will now output the time and date

Python Docs

Python Docs ()

©Adafruit Industries Page 23 of 26

https://circuitpython.readthedocs.io/projects/pcf8523/en/latest/

Downloads

Datasheets and Files

EagleCAD PCB files on GitHub ()

Fritzing object in Adafruit Fritzing library ()

PCF8523 product page ()

Schematic and Fab Print for STEMMA QT

Version

•

•

•

©Adafruit Industries Page 24 of 26

https://github.com/adafruit/Adafruit-PCF8523-RTC-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523

Schematic and Fab Print for HVSON Chip

Package Version

©Adafruit Industries Page 25 of 26

Schematic and Fab Print for SOIC-8 Chip

Package Version

©Adafruit Industries Page 26 of 26

	Adafruit PCF8523 Real Time Clock
	Table of Contents
	Overview
	Pinouts
	Assembly
	Real Time Clock
	RTC with Arduino
	RTC with CircuitPython
	Python Docs
	Downloads

	Overview
	Pinouts
	Power Pins:
	I2C Logic pins:
	STEMMA QT Connectors:

	Other Pins:
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Real Time Clock
	What is a Real Time Clock?

	Battery Backup
	RTC with Arduino
	Wiring
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time
	RTC with CircuitPython
	Wiring
	Adafruit CircuitPython Library Install
	Usage
	Setting the time
	Python Docs
	Downloads
	Datasheets and Files
	Schematic and Fab Print for STEMMA QT Version
	Schematic and Fab Print for HVSON Chip Package Version
	Schematic and Fab Print for SOIC-8 Chip Package Version

