

Please note that Cypress is an Infineon Technologies Company.

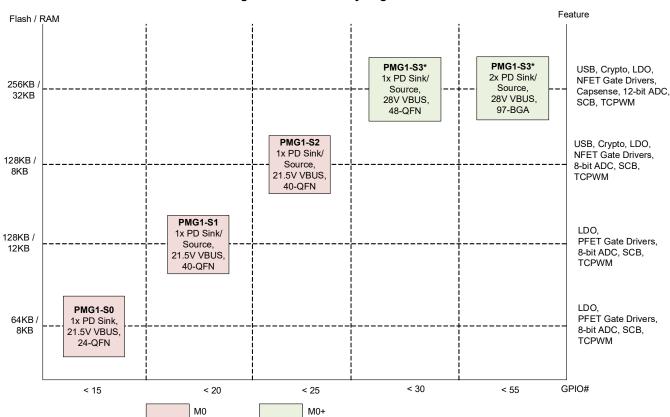
The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.


www.infineon.com

Power Delivery Microcontroller Gen1

PMG1 Family General Description

PMG1 (Power Delivery Microcontroller Gen1) is a family of high-voltage USB-C power delivery (PD) microcontrollers (MCU). These chips include an Arm[®] Cortex[®]-M0/M0+ CPU and USB-C PD controller along with analog and digital peripherals. PMG1 is targeted for any embedded system that provides/consumes power to/from a high-voltage USB-C PD port and leverages the microcontroller to provide additional control capability. Figure 1 illustrates the PMG1 family segmentation.

198 Champion Court

Figure 1. PMG1 Family Segmentation

San Jose, CA 95134-1709

408-943-2600

Revised May 27, 2021

^{*}Contact your local Cypress sales office for more information on PMG1-S3.

Table 1 shows the comparison of features of different MCUs of the PMG1 family.

Table 1. Comparison of Features of Different MCUs of the PMG1 Family

Sub-system or Range	Item	PMG1-S0	PMG1-S1	PMG1-S2	PMG1-S3*	
	Core	Arm Cortex-M0	Arm Cortex-M0	Arm Cortex-M0	Arm Cortex-M0+	
CPU and Memory	Max Freq (MHz)	48	48	48	48	
Sub-system	Flash (KB)	64	128	128	256	
	SRAM (KB)	8	12	8	32	
	Power Delivery Ports	1	1	1	1 port for 48-QFN 2 ports for 97-BGA	
	Role	Sink	DRP	DRP	DRP	
Power Delivery	MOSFET Gate Drivers	1x PFET	2x PFET	2x NFET	Flexible 2x NFET	
	Fault Protections	VBUS OVP and UVP	VBUS OVP, UVP, and OCP. SCP and RCP (for Source Configuration only).	VBUS OVP, UVP, and OCP	VBUS OVP, UVP, and OCP. SCP and RCP (for Source Configuration only).	
USB	Integrated Full Speed USB 2.0 Device with Billboard Class Support	No	No	Yes	Yes	
Voltage Range	Supply (V)	VDDD (2.7–5.5) VBUS (4–21.5)	VSYS (2.75–5.5) VBUS (4–21.5)	VSYS (2.7-5.5) VBUS (4-21.5)	VSYS (2.8–5.5) VBUS (4–28)	
	IO (V)	1.71–5.5	1.71–5.5	1.71–5.5	1.71–5.5	
	SCB (configurable as I2C/UART/SPI)	2	4	4	7 for 48-QFN (out of which only 5 can be configured as SPI and UART)	
					8 for 97-BGA	
Digital	TCPWM Block (configurable as timer, counter or pulse-width modulator)	4	2	4	7 for 48-QFN 8 for 97-BGA	
	Hardware Authentication Block (Crypto)	No	No	Yes (AES-128/192/256, SHA1, SHA2-224, SHA2-256, PRNG, CRC)	Yes (AES-128, SHA2-256, TRNG, Vector Unit)	
Analog	ADC	2x 8-bit SAR	1x 8-bit SAR 2x 8-bit SAR		2x 8-bit SAR 1x 12-bit SAR	
Analog	On-chip Temperature Sensor	Yes	Yes	Yes	Yes	
Direct Memory Access (DMA)	DMA	No	No	No	Yes	
GPIO	Max # of I/O	12 (10 + 2 OVT)	17 (15 + 2 OVT)	20 (18 + 2 OVT)	26 (24 + 2 OVT) for 48-QFN 50 (48 + 2 OVT) for 97-BGA	
Charging	Charging Standards	=	BC 1.2, AC	BC 1.2, AC	BC 1.2, AC, AFC and Quick Charge 3.0	
Standards	Charging Sink	BC 1.2, Apple Charging (AC)	BC 1.2, AC	BC 1.2, AC	BC 1.2, AC	
ESD Protection	ESD Protection Discharge, up to ±15-kV Air Discharge, Human Body Model, and Charged Device Charged Device Model) Human and Charged Device Charged Devi		Yes (up to ± 8-kV Contact Discharge, up to ±15-kV Air Discharge, Human Body Model, and Charged Device Model)	Yes (Human Body Model and Charged Device Model)		

^{*}Contact your local Cypress sales office for more information on PMG1-S3.

Document Number: 002-31597 Rev. *B

Table 1. Comparison of Features of Different MCUs of the PMG1 Family (continued)

Sub-system or Range	Item	PMG1-S0	PMG1-S1	PMG1-S2	PMG1-S3*
Packages	Package Options	24-pin QFN (4 × 4 mm, 0.5 mm pitch)	40-pin QFN (6 × 6 mm, 0.5 mm pitch)	40-pin QFN (6 × 6 mm, 0.5 mm pitch)	48-pin QFN (6 × 6 mm, 0.5 mm pitch) 97-BGA (6 × 6 mm, 0.5 mm and 0.65 mm pitch)

^{*}Contact your local Cypress sales office for more information on PMG1-S3.

The rest of this document discusses the PMG1-S1 device in detail.

PMG1-S1 General Description

PMG1-S1 includes 128-KB flash, a complete Type-C USB PD transceiver with all termination resistors R_P , R_D and dead battery R_D , and True Random Number Generator (TRNG) for authentication. It is available in a 40-pin QFN package.

Features

USB-PD

- Supports latest USB PD 3.0 specification
- Fast Role Swap (FRS)
- Extended Data Messaging

Type-C

- Integrated current sources for downstream facing port (DFP)^[1] role (R_P).
 - □ Default current at 500 / 900 mA

□ 1.5 A

□3A

- Integrated R_D resistor for UFP^[2] role
- Integrated VCONN FETs to power EMCA cables
- Integrated dead battery termination
- Integrated high-voltage protection on CC pins to protect against accidental shorts to the VBUS pin on the Type-C connector

Legacy Charging (source and sink)

- BCv1.2
- Apple

Mux

■ Integrated USB2.0 Analog Mux for USB 2.0 HS data

Integrated VBUS Load Switch Controller

- Supports up to 20 V on VBUS Provider path
- Slew rate controlled Gate Driver, tolerant to 24 V, to drive external VBUS PFET on the provider path
- Gate Driver, tolerant to 24 V, to drive external VBUS PFET on the consumer path
- Configurable hardware-controlled VBUS overvoltage protection (OVP), undervoltage protection (UVP), overcurrent protection (OCP), short circuit protection (SCP), and reverse current protection (RCP)
- VBUS high-side current sense amplifier capable of measuring current across 5-mΩ series resistance
- In response to FRS request, turns off consumer PFET and turns on provider PFET

LDO

■ Integrated high-voltage LDO operational up to 21.5 V for dead battery mode operation

32-bit MCU Subsystem

- 48-MHz Arm Cortex-M0 CPU
- 128-KB Flash
- 12-KB SRAM

Integrated Digital Blocks

- Two integrated timers and counters to meet response times required by the USB-PD protocol
- Four run-time serial communication blocks (SCBs) with reconfigurable I²C, SPI, or UART functionality

Authentication

■ True Random Number Generator

Clocks and Oscillators

■ Integrated oscillator eliminating the need for an external clock

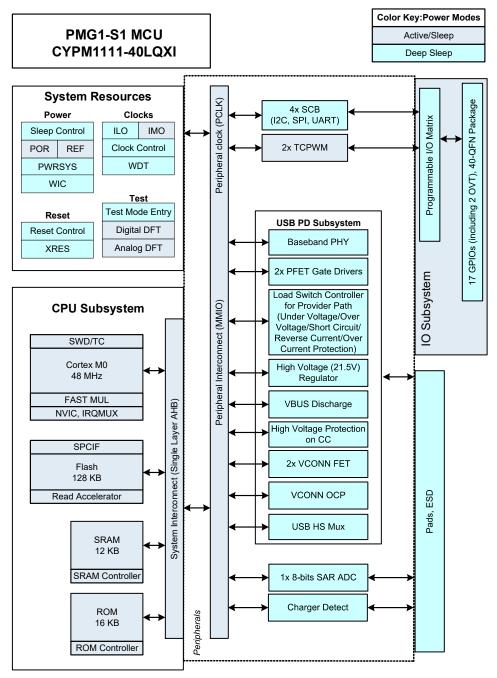
Operating Range

- VSYS (2.75 V-5.5 V)
- VBUS (4 V-21.5 V)

Hot-Swappable I/Os

■ I²C pins from SCB1 are hot-swappable

Packages


- 6.0 mm × 6.0 mm, 0.5 mm, 40-pin QFN
- Supports industrial temperature range (-40 °C to +85 °C)

Notes

- DFP refers to power source.
- UFP refers to power sink.

Block Diagram

Contents

Development Support	7
Documentation	7
Online	7
Tools	
ModusToolbox™ IDE and PMG1 SDK	8
Functional Overview	9
USB-PD Subsystem (SS)	9
True Random Number Generator	
CPU and Memory Subsystem	12
Peripherals	12
Timer/Counter/PWM Block (TCPWM)	
GPIO	
Power System Overview	
Pinouts	
Application Diagrams	17
Electrical Specifications	
Absolute Maximum Ratings	

Device-Level Specifications	20
Digital Peripherals	
System Resources	
Ordering Information	
Ordering Code Definitions	
Packaging	
Acronyms	
Document Conventions	
Units of Measure	38
Document History Page	39
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	40
Products	
PSoC [®] Solutions	40
Cypress Developer Community	
Technical Support	

Development Support

The PMG1 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/products/ez-pd-pmg1 to find out more.

Documentation

A suite of documentation supports the PMG1 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using Modus Toolbox (MTB). The software user guide shows you how MTB build process works in detail, how to use source control with MTB, and much more.

Component Datasheets: The flexibility of PMG1 allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all the information needed to select and use a particular component, including functional description, API documentation, example codes, and AC/DC specifications.

Application Notes: This includes the Getting Started application note and the Hardware Design Guidelines.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PMG1 device, including a complete description of all PMG1 registers. The TRM is available in the Documentation section at www.cypress.com/products/ez-pd-pmg1.

Online

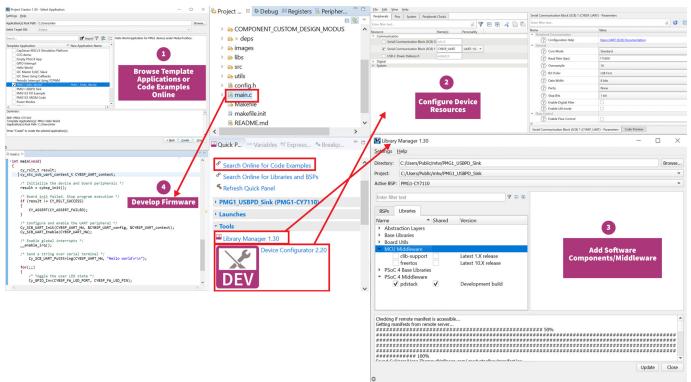
In addition to print documentation, the Cypress PMG1 forums connect you with fellow users and experts in PMG1 from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PMG1 family is part of a development tool ecosystem.

Visit us at https://www.cypress.com/products/modus-toolbox-software-environment for the latest information on the revolutionary, easy to use ModusToolbox IDE, supported third party compilers, programmers, debuggers, and development kits

ModusToolbox™ IDE and PMG1 SDK


ModusToolbox is an Eclipse-based development environment on Windows, macOS, and Linux platforms that includes the Modus-Toolbox IDE and the PMG1 SDK. The ModusToolbox IDE brings together several device resources, middleware, and firmware to build an application. Using ModusToolbox, you can enable and configure device resources and middleware libraries, write C/C++/assembly source code, and program and debug the device.

The PMG1 SDK is the software development kit for the PMG1 MCU. The SDK makes it easier to develop firmware for supported devices without the need to understand the intricacies of the device resources.

For additional details on using the Cypress tools, refer to Getting Started with PMG1 MCU on ModusToolbox Application Note and the documentation and help integrated into ModusToolbox. As Figure 2 shows, with the ModusToolbox IDE, you can:

- Create a new application based on a list of template applications, filtered by kit or device, or browse the collection of code examples online.
- 2. Configure device resources in Device Configurator to build your hardware system design in the workspace.
- 3. Add software components or middleware.
- 4. Develop your application firmware.

Figure 2. ModusToolbox IDE Resources and Middleware

Functional Overview

USB-PD Subsystem (SS)

USB-PD Physical Layer

The PMG1-S1 USB-PD subsystem, as shown in Figure 3, consists of the USB-PD physical layer (PHY) block and supporting circuits. The PHY consists of a transmitter and receiver that communicates using BMC and 4b/5b encoded/decoded data over the CC channel based on the PD 3.0 specification. All communication is half-duplex. The PHY practices collision avoidance to minimize communication errors on the channel.

In addition, the PMG1-S1 USB-PD block includes all termination resistors (R_P and R_D) and their switches as required by the USB Type-C specification. R_P and R_D resistors are required for connection detection, plug orientation detection, and for establishing the USB source/sink roles.

The integrated R_P resistor enables PMG1-S1 to be configured as a Source. The R_P resistor is implemented as a current source and can be programmed to support the complete range of current capacity on the VBUS defined in the USB Type-C spec.

The R_D resistor is used to identify PMG1-S1 as a Sink in a dual role power (DRP) application. The dead battery R_D resistor on CC pins is required when the part is not powered for dead battery termination detection and charging.

To support the latest USB-PD 3.0 specification, PMG1-S1 includes Fast Role Swap (FRS). The FRS feature enables externally powered docks and hubs to rapidly switch to bus power when their external power supply is removed.

For more details about FRS, refer to Section 6.3.19 in the USB-PD 3.0 specification.

PMG1-S1 is designed to be fully interoperable with revision 3.0 of the USB Power Delivery specification as well as revision 2.0 of the USB Power Delivery specification.

PMG1-S1 supports Extended Messages containing data of up to 260 bytes. The Extended Messages will be larger than expected by the USB-PD 2.0 hardware. To accommodate Revision 2.0 based systems, a Chunking mechanism is implemented such that messages are limited to Revision 2.0 sizes unless it is discovered that both systems support longer message lengths.

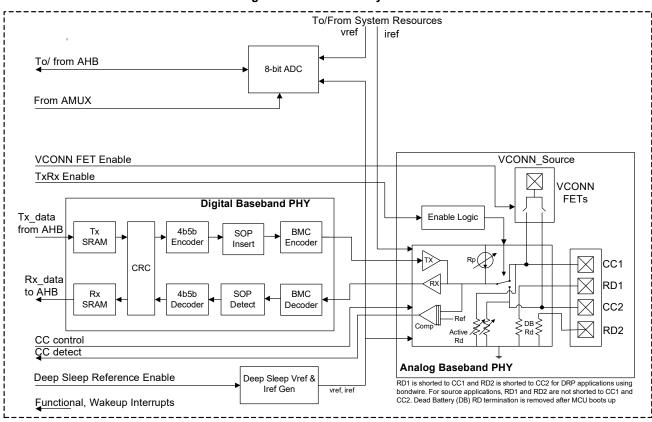


Figure 3. USB-PD Subsystem

VCONN FET

PMG1-S1 has a power supply input, VCONN_Source, for providing power to EMCA cables through integrated VCONN FETs. There are two VCONN FETs to power either CC1 or CC2 pins. These FETs can provide 1.5-W power over VCONN on the CC1 and CC2 pins for the active EMCA cables. PMG1-S1 also includes overcurrent protection (OCP) on VCONN.

ADC

The USB-PD subsystem contains one 8-bit 125 ksps successive approximation register analog-to-digital converter (SAR ADC). The ADC includes an 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses, an internal bandgap voltage, and an internal voltage proportional to the absolute temperature. All GPIOs on the chip have access to the ADC through the chip-wide analog mux bus. The CC1 and CC2 pins are not available to connect to the mux bus.

USB 2.0 Mux

The HS mux contains a 2×1 cross bar switch to route the system DP and DM lines to the Type-C top or bottom port based on the CC (Type-C plug) orientation.

The USB 2.0 mux also contains charger detection/emulation for detecting USB BC1.2 and Apple terminations. The charger detection block is connected to the DP and DM from the system as shown in Figure 4.

To meet the HS eye diagram requirements with sufficient margin, follow these guidelines:

- It is recommended to keep the total USB HS signal trace lengths (USB 2.0 host to PMG1-S1 + PMG1-S1 to Type-C connector pins) to 4 inches.
- Total USB HS signal trace lengths can be increased up to 8 inches by adjusting the drive strength on the USB 2.0 host.
- The differential impedance across the DP/DM signal traces shall be 90Ω .
- Trace width shall be 6 mils.
- Air Gap (distance between lines) shall be 8 mils.

USBDP_TOP/USBDM_TOP

2

USBDP_TOP/USBDM_TOP

2

USBDP_BOT/USBDM_BOT

Figure 4. DP/DM Switch Block Diagram

VBUS Discharge

PMG1-S1 also has integrated VBUS discharge circuit. It is used to discharge VBUS to meet the USB-PD specification timing on a detach condition or negative voltage transition.

VBUS Regulator

PMG1-S1 can operate from two power supplies – VSYS and VBUS. PMG1-S1 integrates the regulator (that supports up to 21.5 V) to derive operating supply voltage. The VSYS always takes priority over VBUS. In the absence of VSYS, the regulator powers PMG1-S1 from VBUS.

Gate Driver for VBUS PFET on Consumer Path

PMG1-S1 has an integrated PFET gate driver to drive external PFETs on the VBUS consumer path. The gate driver can drive only low or high-Z, thus requiring an external pull-up. This pin is VBUS voltage-tolerant.

Charger Detect

PMG1-S1 integrates battery charger emulation and detection for USB BC.1.2 and Apple charge.

High-Voltage Tolerant CC Lines

The chip supports high-voltage tolerant CC lines. In the case of CC short to VBUS through connectors, these lines will be protected internally.

VBUS Load Switch Controller for Provider Path

The load switch controller supports up to 20 V on the VBUS Provider Path.

RCP

PMG1-S1 integrates the Reverse Current Protection (RCP) circuitry that has the capability of sensing reverse current that lasts for more than 10 μ s and protects the system by shutting down the Gate automatically upon detection of such events.

PMG1-S1 provides RCP circuitry that can detect reverse current flow from connector VBUS_C to provider VBUS_P.

The RCP event is recognized whenever VBUS_C > VBUS_P while provider FET is ON, causing current to flow from connector VBUS to provider VBUS. After recognizing the RCP event, the provider FET is shut down thus isolating the provider and connector VBUS.

PMG1-S1 has three distinct mechanisms to detect the reverse current as shown in Figure 5.

- Mechanism 1: A comparator senses the voltage drop across external Rsense through pins CSP and CSN. This comparator signals an RCP event whenever CSN > CSP by the Vcsa_rcp voltage given in Table 33. The output of this comparator RCP1 is shown in Figure 5.
- Mechanism 2: A comparator senses the voltage drop across provider FET through CSN and VBUS pin of PMG1-S1. This comparator signals an RCP event whenever VBUS > CSN by the Vcomp_rcp voltage given in Table 33. The output of this comparator RCP2 is shown in Figure 5.

■ Mechanism 3: A comparator senses the 20% voltage of the CSN pin and compares it against Vref = 1.15 V for 5-V provider VBUS application. This comparator signals an RCP event whenever CSN voltage goes above Vbus_max_det voltage given in Table 33 for a 5-V application. The output of this comparator RCP3 is shown in Figure 5. Note that Vref is programmable and the voltage divider has an option to use 10% or 20% value. For a higher voltage of the provider, the VBUS device automatically adjusts this threshold.

When any one of the three comparator outputs show an RCP event, then the provider FET is turned OFF. The firmware has an option to enable or disable the individual mechanism depending on the application.

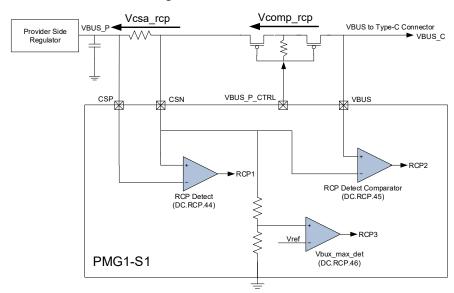


Figure 5. RCP Mechanism

CSA

PMG1-S1 chip has an integrated high-side current sense amplifier that is capable of detecting current in the order of 100 mA across a 5-m Ω external resistor in the provider path. This is used to monitor the current load and detect system faults such as OCP and SCP while sourcing VBUS to the Sink on the Type C port so that the PD controller can shut down the Provider FET to protect devices.

Slew-Rate Controllable Gate Driver

PMG1-S1 has a programmable slew-rate controllable Gate Driver, which can help in limiting the in-rush currents during connect events.

Overvoltage and Undervoltage Protection on VBUS

PMG1-S1 implements an undervoltage/overvoltage (UVOV) detection circuit for the VBUS supply. The threshold for OV and UV detection can be set independently. Both UV and OV detectors have programmable thresholds and are controlled by the firmware. The inputs to the OV comparator are a division (8% or 10%) of VBUS supply voltage and a reference voltage. The reference voltage is configurable in the range (200 mV to 2190 mV) in steps of 10 mV.

The inputs to the UV comparator are a division (10% or 20%) of VBUS supply voltage and a reference voltage. The reference voltage is configurable in the range (200 mV to 2190 mV) in steps of 10 mV.

Overcurrent Protection on VBUS

PMG1-S1 integrates a high-side current sense amplifier to detect overcurrent on the VBUS. The VBUS load is sensed using an external 5-m Ω sense resistor connected between the "CSP" and "CSN" pins and compared against the OCP detector threshold. The OCP detector threshold is programmable and controlled by the firmware.

True Random Number Generator

PMG1-S1 supports a True Random Number Generator (TRNG) to generate random numbers. These random numbers can be used to generate random challenges as part of the initiator implementation of the USB Type C Authentication Specification (USBTCAS).

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PMG1-S1 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating.

The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for PMG1-S1 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PMG1-S1 device has a 128-KB flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver two wait-states (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

SRAM

PMG1-S1 supports 12-KB SRAM.

Peripherals

PMG1-S1 has four SCBs, which can each implement an I²C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I²C bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes. The I²C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. The required Rise and Fall times for different I²C speeds are guaranteed by using appropriate pull-up resistor values depending on VDDD, Bus Capacitance, and resistor tolerance.

For detailed information on how to calculate the optimum pull-up resistor value for your design, refer to the UM10204 I²C bus specification and user manual (the latest revision is available at www.nxp.com).

PMG1-S1 is not completely compliant with the I²C spec for the following:

■ Only SCB1 is overvoltage-tolerant. SCB2, SCB3, and SCB4 GPIO cells are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.

- Fast-mode Plus has an IOL specification of 20 mA at a VOL of 0.4 V. The GPIO cells can sink a maximum of 8-mA IOL with a VOL maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

Timer/Counter/PWM Block (TCPWM)

PMG1-S1 has two TCPWM blocks. Each TCPWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

GPIO

PMG1-S1 has 17 GPIOs that includes the SCB and SWD pins, which can also be used as GPIOs. The I²C pins from only SCB 1 are overvoltage-tolerant. The GPIO block implements the following:

- Seven drive strength modes:
 - □ Input only
 - Weak pull-up with strong pull-down
 - ☐ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - ☐ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (6 for PMG1-S1 since it has 6 ports).

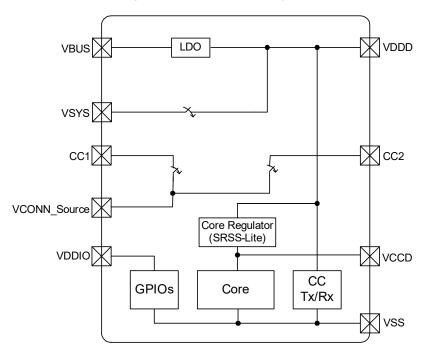

Power System Overview

Figure 6 provides an overview of the PMG1-S1 power system. PMG1-S1 can operate from two possible external supply sources: VBUS (4 V to 21.5 V) or VSYS (2.75 V to 5.5 V). The VBUS supply is regulated inside the chip with a LDO. The switched supply, VDDD, is used directly inside some analog blocks and further regulated down to VCCD, which powers majority of the core. PMG1-S1 has two different power modes: Active and Deep Sleep. Transitions between these power modes are managed by the power system. A separate power domain, VDDIO, is provided for the GPIOs. The VDDD and VCCD pins, both outputs of regulators, are brought out for connecting a 1-μF and 0.1-μF capacitor respectively for the regulator stability only. The VCCD pin is not supported as a power supply. VDDD can source 2 mA (max) for external load. In PMG1-S1, VDDD shall be shorted to VDDIO on PCB.

Table 2. PMG1-S1 Power Modes

Mode	Description
RESET	Power is valid and XRES is not asserted. An internal reset source is asserted or Sleep Controller is sequencing the system out of reset.
ACTIVE	Power is valid and CPU is executing instructions.
DEEP SLEEP	Main regulator and most blocks are shut off. DeepSleep regulator powers logic, but only the low-frequency clock is available.

Figure 6. PMG1-S1 Power System

Pinouts

Table 3. Pinout for CYPM1111-40LQXI

Group	40-pin QFN	Pin Name	Description
	2	P1.0/SWD_CLK/UART_2_RX/ SPI_2_SEL	GPIO/SWD Clock/UART_2_RX/SPI_2_SEL
	3	P1.1/UART_2_TX/SPI_2_MOSI/ I2C_2_SDA	GPIO/UART_2_TX/SPI_2_MOSI/I2C_2_SDA
	4	P1.2/UART_2_CTS/SPI_2_MISO /I2C_2_SCL	GPIO/UART_2_CTS /SPI_2_MISO/I2C_2_SCL
	5	P1.3/UART_2_RTS/SPI_2_CLK	GPIO/UART_2_RTS/SPI_2_CLK
	6	P1.4/SWD_IO	GPIO/SWD IO
	13	P2.0/UART_4_CTS /SPI_4_SEL/I2C_4_SCL	GPIO/UART_4_CTS /SPI_4_SEL/I2C_4_SCL
GPIOs and	14	P2.1/UART_4_RTS/SPI_4_MOSI/ I2C_4_SDA	GPIO/UART_4_RTS/SPI_4_MOSI/I2C_4_SDA
Serial Interface	15	P2.2/UART_1_CTS/SPI_1_SEL	GPIO/UART_1_CTS/SPI_1_SEL
	16	P5.0/UART_1_RTS/SPI_1_MOSI/ I2C_1_SDA	GPIO/UART_1_RTS/SPI_1_MOSI/I2C_1_SDA
	17	P5.1/UART_1_TX/SPI_1_MISO/I	GPIO/UART_1_TX/SPI_1_MISO/ I2C_1_SCL
	18	P3.0/UART_1_RX/SPI_1_CLK	GPIO/UART_1_RX/SPI_1_CLK
	20	P3.1/UART_3_CTS/SPI_3_SEL/I	GPIO/UART_3_CTS/SPI_3_SEL/I2C_3_SDA
	21	P3.2/UART_3_RTS/SPI_3_MOSI/ I2C_3_SCL	GPIO/UART_3_RTS/SPI_3_MOSI/I2C_3_SCL
	29	P4.0/UART_3_TX/SPI_3_MISO	GPIO/UART_3_TX/SPI_3_MISO. If not used, leave floating.
	30	P4.1/UART_3_RX/SPI_3_CLK	GPIO/UART_3_RX/SPI_3_CLK. If not used, leave floating.
	38	P0.0/UART_4_TX/SPI_4_MISO	GPIO/UART_4_TX/SPI_4_MISO. If not used, leave floating.
	39	P0.1/UART_4_RX/SPI_4_CLK	GPIO/UART_4_RX/SPI_4_CLK. If not used, leave floating.
LICD Toron C	9	CC1	Connect to Type-C CC1 pin. Filter noise with 390-pF cap to GND.
USB Type-C	7	CC2	Connect to Type-C CC2 pin. Filter noise with 390-pF cap to GND.
	23	USBDP_SYS	Connect to USB 2.0 DP from Host side.
	24	USBDM_SYS	Connect to USB 2.0 DM from Host side.
Muxes/Switches	25	USBDM_BOT	Connect to Type-C D- Bottom pin. Keep trace length less than
Widaes/Owiteries	26	USBDP_BOT	Connect to Type-C D+ Bottom pin. Keep trace length less than
	27	USBDM_TOP	Connect to Type-C D- Top pin. Keep trace length less than 2".
	28	USBDP_TOP	Connect to Type-C D+ Top pin. Keep trace length less than 2".
VBUS	11	VBUS_P_CTRL	Slew Rate controlled I/O for enabling/disabling Provider side PFET 0: Path ON High Z: Path OFF
	12	VBUS_C_CTRL	Pin for enabling/disabling Consumer side PFET 0: Path ON High Z: Path OFF
VBUS OCP/SCP/RCP	1	CSP	Current Sense Positive Input Connect this pin to a higher potential compared to CSN pin
001 /001 /101	40	CSN	Current Sense Negative Input
Reset	10	XRES	Reset input (Active LOW)

Table 3. Pinout for CYPM1111-40LQXI (continued)

Group	40-pin QFN	Pin Name	Description
	8	VCONN_Source	4.85-V to 5.5-V supply input to power EMCA cables. Connected to CC1 or CC2 using low impedance switches. NA for UFP/Sink only applications
	19	VSYS	Supply input (2.75 V–5.5 V) for PD subsystem and System resources.
Power	22	VBUS	Supply input (4 V–21.5 V) for VBUS to 3.3-V Regulator. This pin also discharges VBUS using internal pull-down and also has monitors for overvoltage and undervoltage conditions.
	31	VDDD	Output of VBUS to 3.3-V regulator or connected to VSYS using switch. Bypass with cap to gnd. This pin can drive 2-mA external load.
	32	VDDIO	1.71 V–5.5 V supply for I/Os
	33	VCCD	1.8-V regulator output for filter capacitor. This pin cannot drive external load.
GND	EPAD	VSS	Ground
	34	NC	Not connected
NC	35	NC	Not connected
INC	36	NC	Not connected
	37	NC	Not connected

Table 4 provides the various configuration options for the serial interfaces.

Table 4. SCBs and their Functionality

Port	ort 40-pin QFN SCB Function			GPIO Functionality	
Pin	Pin Number	UART	SPI	I2C	GPIO Functionality
P5.0	16	UART_1_RTS	SPI_1_MOSI	I2C_1_SDA	GPIO
P5.1	17	UART_1_TX	SPI_1_MISO	I2C_1_SCL	GPIO
P3.0	18	UART_1_RX	SPI_1_CLK	_	GPIO
P2.2	15	UART_1_CTS	SPI_1_SEL	_	GPIO
P1.0	2	UART_2_RX	SPI_2_SEL	_	SWD_CLK/GPIO
P1.1	3	UART_2_TX	SPI_2_MOSI	I2C_2_SDA	GPIO
P1.2	4	UART_2_CTS	SPI_2_MISO	I2C_2_SCL	GPIO
P1.3	5	UART_2_RTS	SPI_2_CLK	_	GPIO
P3.1	20	UART_3_CTS	SPI_3_SEL	I2C_3_SDA	GPIO
P3.2	21	UART_3_RTS	SPI_3_MOSI	I2C_3_SCL	GPIO
P4.0	29	UART_3_TX	SPI_3_MISO	_	GPIO
P4.1	30	UART_3_RX	SPI_3_CLK	_	GPIO
P2.0	13	UART_4_CTS	SPI_4_SEL	I2C_4_SCL	GPIO
P2.1	14	UART_4_RTS	SPI_4_MOSI	I2C_4_SDA	GPIO
P0.0	38	UART_4_TX	SPI_4_MISO	_	GPIO
P0.1	39	UART_4_RX	SPI_4_CLK	_	GPIO

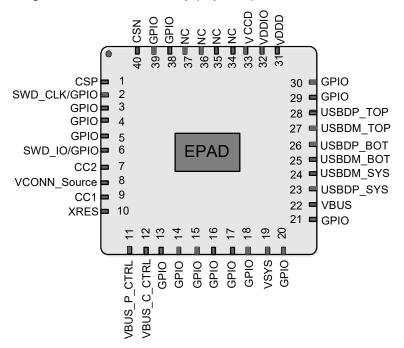


Figure 7. 40-Pin QFN Pin Map (Top View) for CYPM1111-40LQXI

Application Diagrams

Figure 8 illustrates a Sink application using PMG1-S1. It has two main parts: a USB Type-C receptacle that sinks power to the application and a load used as the output power.

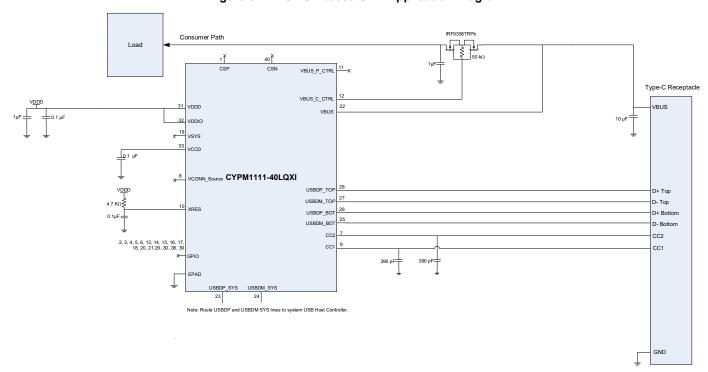


Figure 8. PMG1-S1 based Sink Application Diagram

Figure 9 illustrates a DRP application using PMG1-S1. In such applications, the Type-C port is used as a power provider and a power consumer. There are VBUS FETs for providing or consuming power over VBUS.

The VBUS_P_CTRL pin of PMG1-S1 has an in-built VBUS monitoring circuit that can detect OVP and UVP on VBUS. In addition to this, the 5-m Ω resistor between the 5-V supply and provider FETs can detect overcurrent on the VBUS. The PMG1-S1 device also has integrated VCONN FETs for applications that need to provide power for accessories and cables.

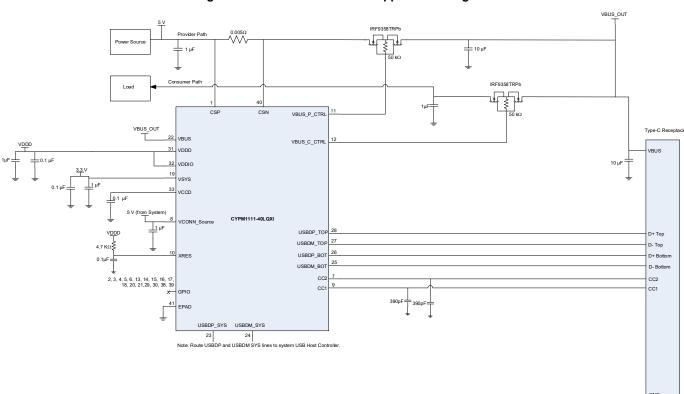


Figure 9. PMG1-S1 based DRP Application Diagram

Electrical Specifications

Absolute Maximum Ratings

Table 5. Absolute Maximum Ratings^[3]

Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
V _{SYS_MAX}	Supply relative to V _{SS}	_	_	6	V ^[4]	
V _{CONN_SOURCE_M}	Max supply voltage relative to V _{SS}	-	_	6	V	
V _{BUS_MAX}	Max V _{BUS} voltage relative to Vss	_	-	24	V]_
V _{DDIO_MAX}	Max supply voltage relative to V _{SS}	_	-	V_{DDD}	V	
V _{GPIO_ABS}	Inputs to GPIO, DP/DM mux (USBDP/DM_SYS, USBDP/DM_TOP/BOT)	-0.5 ^[5]	_	V _{DDIO} + 0.5	V	
I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	_
I _{GPIO_INJECTION}	GPIO injection current, Max for $V_{IH} > V_{DDD}$, and Min for $V_{IL} < V_{SS}$	-0.5	_	0.5	mA	Absolute max, current injected per pin
ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	-
ESD_CDM	Electrostatic discharge charged device model	500	_	_	V	_
LU	Pin current for latch-up	-200	_	200	mA	_
V _{CC_PIN_ABS}	Max voltage on CC1 and CC2 pins	_	_	24	V	_
V _{GPIO_OVT_ABS}	OVT pins (16, 17) voltage	-0.5	_	6	V	_

Notes

^{3.} Usage above the absolute maximum conditions listed in Table 5 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

^{4.} All voltages are relative to Ground unless otherwise specified.

^{5.} In a system, if the negative spike exceeds the minimum voltage specified here, it is recommended to add Schottky diode to clamp the negative spike.

Device-Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V except where noted.

DC Specifications

Table 6. DC Specifications (Operating Conditions)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.PWR#23	V_{SYS}		2.75	_	5.5	V	UFP applications
SID.PWR#23_A	V_{SYS}		3	_	5.5	V	DFP/DRP applications
SID.PWR#22	V_{BUS}		4	_	21.5	V	_
SID.PWR#1	V _{DDD}	Regulated output voltage when V _{SYS} powered	V _{SYS} – 0.05	_	V _{SYS}	V	_
SID.PWR#1_A	V_{DDD}	Regulated output voltage when V _{BUS} powered	3	_	3.65	٧	_
SID.PWR#26	V _{5V}		4.85	_	5.5	V	_
SID.PWR#13	V_{DDIO}		V_{DDD}	_	V_{DDD}	V	_
SID.PWR#24	V _{CCD}	Regulated output voltage (for Core Logic)	-	1.8	-	V	_
SID.PWR#15	C _{EFC}	Regulator bypass capacitor for V _{CCD}	_	100	-	nF	VED coromio
SID.PWR#16	C _{EXC}	Regulator bypass capacitor for V _{DDD}	_	1	-	μF	X5R ceramic
Active Mode, V _S	_{YS} = 2.75 V to	5.5 V. Typical values measured a	at V _{SYS} :	= 3.3 V	/		
SID.PWR#4	I _{DD12}	Supply current	_	10	_	mA	T _A = 25 °C, CC I/O IN Transmit or Receive, no I/O sourcing current, CPU at 24 MHz, PD port active
Deep Sleep Mod	e, V _{SYS} = 2.7	5 V to 3.6 V					
SID34	I _{DD29}	V_{SYS} = 2.75 to 3.6 V, I ² C, wakeup and WDT on.	_	150	_	μA	V _{SYS} = 3.3 V, T _A = 25 °C,
SID_DS1	I _{DD_DS1}	V _{SYS} = 3.3 V, CC wakeup on, Type-C not connected.	_	100	_	μΑ	Power source = V _{SYS} , Type-C not attached, CC enabled for wakeup, R _P and R _D connected at 70-ms intervals by CPU.
SID_DS3	I _{DD_DS2}	V _{SYS} = 3.3 V, CC wakeup on, DP/DM ON with ADC/CSA/UVOV On	_	500	-	μΑ	IDD_DS1 + DP/DM, CC ON, ADC/CSA/UVOV ON
XRES Current	•						
SID307	I _{DD_XR}	Supply current while XRES asserted	_	50	_	μA	Power Source = V _{SYS} = 3.3 V, Type-C Not Attached, T _A = 25 °C

CPU

Table 7. CPU Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions	
SID.CLK#4	F _{CPU}	CPU input frequency	_	_	48	MHz	All V _{DDD}	
SID.PWR#21	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	_	μs		
SYS.XRES#5	T _{XRES}	External reset pulse width	5	_	_	μs	Guaranteed by	
SYS.FES#1	T_PWR_RDY	Power-up to "Ready to accept I ² C/CC command"	_	5	25	ms	characterization	

GPIO

Table 8. GPIO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.GIO#37	V _{IH_CMOS}	Input voltage HIGH threshold	0.7 × V _{DDIO}	_	-	V	CMOS input
SID.GIO#38	V _{IL_CMOS}	Input voltage LOW threshold	_	_	0.3 × V _{DDIO}	V	CMOS input
SID.GIO#39	V _{IH_VDDIO2.7} -	LVTTL input, V _{DDIO} < 2.7 V	0.7 × V _{DDIO}	_	ı	V	_
SID.GIO#40	V _{IL_VDDIO2.7} -	LVTTL input, V _{DDIO} < 2.7 V	_	_	0.3 × V _{DDIO}	V	_
SID.GIO#41	V _{IH_VDDIO2.7+}	LVTTL input, $V_{DDIO} \ge 2.7 \text{ V}$	2.0	_	_	V	_
SID.GIO#42	V _{IL_VDDIO2.7+}	LVTTL input, $V_{DDIO} \ge 2.7 \text{ V}$	_	_	0.8	V	_
SID.GIO#33	V _{OH}	Output voltage HIGH level	V _{DDIO} – 0.6	_	_	V	I _{OH} = –4 mA at 3-V V _{DDIO}
SID.GIO#34	V _{OH}	Output voltage HIGH level	V _{DDIO} – 0.5	_	_	V	$I_{OH} = -1$ mA at 1.8-V V_{DDIO}
SID.GIO#35	V _{OL}	Output voltage LOW level	_	_	0.6	V	I_{OL} = 4 mA at 1.8-V V_{DDIO}
SID.GIO#35A	V _{OL_I2C_2}	Output low voltage			0.4	V	I_{OL} = 3 mA, V_{DDIO} > 2 V
SID.GIO#35B	V _{OL_I2C_3}	Output low voltage			0.6 ^[6]	V	$I_{OL} = 6 \text{ mA}, V_{DDIO} > 1.71 \text{ V}$
SID.GIO#35C	V _{OL1_20mA}	Output low voltage			0.4	٧	I _{OL} = 20 mA, V _{DDIO} > 3.0 V, Applicable for overvoltage-tolerant pins only
SID.GIO#36	V _{OL}	Output voltage LOW level	_	_	0.6	٧	I_{OL} = 10 mA (IOL_LED) at 3-V V_{DDIO}
SID.GIO#5	Rpu	Pull-up resistor when enabled	3.5	5.6	8.5	kΩ	+25 °C T _A , All V _{DDIO}
SID.GIO#6	Rpd	Pull-down resistor when enabled	3.5	5.6	8.5	kΩ	+25 °C T _A , All V _{DDIO}
SID.GIO#16	I _{IL}	Input leakage current (absolute value)	-	_	2	nA	+25 °C T _A , 3-V V _{DDIO}
SID.GIO#17	C _{PIN}	Max pin capacitance	_	3	7	pF	_
SID.GIO#43	V _{HYSTTL}	Input hysteresis, LVTTL	15	40	-	mV	V _{DDIO} > 2.7 V. Guaranteed by characterization.
SID.GIO#44	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDIO}	_	-	mV	V _{DDIO} < 4.5 V
SID.GIO#44A	V _{HYSCMOS55}	Input hysteresis CMOS	200	_	_	mV	V _{DDIO} > 4.5 V

Table 9. GPIO AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID70	T _{RISEF}	Rise time in Fast Strong mode	2	_	12	ns	3.3-V V _{DDIO} , C _{load} = 25 pF
SID71	T _{FALLF}	Fall time in Fast Strong mode	2	_	12	ns	3.3-V V _{DDIO} , C _{load} = 25 pF
SID.GIO#46	T _{RISES}	Rise time in Slow Strong mode	10	_	60	ns	3.3-V V _{DDIO} , C _{load} = 25 pF
SID.GIO#47	T _{FALLS}	Fall time in Slow Strong mode	10	_	60	ns	3.3-V V _{DDIO} , C _{load} = 25 pF
SID.GIO#48	F _{GPIO_OUT1}	GPIO F _{OUT} ; 3.3 V≤V _{DDIO} ≤5.5 V. Fast Strong mode.	_		16	MHz	90/10%, 25-pF load
SID.GIO#49	F _{GPIO_OUT2}	GPIO F _{OUT} ; 1.7 V≤V _{DDIO} ≤3.3 V. Fast Strong mode.	_	-	16	MHz	90/10%, 25-pF load
SID.GIO#50	F _{GPIO_OUT3}	GPIO F _{OUT} ; 3.3 V≤V _{DDIO} ≤5.5 V. Slow Strong mode.	_	-	7	MHz	90/10%, 25-pF load
SID.GIO#51	F _{GPIO_OUT4}	GPIO F _{OUT} ; 1.7 V≤V _{DDIO} ≤3.3 V. Slow Strong mode.	_	-	3.5	MHz	90/10%, 25-pF load
SID.GIO#52	F _{GPIO_IN}	GPIO input operating frequency; 1.7 V≤V _{DDIO} ≤5.5 V.	_	-	16	MHz	90/10% V _{IO}

XRES

Table 10. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.XRES#1	V _{IH}	Input voltage HIGH threshold	0.7 × V _{DDIO}	ı	ı	>	CMOS input
SID.XRES#2	V _{IL}	Input voltage LOW threshold	-	1	0.3 × V _{DDIO}	٧	CMOS input
SID.XRES#3	C _{IN}	Input capacitance	-	-	7	pF	_
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis	_	0.05 × V _{DDIO}	ı	mV	Guaranteed by characterization

Document Number: 002-31597 Rev. *B Page 22 of 40

^{6.} To drive full bus load at 400 kHz, 6-mA I_{OL} is required at 0.6-V V_{OL} . Parts not meeting this specification can still function, but not at 400 kHz and 400 pF.

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 11. PWM AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	ı	_	Fc	MHz	Fc max = CLK_SYS. Maximum = 48 MHz.
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	2/Fc	_	_	ns	For all trigger events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	2/Fc	-	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	_	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	-	_	ns	Minimum pulse width between quadrature-phase inputs

 I^2C

Table 12. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Mbps	-

UART

Table 13. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID162	F _{UART}	Bit rate	-	_	1	Mbps	_

SPI

Table 14. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID166	I E o D i	SPI operating frequency (Master; 6X oversampling)	-	-	8	MHz	-

Table 15. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID167	T _{DMO}	MOSI valid after SClock driving edge	-	_	15	ns	_
SID168	T _{DSI}	MISO valid before SClock capturing edge	20	-	-	ns	Full clock, late MISO sampling
SID169	T _{HMO}	Previous MOSI data hold time	0	_	_	ns	Referred to slave capturing edge

Document Number: 002-31597 Rev. *B

Table 16. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	_	_	ns	_
SID171	T _{DSO}	MISO valid after Sclock driving edge	_	_	48 + (3 × T _{SCB})	ns	T _{SCB} = T _{CPU}
SID171A	T _{DSO_EXT}	MISO valid after Sclock driving edge in Ext Clk mode	-	_	48	ns	_
SID172	T _{HSO}	Previous MISO data hold time	0	_	-	ns	_
SID172A	T _{SSELSCK}	SSEL valid to first SCK Valid edge	100	_	_	ns	_

Memory

Table 17. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.MEM#4	T _{ROW_WRITE}	Row (Block) write time (erase and program)	_	-	20	ms	_
SID.MEM#3	T _{ROW_ERASE}	Row erase time	-	_	13	ms	-
SID.MEM#8	T _{ROWPROGRAM}	Row program time after erase	_	_	7	ms	25 °C to 55 °C, All V _{DDD}
SID178	T _{BULKERASE}	Bulk erase time (128 KB)	_	_	35	ms	Guaranteed by design
SID180	T _{DEVPROG}	Total device program time	_	_	25	s	Guaranteed by design
SID.MEM#6	F _{END}	Flash endurance	100k	_	-	cycles	_
SID182	F _{RET1}	Flash retention, T _A ≤ 55 °C, 100K P/E cycles	20	-	1	years	_
SID182A	F _{RET2}	Flash retention, T _A ≤ 85 °C, 10K P/E cycles	10	-	_	years	_
SID182B	F _{RET3}	Flash retention, T _A ≤ 105 °C, 10K P/E cycles	3	_	_	years	_

System Resources

Power-on-Reset (POR) with Brown Out

Table 18. Imprecise Power On Reset (IPOR)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.50	V	Guaranteed by
SID186	V _{FALLIPOR}	Falling trip voltage	0.70	_	1.4	V	characterization

Table 19. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID190	V=411 DDOD	Brown-out Detect (BOD) trip voltage in active/sleep modes	1.48	ı	1.62	V	Guaranteed by
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.1	_	1.5	V	Cilaracienzation

SWD Interface

Table 20. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.SWD#1	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DDIO} \leq 5.5 \text{ V}$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID.SWD#2	F_SWDCLK2	1.8 V ≤ V _{DDIO} ≤ 3.3 V	_	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID.SWD#3	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	_	_	ns	
SID.SWD#4	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	_	-	ns	Guaranteed by
SID.SWD#5	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.50 × T	ns	characterization
SID.SWD#6	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	-	ns	

Internal Main Oscillator

Table 21. IMO AC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.CLK#13	F _{IMOTOL}	Frequency variation at 48 MHz (trimmed)	_	-	±2	%	2.7 V ≤ V _{DDD} < 5.5 V. -25 °C ≤ T _A ≤ 85 °C
SID226	T _{STARTIMO}	IMO start-up time	_	_	7	μs	_
SID.CLK#1	F _{IMO}	IMO frequency	_	48	_	MHz	_

Internal Low-speed Oscillator

Table 22. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID234	T _{STARTILO1}	I _{LO} start-up time	_	_	2	ms	Guaranteed by
SID238	T _{ILODUTY}	I _{LO} duty cycle	40	50	60	%	characterization
SID.CLK#5	F _{ILO}	I _{LO} frequency	20	40	80	kHz	_

PD

Table 23. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.DC.cc_shvt.1	vSwing	Transmitter Output High Voltage	1.05	-	1.2	V	_
SID.DC.cc_shvt.2	vSwing_low	Transmitter Output Low Voltage		_	0.075	V	-
SID.DC.cc_shvt.3	zDriver	Transmitter output impedance	33	-	75	Ω	_
SID.DC.cc_shvt.4	zBmcRx	Receiver Input Impedance	10	-		МΩ	Guaranteed by design
SID.DC.cc_shvt.5	ldac_std	Source current for USB standard advertisement	64	-	96	μΑ	_
SID.DC.cc_shvt.6	ldac_1p5a	Source current for 1.5A at 5 V advertisement	165.6	-	194.4	μA	_
SID.DC.cc_shvt.7	ldac_3a	Source current for 3A at 5 V advertisement	303.6	-	356.4	μA	_
SID.DC.cc_shvt.8	R_D	Pull down termination resistance when acting as UFP (upstream facing port)	4.59	_	5.61	kΩ	_
SID.DC.cc_shvt.9	Rd_db	Pull down termination resistance when acting as UFP, with dead battery	4.08	_	6.12	kΩ	_
SID.DC.cc_shvt.10	zOPEN	CC impedance to ground when disabled	108	-		kΩ	_
SID.DC.cc_shvt.11	DFP_default_0p2	CC voltages on DFP side-Standard USB	0.15	-	0.25	V	_
SID.DC.cc_shvt.12	DFP_1.5A_0p4	CC voltages on DFP side-1.5A	0.35	-	0.45	V	-
SID.DC.cc_shvt.13	DFP_3A_0p8	CC voltages on DFP side-3A	0.75	-	0.85	V	-
SID.DC.cc_shvt.14	DFP_3A_2p6	CC voltages on DFP side-3A	2.45	_	2.75	V	_
SID.DC.cc_shvt.15	UFP_default_0p66	CC voltages on UFP side-Standard USB	0.61	-	0.7	V	_
SID.DC.cc_shvt.16	UFP_1.5A_1p23	CC voltages on UFP side-1.5A	1.16	_	1.31	V	-
SID.DC.cc_shvt.17	Vattach_ds	Deep sleep attach threshold	0.3	_	0.6	%	_
SID.DC.cc_shvt.18	Rattach_ds	Deep sleep pull-up resistor	10	-	50	kΩ	_
SID.DC.cc_shvt.30	FS_0p53	Voltage threshold for Fast Swap Detect	0.49	_	0.58	V	_

Analog-to-Digital Converter

Table 24. ADC DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	_	8	_	Bits	_
SID.ADC.2	INL	Integral non-linearity	-1.5	-	1.5	LSB	_
SID.ADC.3	DNL	Differential non-linearity	-2.5	-	2.5	LSB	_
SID.ADC.4	Gain Error	Gain error	-1.5	-	1.5	LSB	_
SID.ADC.5	VREF_ADC1	Reference voltage of ADC	V_{DDDmin}	_	V_{DDDmax}	V	Reference voltage generated from V _{DDD}
SID.ADC.6	VREF_ADC2	Reference voltage of ADC	1.96	2.0	2.04	V	Reference voltage generated from deep sleep reference

Charger Detect

Table 25. Charger Detect DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.CHGDET.1	VDAT_REF	Data detect voltage in charger detect mode	250	_	400	mV	_
DC.CHGDET.2	VDM_SRC	Dn voltage source in charger detect mode	500	_	700	mV	_
DC.CHGDET.3	VDP_SRC	Dp voltage source in charger detect mode	500	_	700	mV	_
DC.CHGDET.4	IDM_SINK	Dn sink current in charger detect mode	25	_	175	μΑ	_
DC.CHGDET.5	IDP_SINK	Dp sink current in charger detect mode	25	_	175	μΑ	_
DC.CHGDET.6	IDP_SRC	Data contact detect current source	7	-	13	μΑ	_
DC.CHGDET.32	RDM_UP	Dp/Dn pull-up resistance	0.9	_	1.575	kΩ	_
DC.CHGDET.31	RDM_DWN	Dp/Dn pull-down resistance	14.25	_	24.8	kΩ	_
DC.CHGDET.29	RDAT_LKG	Data line leakage on Dp/Dn	300	_	500	kΩ	_
DC.CHGDET.34	VSETH	Logic Threshold	1.26	_	1.54	V	_
DC.pmg1s1.dpdm.14	RDCP_DAT	Dedicated charging port resistance across DP and DN	_	_	40	Ω	

V_{SYS} Switch

Table 26. $V_{\rm SYS}$ Switch Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.DC.VDDDSW.1		Resistance from supply input to output supply V _{DDD}	-	-	1.5	Ω	Measured with a load current of 5 mA to 10 mA on V _{DDD} .

CSA

Table 27. CSA DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.csa_scp.42	SCP_6A	Short circuit current detect @ 6A	-	±10	-	%	_
DC.csa_scp.43	SCP_10A	Short circuit current detect @10A	-	±10	_	%	_
OP.csa_scp.11	Rsense	External sense register	-	5	_	mΩ	1% accuracy
DC 222 227 44	locp_1A	OCP Trip threshold for 1A with Rsense = $5 \text{ m}\Omega$	-	130 ±20%	_	%	1A PD contracts OCP set at 130% of contract value or user programmable
DC.csa_scp.44	locp_1A	OCP Trip threshold for 1A with Rsense = 10 m Ω	-	130 ±10%	_	%	1A PD contracts OCP set at 130% of contract value or user programmable
DC.csa_scp.45	locp_5A	OCP Trip threshold for 2A, 3A, 4A and 5A contracts with Rsense = $5/10 \text{ m}\Omega$	-	130 ±10%	_	%	2A, 3A, 4A, and 5A PD contracts OCP set at 130% of contract value OR user programmable
DC.rcp_scp.7a	I_csainn_lk	CSP pin input leakage when RCP and CSA blocks are OFF	-	_	10	μA	For provider V _{BUS} = 5 V
DC.rcp_scp.6a	I_csainp_lk	CSN pin input leakage when RCP and CSA blocks are OFF	-	-	80	μΑ	For provider V _{BUS} = 5 V

Table 27. CSA DC Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.sys.1	I_CSP_RCP_ON _CSA_OFF	CSP pin current when RCP block is ON and SCP is OFF	_	_	20	μΑ	For provider V _{BUS} = 5 V
DC.sys.2	I_CSN_RCP_ON _CSA_OFF	CSN pin current when RCP block is ON and SCP is OFF	_	_	100	μΑ	For provider V _{BUS} = 5 V
DC.sys.3	I_CSP_CSA_ON	CSP pin current when RCP block is OFF and SCP is ON	_	_	30	μΑ	For provider V _{BUS} = 5 V
DC.sys.4	I_CSN_CSA_ON	CSN pin current when RCP block is OFF and SCP is ON	_	_	100	μΑ	For provider V _{BUS} = 5 V
DC.sys.5	I_CSP_RCP_ON _CSA_ON	CSP pin current when RCP block is ON and SCP is ON	_	_	50	μΑ	For provider V _{BUS} = 5 V. Guaranteed by design.
DC.sys.6	I_CSP_RCP_ON _CAS_ON	CSN pin current when RCP block is ON and SCP is ON	_	_	120	μΑ	For provider V _{BUS} = 5 V. Guaranteed by design.

 $V_{BUS}\;UV/OV$

Table 28. V_{BUS} UV/OV Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.UVOV.1	V _{THUVOV1}	Voltage threshold accuracy in active mode using bandgap reference	_	±3	ı	%	_
SID.UVOV.2	V _{THUVOV2}	Voltage threshold accuracy in deep sleep mode using deep sleep reference	-	±5	ı	%	_
SID.COMP_ACC	COMP_ACC	Comparator input offset at 4s	-15	-	15	mV	_

Consumer Side PFET Gate Driver

Table 29. Consumer Side PFET Gate Driver DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.DC.PGDO.1	Rpd	Resistance when "pull_dn" enabled	-	_	5	kΩ	_
DC.pgdo_pd_isnk.12	iout_0	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 1	_	2	-	μΑ	-
DC.pgdo_pd_isnk.13	iout_1	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 2	_	4	-	μΑ	-
DC.pgdo_pd_isnk.14	iout_2	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 4	_	8	-	μΑ	-
DC.pgdo_pd_isnk.15	iout_3	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 8	_	16	1	μΑ	-
DC.pgdo_pd_isnk.16	iout_4	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 16	_	32	-	μΑ	-
DC.pgdo_pd_isnk.17	iout_5	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 32	_	63	1	μΑ	-
DC.pgdo_pd_isnk.18	iout_6	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 64	_	126	_	μΑ	-

 Table 29. Consumer Side PFET Gate Driver DC Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.pgdo_pd_isnk.19	iout_7	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 128	-	252	1	μΑ	_
DC.pgdo_pd_isnk.20	iout_8	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 256	-	504	ı	μΑ	_
DC.pgdo_pd_isnk.21	iout_9	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 512	-	1008	ı	μΑ	_
DC.pgdo_pd_isnk.22	iout_10	Sink current through iref_out at iref_ctrl_lv < 11 ≥ LOW and iref_ctrl_lv < 10:0 ≥ 1024	_	2016	_	μΑ	_

Table 30. Consumer Side PFET Gate Driver AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.ac.pgdo.2	Tr_discharge	Discharge Rate of output node	-	-	5	V/µs	Guaranteed by design
SID.ac.pgdo.sys_1	Tsoft_on	Consumer FET turn-ON delay for soft start	ı	5	1	ms	_

Provider Side PFET Gate Driver

Table 31. Provider Side PFET Gate Driver DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.pgdo_pu_1	Rpd	Pull-down resistance when enabled using strongest pull-down strength, using the "STRONG_EN =1" field in the USBPD_PGDO_PD_ISNK_CFG register	_	_	2	kΩ	
DC.pgdo_pu.2	Rpu	Pull-up resistance	_	1	2	kΩ	_
DC.pgdo_pd_isnk.1	Rpd_0	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 1	_	6830	_	Ω	_
DC.pgdo_pd_isnk.2	Rpd_1	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 2	_	3760	_	Ω	_
DC.pgdo_pd_isnk.3	Rpd_2	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 4	_	1900	_	Ω	_
DC.pgdo_pd_isnk.4	Rpd_3	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 8	-	1000	-	Ω	_
DC.pgdo_pd_isnk.5	Rpd_4	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 16	_	660	_	Ω	_
DC.pgdo_pd_isnk.6	Rpd_5	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 32	_	1700	-	Ω	_
DC.pgdo_pd_isnk.7	Rpd_6	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 64	_	900	-	Ω	_

 Table 31. Provider Side PFET Gate Driver DC Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.pgdo_pd_isnk.8	Rpd_7	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 128	-	630	ı	Ω	-
DC.pgdo_pd_isnk.9	Rpd_8	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 256	-	560	ı	Ω	-
DC.pgdo_pd_isnk.10	Rpd_9	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 512	-	530	ı	Ω	-
DC.pgdo_pd_isnk.11	Rpd_10	Resistance of iref_out to ground, en_lv = HIGH, iref_ctrl_lv < 11 ≥ HIGH and iref_ctrl_lv < 10:0 ≥ 1024	_	520	_	Ω	-

Table 32. Provider Side PFET Gate Driver AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
AC.pgdo_pu.1	Три	Pull-up delay	1	10	35	μs	For pull-up load of 4-nF capacitor and 50-k Ω resistor
AC.pgdo_pu.2	Tpd	Pull-down delay	-	1	2	μs	_
AC.pgdo_pu.3	SRpu	Output slew rate measured from 20% to 80% of output rising waveform.	_	_	8	V/µs	Cload = 4 nF, Vout = 0 V to 24 V, external pull-up of 50 $k\Omega$
AC.pgdo_pu.4	SRpd	Output slew rate measured from 80% to 20% of output falling waveform.	-	_	8	V/µs	Cload = 4 nF, Vout = 24 V to 0 V, external pull-up of 50 k Ω
AC.pgdo.sys_1	Tsoft_on	Provider FET turn-ON delay for soft start	_	5	-	ms	_

Provider Side PFET RCP

Table 33. Provider Side PFET RCP DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.RCP.44	Vcsa_rcp	Voltage across external Rsense between CSP/CSN for which RCP condition detected (CSN higher than CSP by Vcsa_rcp)	1	2	6	mV	_
DC.RCP.45	Vcomp_rcp	Voltage across V _{BUS} and CSN pins for which RCP condition is detected	20	_	130	mV	_
DC.RCP.46	Vbus_max_ det	Voltage on CSN pin during provider FET ON (source) for which RCP condition is detected (this threshold is user programmable	5.55	5.75	5.95	V	This spec is for 5-V provider V _{BUS} voltage. For higher voltages, firmware changes this threshold based on V _{BUS} contract voltage.

Table 34. Provider Side PFET RCP, SCP AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
AC.RCP_SYS.1	Toff_scp	Provider PFET switching off after short circuit current detect through provider PFET	-	10	-		Provider FET turns off with gate pull-up of 50 k Ω and total gate cap of 4 nF.
AC.RCP_SYS.1	Toff_rcp	Provider PFET switching off after reverse current detect through provider PFET	-	10	-	μs	Provider FET turns off with gate pull-up of 50 k Ω and total gate cap of 4 nF.
AC.RCP_SYS.2	Ton	Recovery time to turn-ON PFET RCP condition is removed	-	55	80	μs	_

Table 35. $V_{\scriptsize BUS}$ Provider Transition Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
AC.tr.1	Ton	V _{BUS} Low to High (10% to 90%) for provider FET	-	5	-	ms	0 to 5-V transition, system-level with external PFET with gate pull-up of 50 k Ω and total gate cap of 4 nF.
AC.tr.2	FR_Ton	V _{BUS} Low to High (10% to 90%) during FR swap	-	50	150	μs	0 to 5-V transition, system-level with external PFET with gate pull-up of 50 k Ω and total gate cap of 4 nF.
AC.tr.3	Toff	VBUS_P_CTRL High to Low (90% to 10%) using internal active pull-up	ı	11	-	μs	5 to 0-V transition, system-level with external PFET with gate pull-up of 50 k Ω and total gate cap of 4 nF.

DP/DM Switch

Table 36. DP/DM Switch DC Specifications

(Charger Detect Block is Disconnected from USBDP_TOP, USBDM_TOP, USBDP_BOT and USBDM_BOT through Switch)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.pmg1s1.dpdm.1	RON_HS	DP/DM On resistance (0 to 0.5 V) - HS mode	-	-	8	Ω	_
DC.pmg1s1.dpdm.2	RON_FS	DP/DM On resistance (0 to 3.3 V) - FS mode	-	-	12	Ω	_
DC.pmg1s1.dpdm.5	Con_FS	Switch On capacitance at 6 MHz - FS mode	-	_	50	pF	Guaranteed by design
DC.pmg1s1.dpdm.6	Con_HS	Switch on capacitance at 240 MHz - HS mode	-	-	10	pF	_
DC.pmg1s1.dpdm.9	ileak_pin	pin leakage at DP/DM connector side and host side	-	-	1	μA	_
DC.pmg1s1.dpdm.11	RON_FLAT_HS	DP/DM On Flat resistance in HS mode (0 to 0.4 V)	-	-	0.5	Ω	Guaranteed by design
DC.pmg1s1.dpdm.12	RON_FLAT_FS	DP/DM On flat resistance in FS mode (0 to 3.3 V)	-	-	4	Ω	Guaranteed by design

Document Number: 002-31597 Rev. *B

Table 37. DP/DM Switch AC Specifications

(Charger Detect Block is Disconnected from USBDP_TOP, USBDM_TOP, USBDP_BOT and USBDM_BOT through Switch)

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
AC.pmg1s1.dpdm.1	BW_3dB_HS	3-db bandwidth	700	_	-	MHz	Guaranteed by design
AC.pmg1s1.dpdm.2	BW_3dB_FS	3-db bandwidth	100	_	-	MHz	Guaranteed by design
AC.pmg1s1.dpdm.5	T _{ON}	DP/DM Switch turn-on time	_	_	200	μs	_
AC.pmg1s1.dpdm.6	T _{OFF}	DP/DM Switch turn-off time	-	_	0.4	μs	Guaranteed by design
AC.pmg1s1.dpdm.7	T _{ON_VPUMP}	DP/DM charge pump startup time	_	_	200	μs	Guaranteed by characterization
AC.pmg1s1.dpdm.8	Off_isolation_HS	Switch-off isolation for HS	-20	_	-	dB	Guaranteed by design
AC.pmg1s1.dpdm.9	Off_isolation_FS	Switch-off isolation for FS	-50	_	_	dB	Guaranteed by design
AC.pmg1s1.dpdm.10	X_talk	Cross talk of Switch From FS to HS at F=12 MHz	– 50	l	-	dB	Guaranteed by design

VCONN Switch

Table 38. VCONN Switch DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
DC.pmg1s1.20VCONN.1	Ron	Switch ON resistance at VCONN_Source = 5 V with 215-mA load current	-	0.7	1.3	Ω	_
DC.pmg1s1.20VCONN.9	I _{OCP}	Overcurrent detection range for CC1/CC2	550	_	_	mA	_
DC.pmg1s1.20VCONN.10	OVP_threshold	CC1, CC2 overvoltage protection detection threshold above V _{DDD} or VCONN_Source, whichever is higher	200	ı	1200	mV	_
DC.pmg1s1.20VCONN.11	OVP_hysteresis	Overvoltage detection hysteresis	50	-	200	mV	Guaranteed by design
DC.pmg1s1.20VCONN.12	OCP_hysteresis	Overcurrent detection hysteresis	20	_	60	mA	_
DC.pmg1s1.20VCONN.14	OVP_threshold_on	Overvoltage detection threshold above VCONN Source of CC1/2, with CC1 or CC2 switch enabled. Same threshold triggers reverse current protection circuit	200	-	700	mV	-

Table 39. VCONN Switch AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
AC.pmg1s1.20VCONN.1	T _{ON}	VCONN switch turn-on time	1	1	200	μs	_
AC.pmg1s1.20VCONN.2	T _{OFF}	VCONN switch turn-off time	1	1	3	μs	Guaranteed by design

Document Number: 002-31597 Rev. *B

 V_{BUS}

Table 40. $V_{\rm BUS}$ Discharge Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/Conditions
SID.VBUS.DISC.1	Ron1	20-V NMOS ON resistance	1500	_	3000	Ω	_
SID.VBUS.DISC.2	Ron2	20-V NMOS ON resistance	750	_	1500	Ω	_
SID.VBUS.DISC.3	Ron3	20-V NMOS ON resistance	500	_	1000	Ω	_
SID.VBUS.DISC.4	Ron4	20-V NMOS ON resistance	375	_	750	Ω	_
SID.VBUS.DISC.5	Ron5	20-V NMOS ON resistance	300	_	600	Ω	_

Ordering Information

Table 41 lists the PMG1-S1 part numbers and features.

Table 41. PMG1-S1 Ordering Information

MPN	Application	Type-C Ports	Termination Resistor: R _{D-DB}	Role	Package	Si ID
CYPM1111-40LQXI	DDD applications	4	$R_{P}^{[7]}, R_{D}^{[8]}, R_{D-DB}^{[9]}$	DRP	40-pin QFN	0x2A20
CYPM1111-40LQXIT	DRP applications	I	Rp ^{i··i} , R _D i ^o i, R _D DB ^{ioi}	DRP	40-pin QFN	UXZAZU

Ordering Code Definitions

The part numbers are of the form CYPM1ABC-DEFGHIJ where the fields are defined as follows.

Table 42. Ordering Code Definitions

Field	Description	Values	Meaning
CY	Cypress Prefix	CY	Company ID
PM	Marketing Code	PM	PM = Power Delivery MCU family
1	PM Gen 1 family	1	Product Family Generation
		0	S0
A	Family	1	S1
A	Family	2	S2
		3	S3
В	PD Ports	1	1-PD Port
D	PD Ports	2	2-PD Port
С	Application specific	Х	Application specific
DE	Pin	XX	Number of pins in the package
		LQ	QFN
FG	Package Code	BZ	BGA
		FN	CSP
Н	Lead Free	Х	Lead: X = Pb-free
I	Temperature Range	I	Industrial
J	Only for T&R	Т	Tape and Reel

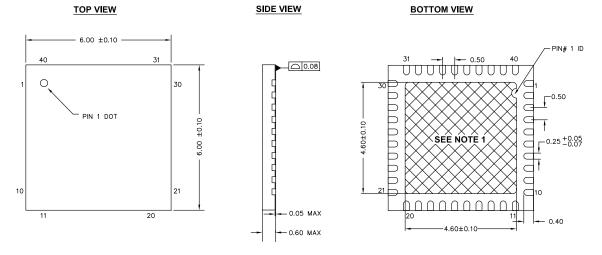
Notes

- 7. Termination resistor denoting a Source.
 8. Termination resistor denoting an accessory or Sink.
 9. Termination resistor denoting dead battery termination.

Packaging

Table 43. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
T _A	Operating ambient temperature	Industrial	-40	25	85	°C
TJ	Operating junction temperature	Industrial	-40	25	100	°C
T_{JA}	Package θ _{JA} (40-pin QFN)	_	-	-	19.3	°C/W
T_JC	Package θ _{JC} (40-pin QFN)	-	_	_	13.6	°C/W


Table 44. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time within 5 °C of Peak Temperature
40-pin QFN	260 °C	30 seconds

Table 45. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
40-pin QFN	MSL 3

Figure 10. 40-Pin QFN (6 × 6 × 0.5 mm), LR40A/LQ40A 4.6 × 4.6 E-PAD (Sawn) Package Outline, 001-80659

NOTES:

- 1. \bigotimes HATCH AREA IS SOLDERABLE EXPOSED PAD
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: 68 ±2 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-80659 *A

Acronyms

Table 46. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
AES	advanced encryption standard
API	application programming interface
Arm [®]	advanced RISC machine, a CPU architecture
CC	configuration channel
BOD	Brown out Detect
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
CSA	current sense amplifier
DFP	downstream facing port
DP	DisplayPort, digital display interface developed by Video Electronics Standards Association
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMA	direct memory access
DRP	dual role power
EEPROM	electrically erasable programmable read-only memory
EMCA	a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FPB	flash patch and breakpoint
FRS	fast role swap
FS	full-speed
GPIO	general-purpose input/output
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
мси	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt

Table 46. Acronyms Used in this Document (continued)

Acronym	Description
NVIC	nested vectored interrupt controller
OCP	overcurrent protection
opamp	operational amplifier
OVP	overvoltage protection
OVT	overvoltage tolerant
PCB	printed circuit board
PD	power delivery
PGA	programmable gain amplifier
PHY	physical layer
POR	power-on reset
PRES	precise power-on reset
PRNG	pseudo random number generation
PWM	pulse-width modulator
RAM	random-access memory
RCP	reverse current protection, supported in Source Configuration only
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RX	receive
SAR	successive approximation register
SCB	serial communication block
SCL	I ² C serial clock
SCP	short circuit protection, supported in Source Configuration only
SDA	I ² C serial data
S/H	sample and hold
SHA	secure hash algorithm
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SWD	serial wire debug, a test protocol
TCPWM	timer counter pulse-width modulator
TRNG	true random number generator
TX	transmit
Type-C	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UFP	upstream facing port
USB	Universal Serial Bus

Document Number: 002-31597 Rev. *B

Table 46. Acronyms Used in this Document (continued)

Acronym	Description
USBIO	USB input/output, PMG1-S1 pins used to connect to a USB port
UVP	undervoltage protection
XRES	external reset I/O pin

Document Conventions

Units of Measure

Table 47. Units of Measure

14516 47. 0	This of Measure
Symbol	Unit of Measure
°C	degrees Celsius
Hz	hertz
KB	1024 bytes
kHz	kilohertz
kΩ	kilo ohm
Mbps	megabits per second
MHz	megahertz
ΜΩ	mega-ohm
Msps	megasamples per second
μΑ	microampere
μF	microfarad
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
mΩ	milliohm
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
V	volt

Document History Page

Revision	ECN	Submission Date	Description of Change
**	7007571	10/23/2020	New datasheet.
*A	7078568	02/24/2021	Updated the following references throughout the document: DPLUS_SYS updated to "USBDP_SYS" DMINUS_SYS updated to "USBDM_SYS" DPLUS_TOP updated to "USBDM_TOP" DMINUS_TOP updated to "USBDM_TOP" DMINUS_BOT updated to "USBDM_BOT" DMINUS_BOT updated to "USBDM_BOT" Updated PMG1 Family General Description, Block Diagram, and Integrated VBUS Load Switch Controller. Added VBUS Load Switch Controller for Provider Path and RCP. Added links in Development Support. Added Inks in Development Support. Added Figure 5. Added Notes 4 and 5 in Electrical Specifications. Added Table 33 to Table 35. Updated Figure 2, Figure 4, Figure 7, and Figure 8. Updated Table 3, Table 5, Table 27, and Table 46. Updated Acronyms. Updated Copyright year.
*B	7146648	05/27/2021	Updated Table 3. Changed datasheet status from preliminary to final.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory

Microcontrollers

PSoC cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch cypress.com/usb **USB Controllers** Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification. USB Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify report of Control and Control of Section of Section (Control of Section Control of Sectio

© Cypress Semiconductor Corporation, 2020-2021. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-31597 Rev. *B Revised May 27, 2021 Page 40 of 40