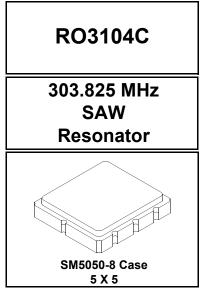


• Ideal for 303.825 MHz Remote Control and Security Transmitters

- Very Low Series Resistance
- Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481


The RO3104C is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of low power transmitters operating at 303.825 MHz. This SAW resonator is designed for transmitters used in remote control and wireless security applications operating in the USA under FCC Part 15 and in Canada under DoC RSS-210.

Absolute Maximum Ratings

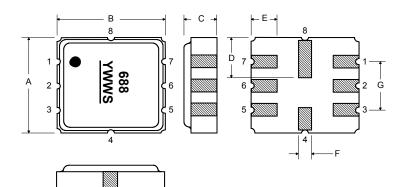
Rating	Value	Units
Input Power Level	0	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +85	°C
Soldering Temperature (10 seconds / 5 cycles maximum)	260	°C

AEC-Q200 This component was always RoHS compliant from the first date of manufacture.

Ρb

Electrical Characteristics

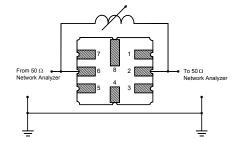
Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C	Absolute Frequency	f _C	C	303.750		303.900	MHz
	Tolerance from 303.825 MHz	Δf_{C}				±75	kHz
Insertion Loss		IL			1.3	2.0	dB
Quality Factor	Unloaded Q	Q _U			9800		
	50 Ω Loaded Q	QL			1300		
Temperature Stability	Turnover Temperature	Τ _Ο		10	25	40	°C
	Turnover Frequency	f _O			f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A			10		ppm/yr
DC Insulation Resistance between Any Two Terminals				1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			15.6		Ω
	Motional Inductance	L _M			79.7		μH
	Motional Capacitance	C _M			3.4		fF
	Shunt Static Capacitance	CO			3.3		pF
Test Fixture Shunt Inductance		L _{TEST}			83.9		nH
Lid Symbolization	abolization			688	, <u>YWWS</u>	•	
Standard Reel Quantity	Reel Size 7 Inch	500 Pieces / Reel					
Reel Size 13 Inch				3	000 Pieces / F	Reel	

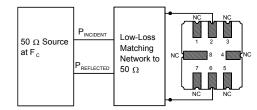

1. The design, manufacturing process, and specifications of this device are subject to change.


2. US or International patents may apply.

Electrical Connections

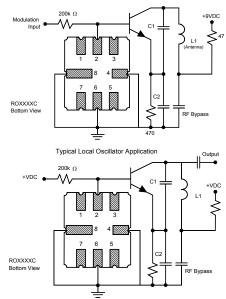
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

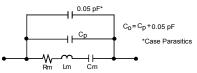

Pin	Connection		
1	NC		
2	Terminal		
3	NC		
4	NC		
5	NC		
6	Terminal		
7	NC		
8	NC		



Dimension	mm			Inches		
	Min	Nom	Max	Min	Nom	Max
Α	4.80	5.00	5.20	0.189	0.197	0.205
В	4.80	5.00	5.20	0.189	0.197	0.205
С	1.30	1.50	1.70	0.050	0.060	0.067
D	1.98	2.08	2.18	0.078	0.082	0.086
E	1.07	1.17	1.27	0.042	0.046	0.050
F	0.50	0.64	0.70	0.020	0.025	0.028
G	2.39	2.54	2.69	0.094	0.100	0.106
н		1.27			0.050	
I		0.76			0.030	
J		1.55			0.061	
К		2.79			0.110	
L		0.76			0.030	
м		2.36			0.093	
N		1.55			0.061	
0		2.79			0.110	
Р		2.79			0.110	
Q		2.79			0.110	

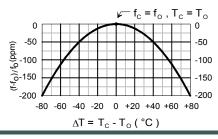
Parameter Test Circuit



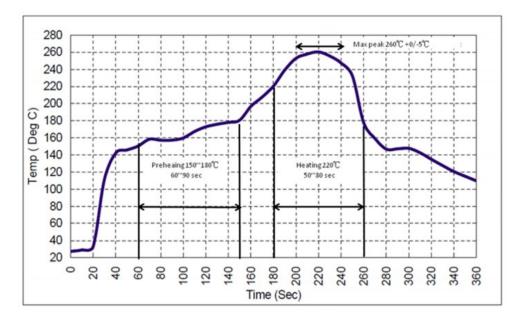


Example Application Circuits

Typical Low-Power Transmitter Application



Equivalent RLC Model


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

