SRX-SFP-10GE-ER-C
 Juniper® Compatible 10Gb/s SFP+ ER Transceiver

Hot Pluggable, Duplex LC, +3.3V, 1550nm, EML SMF 40km DDM

FEATURES

- Supports 9.95 to $11.3 \mathrm{~Gb} / \mathrm{s}$ bit rates
- Hot-Pluggable
- Duplex LC connector
- 1550nm cooled EML transmitter, PIN photo-detector
- SMF links up to 40 km
- 2-wire interface for management specifications compliant with SFF 8472 digital diagnostic monitoring interface
- Power Supply: +3.3V
- Power consumption<1.5W
- Temperature Range: $0 \sim 70^{\circ} \mathrm{C}$
- RoHS compliant

APPLICATIONS

- 10GBASE-ER/EW Ethernet
- SONET OC-192 / SDH
- 10G Fibre channel

DESCRIPTION

ATGBICS® Compatible SRX-SFP-10GE-ER-C is a very compact 10Gb/s optical transceiver module for serial optical communication applications at 10Gb/s. The SRX-SFP-10GE-ER converts a $10 \mathrm{~Gb} / \mathrm{s}$ serial electrical data stream to $10 \mathrm{~Gb} / \mathrm{s}$ optical output signal and a $10 \mathrm{~Gb} / \mathrm{s}$ optical input signal to $10 \mathrm{~Gb} / \mathrm{s}$ serial electrical data streams. The high speed $10 \mathrm{~Gb} / \mathrm{s}$ electrical interface is fully compliant with SFI specification.

The high performance 1550nm cooled EML transmitter and high sensitivity PIN receiver provide superior performance for Ethernet applications at up to 40km links.

The SFP+ Module compliant with SFF-8431, SFF-8432 and IEEE 802.3ae 10GBASE-ER. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.
The fully SFP compliant form factor provides hot pluggability, easy optical port upgrades and low EMI emission.

Product Datasheet

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts_{s}	-40		+85	${ }^{\circ} \mathrm{C}$
Case Operating Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$
Maximum Supply Voltage	Vcc	-0.5		4	V
Relative Humidity	RH	0		85	$\%$

Electrical Characteristics ($\mathrm{T}_{\mathrm{op}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=3.135$ to 3.465 Volts)

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Supply Voltage	Vcc	3.135		3.465	V	
Supply Current	Icc			400	mA	
Power Consumption	P			1.5	W	
Transmitter Section:						
Input differential impedance	$\mathrm{R}_{\text {in }}$		100		Ω	1
Tx Input Single Ended DC Voltage Tolerance (Ref VeeT)	V	-0.3		4	V	
Differential input voltage swing	Vin,pp	180		700	mV	2
Transmit Disable Voltage	$V_{\text {D }}$	2		Vcc	V	3
Transmit Enable Voltage	$V_{\text {EN }}$	Vee		Vee+0.8	V	
Receiver Section:						
Single Ended Output Voltage Tolerance	V	-0.3		4	V	
Rx Output Diff Voltage	Vo	300		850	mV	
Rx Output Rise and Fall Time	Tr/Tf	30			ps	4
LOS Fault	V Los fault	2		Vсснозт	V	5
LOS Normal	V Los norm	Vee		Vee+0.8	V	5

Notes:

1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
2. Per SFF-8431 Rev 3.0
3. Into 100 ohms differential termination.
4. $20 \% \sim 80 \%$
5. LOS is an open collector output. Should be pulled up with $4.7 \mathrm{k}-10 \mathrm{k} \Omega$ on the host board. Normal operation is logic 0 ; loss of signal is logic 1 . Maximum pull-up voltage is 5.5 V .

Product Datasheet

Optical Parameters ($\mathrm{T}_{\mathrm{op}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=3.135$ to 3.465 Volts)

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Transmitter Section:						
Center Wavelength	λt	1530	1550	1565	nm	
spectral width	$\triangle \lambda$			0.3	nm	
Average Optical Power	Pavg	-1		+4	dBm	1
Optical Power OMA	Poma	-2.1			dBm	
Laser Off Power	Poff			-30	dBm	
Extinction Ratio	ER	6			dB	
Transmitter Dispersion Penalty	TDP			3.0	dB	2
Relative Intensity Noise	Rin			-128	$\mathrm{dB} / \mathrm{Hz}$	3
Optical Return Loss Tolerance		20			dB	
Receiver Section:						
Center Wavelength	λr	1260		1600	nm	
Receiver Sensitivity	Sen			-16	dBm	4
Stressed Sensitivity (OMA)	Senst			-14	dBm	4
Los Assert	LOS $_{\text {A }}$	-27		-	dBm	
Los Dessert	LOS ${ }_{\text {d }}$			-17	dBm	
Los Hysteresis	LOS $_{\text {H }}$	0.5			dB	
Overload	Sat	0			dBm	5
Receiver Reflectance	Rrx			-26	dB	

Notes:

1. Average power figures are informative only, per IEEE802.3ae.
2. TWDP figure requires the host board to be SFF-8431compliant. TWDP is calculated using the Matlab code provided in clause 68.6.6.2 of IEEE802.3ae.
3. 12 dB reflection.
4. Conditions of stressed receiver tests per IEEE802.3ae. CSRS testing requires the host board to be SFF-8431 compliant.
5. Receiver overload specified in OMA and under the worst comprehensive stressed condition.

Product Datasheet

Timing Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit
TX Disable Assert Time	t_off			10	us
TX Disable Negate Time	t_on			1	ms
Time to Initialize Include Reset of TX_FAULT	t_int			300	ms
TX_FAULT from Fault to Assertion	t_fault			100	us
TX Disable Time to Start Reset	t_reset	10			us
Receiver Loss of Signal Assert Time	TA,RX_LOS			100	us
Receiver Loss of Signal De-assert Time	Td,RX_LOS			100	us
Rate-Select Charge Time	t_ratesel			10	us
Serial ID Clock Time	t_serial-clock				

Pin Assignment
Diagram of Host Board Connector Block Pin Numbers and Name

Product Datasheet

Pin Function Definitions

| PIN No | Name | Function | Notes |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | VeeT | Module transmitter ground | 1 |
| $\mathbf{2}$ | Tx Fault | Module transmitter fault | 2 |
| $\mathbf{3}$ | Tx Disable | Transmitter Disable; Turns off transmitter laser output | 3 |
| $\mathbf{4}$ | SDL | 2 wire serial interface data input/output (SDA) | |
| $\mathbf{5}$ | SCL | 2 wire serial interface clock input (SCL) | |
| $\mathbf{6}$ | MOD-ABS | Module Absent, connect to VeeR or VeeT in the module | 2 |
| $\mathbf{7}$ | RS0 | Rate select0, optionally control SFP+ receiver. When high, input data
 rate >4.5Gb/ s; when low, input data rate <=4.5Gb/s | |
| $\mathbf{8}$ | LOS | Receiver Loss of Signal Indication | 4 |
| $\mathbf{9}$ | RS1 | Rate select0, optionally control SFP+ transmitter. When high, input data
 rate >4.5Gb/s; when low, input data rate <=4.5Gb/s | |
| $\mathbf{1 0}$ | VeeR | Module receiver ground | |
| $\mathbf{1 1}$ | VeeR | Module receiver ground | 1 |
| $\mathbf{1 2}$ | RD- | Receiver inverted data out put | 1 |
| $\mathbf{1 3}$ | RD+ | Receiver non-inverted data out put | |
| $\mathbf{1 4}$ | VeeR | Module receiver ground | |
| $\mathbf{1 5}$ | VccR | Module receiver 3.3V supply | |
| $\mathbf{1 6}$ | VccT | Module transmitter 3.3V supply | |
| $\mathbf{1 7}$ | VeeT | Module transmitter ground | 1 |
| $\mathbf{1 8}$ | TD+ | Transmitter inverted data out put | |
| $\mathbf{1 9}$ | TD- | Transmitter non-inverted data out put | |
| $\mathbf{2 0}$ | VeeT | Module transmitter ground | |

Notes:

1. The module ground pins shall be isolated from the module case.
2. This pin is an open collector/drain output pin and shall be pulled up with $4.7 \mathrm{~K}-10 \mathrm{Kohms}$ to Host on the host board.
3. This pin shall be pulled up with $4.7 \mathrm{~K}-10 \mathrm{Kohms}$ to VccT in the module.
4. This pin is an open collector/drain output pin and shall be pulled up with 4.7 K -10Kohms to Host on the host board.

Product Datasheet

SFP Module EEPROM Information and Management

The SFP modules implement the 2-wire serial communication protocol as defined in the SFP -8472. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the $I^{2} \mathrm{C}$ interface at address A0h and A2h. The memory is mapped in Table 1. Detailed ID information (AOh) is listed in Table 2. And the DDM specification at address A2h. For more details of the memory map and byte definitions, please refer to the SFF-8472, "Digital Diagnostic Monitoring Interface for Optical Transceivers". The DDM parameters have been internally calibrated.

Table 1 - Digital Diagnostic Memory Map (Specific Data Field Descriptions)

2 wire address 1010001 X (A2h)

	Alarm and Warning Thresholds (56 bytes)
	Cal Constants (40 bytes)
	Real Time Diagnostic Interface (24 bytes)
	Vendor Specific (8 bytes)
	User Writable EEPROM (120 bytes)
247	
255	Vendor Specific (8 bytes)

Product Datasheet

Table 2 - EEPROM Serial ID Memory Contents (AOh)

Data Address	Length (Byte)	Name of Length	Description and Contents
Base ID Fields			
0	1	Identifier	Type of Serial transceiver (03h=SFP)
1	1	Reserved	Extended identifier of type serial transceiver (04h)
2	1	Connector	Code of optical connector type (07=LC)
3-10	8	Transceiver	10G Base-ER
11	1	Encoding	64B/66B
12	1	BR, Nominal	Nominal baud rate, unit of 100Mbps
13-14	2	Reserved	(0000h)
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100 m
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10 m
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10 m
18	1	Length(Copper)	Link length supported for copper, units of meters
19	1	Reserved	
20-35	16	Vendor Name	SFP vendor name: ATGBICS
36	1	Reserved	
37-39	3	Vendor OUI	SFP transceiver vendor OUI ID
40-55	16	Vendor PN	Part Number: "SRX-SFP-10GE-ER-C" (ASCII)
56-59	4	Vendor rev	Revision level for part number
60-62	3	Reserved	
63	1	CCID	Least significant byte of sum of data in address 0-62
Extended ID Fields			
64-65	2	Option	Indicates which optical SFP signals are implemented (001Ah = LOS, TX_FAULT, TX_DISABLE all supported)
66	1	$B R$, max	Upper bit rate margin, units of \%
67	1	BR , min	Lower bit rate margin, units of \%
68-83	16	Vendor SN	Serial number (ASCII)
84-91	8	Date code	.'s Manufacturing date code
92-94	3	Reserved	
95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)
Vendor Specific ID Fields			
96-127	32	Readable	. specific date, read only
128-255	128	Reserved	Reserved for SFF-8079

Product Datasheet

Digital Diagnostic Monitor Characteristics

Data Address		Accuracy	
Parameter	± 3.0	${ }^{\circ} \mathrm{C}$	
$\mathbf{9 6 - 9 7}$	Transceiver Internal Temperature	± 3.0	$\%$
$\mathbf{9 8 - 9 9}$	VCC3 Internal Supply Voltage	± 10	$\%$
$\mathbf{1 0 0 - 1 0 1}$	Laser Bias Current	± 3.0	dBm
$\mathbf{1 0 2 - 1 0 3}$	Tx Output Power	± 3.0	dBm
$\mathbf{1 0 4 - 1 0 5}$	Rx Input Power		

Regulatory Compliance

The SRX-SFP-10GE-ER complies with international Electromagnetic Compatibility (EMC) and international safety requirements and standards (see details in Table following).

Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015.7	Class 1(>1000 V)
Electrostatic Discharge (ESD) to the Duplex LC Receptacle	IEC 61000-4-2 GR-1089-CORE	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022 Class B (CISPR 22B) VCCI Class B	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2	Compatible with Class 1 laser product.

Product Datasheet

Recommended Circuit

Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Product Datasheet

Mechanical Dimensions

