
SCES078E - JULY 1996 - REVISED JANUARY 1999

- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Widebus™ Design for
 2.5-V and 3.3-V Operation and Low Static
 Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- High-Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V_{CC})
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and Power Down Prevents Driver Conflict
- Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model; and Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates
 Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

SN54ALVTH16821 . . . WD PACKAGE SN74ALVTH16821 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

description

The 'ALVTH16821 devices are 20-bit bus-interface flip-flops with 3-state outputs designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices can be used as two 10-bit flip-flops or one 20-bit flip-flop. The 20-bit flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK), the flip-flops store the logic levels set up at the D inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

SCES078E - JULY 1996 - REVISED JANUARY 1999

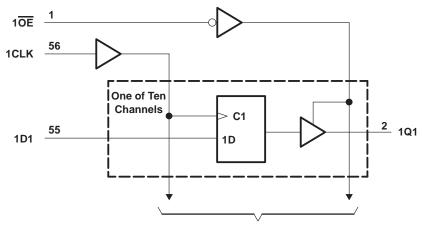
description (continued)

A buffered output-enable (\overline{OE}) input can be used to place the ten outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

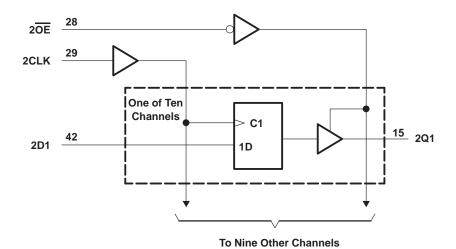
OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


The SN54ALVTH16821 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16821 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 10-bit section)


	INPUTS		OUTPUT
ŌĒ	CLK	D	Q
L	1	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	Χ	Χ	Z

logic diagram (positive logic)

To Nine Other Channels

SCES078E - JULY 1996 - REVISED JANUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	0.5 V to 7 V
Output current in the low state, IO: SN54ALVTH16821	96 mA
SN74ALVTH16821	128 mA
Output current in the high state, IO: SN54ALVTH16821	–48 mA
SN74ALVTH16821	–64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DGV package	86°C/W
DL package	74°C/W
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH1	6821	SN74	SN74ALVTH16821		
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		2.3		2.7	2.3		2.7	V
V _{IH}	High-level input voltage		1.7		7	1.7			V
V _{IL}	Low-level input voltage			Š	0.7			0.7	V
VI	Input voltage		0	Vcc	5.5	0	Vcc	5.5	V
IOH	High-level output current			7	-6			-8	mA
la	Low-level output current			2	6			8	mA
loL	Low-level output current; current duty cycle ≤	50%; f≥1 kHz	~	5	18			24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔVCC	Power-up ramp rate		200		·	200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES078E - JULY 1996 - REVISED JANUARY 1999

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH1	6821	SN74/	ALVTH1	6821	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2		7	2			V
V _{IL}	Low-level input voltage			Š	0.8			0.8	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
IOH	High-level output current			1	-24			-32	mA
la	Low-level output current			2	24			32	mA
lor	Low-level output current; current duty cycle ≤	50%; f≥1 kHz		5	48			64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES078E - JULY 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DA.	DAMETED	TEST CO	NOITIONS	10 10 10 10 10 10 10 10 10 10 10 10 10 1	UNIT					
PA	RAMEIER	lesi cc	פאטוווטאכ	MIN	TYP†	MAX	MIN	TYP†	MAX	UNII
VIK		V _{CC} = 2.3 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OH} = -100 \mu A$	V _{CC} -0	.2		V _{CC} -0	.2		
Vон		Name Test conditions Name Name Test conditions Name Name		V						
		vCC = 2.3 v	I _{OH} = -8 mA				1.8		0.2 0.4 0.5 ±1 10 11 -5 ±100 5 -5	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OL} = 100 μA			0.2			0.2	
			I _{OL} = 6 mA			0.4				
VOL		Vaa = 2.2.V	I _{OL} = 8 mA						0.4	V
		VCC = 2.3 V	I _{OL} = 18 mA			0.5				
			I _{OL} = 24 mA						0.2 0.4 0.5 ±1 10 10 1 -5 ±100 5 -5 0.1 4.5	
	Control inputs	$V_{CC} = 2.7 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			<u>\$</u> 10			10	
Ιį			V _I = 5.5 V		, A	10			10	μΑ
	Data inputs	V _{CC} = 2.7 V	VI = VCC	MIN TYPT MAX MIN TYPT MAX						
			V _I = 0		1	- 5			0.2 0.4 0.5 ±1 10 10 1 -5 ±100 5 ±100 6 0.1 4.5 0.1	
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		2				±100	μΑ
I _{BHL} ‡		$V_{CC} = 2.3 \text{ V},$	V _I = 0.7 V		115			115		μΑ
IBHH§		$V_{CC} = 2.3 \text{ V},$	V _I = 1.7 V	Q	-10			-10		μΑ
IBHLO	П	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	300			300			μΑ
Івнно	#	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	-300			-300			μΑ
IEX		$V_{CC} = 2.3 \text{ V},$	V _O = 5.5 V			125			125	μΑ
IOZ(PU	J/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} =$	to V _{CC} , don't care			±100			±100	μΑ
lozh		V _{CC} = 2.7 V				5			5	μА
lozL		V _{CC} = 2.7 V	V _O = 0.5 V,			-5			-5	μΑ
		V27V	•	+	0.04	0.1		0.04	0.1	
Icc			<u> </u>	1	2.3	4.5		2.3	4.5	mA
				1	0.04			0.04	0.1	
Ci		V _{CC} = 2.5 V,	<u> </u>	1						pF
Co			•	†						pF
+ 411.4							<u> </u>			

 $[\]dagger$ All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

[¶] An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

Current into an output in the high state when VO > VCC

SCES078E - JULY 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST	CONDITIONS	SN54	ALVTH1	6821	SN74ALVTH16821			UNIT
P	ARAWEIER	lesi (CONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNII
VIK		V _{CC} = 3 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	.2		V _{CC} -0	.2		
Vон		V 2.V	I _{OH} = -24 mA	2						V
		$^{\circ}$ CC = 3 $^{\circ}$	I _{OH} = -32 mA				2		MAX	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OL} = 100 μA			0.2			0.2	
			I _{OL} = 16 mA						0.4	\ \ V
\/a.			I _{OL} = 24 mA			0.5				
VOL		V _{CC} = 3 V	$I_{OL} = 32 \text{ mA}$						0.5	V
			I _{OL} = 48 mA			0.55				
		TEST CONDITIONS		0.55						
	Control innuts	V _{CC} = 3.6 V,	V _I = V _{CC} or GND			±1			±1	
	Control inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V			10			10	
II		I ⊢	V _I = 5.5 V		79	10			10	μΑ
	Data inputs	VCC = 3.6 V	VI = VCC		1	1			1	
			V _I = 0		25	-5			– 5	
l _{off}	•	$V_{CC} = 0$,	V _I or V _O = 0 to 4.5 V		5				±100	μΑ
I _{BHL} ‡			V _I = 0.8 V	75			75			μΑ
I _{BHH} §	}	V _{CC} = 3 V,	V _I = 2 V	-75			-75			μΑ
IBHLC		V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	500			500			μΑ
Івнно		$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	-500			-500			μΑ
IEX		$V_{CC} = 3 V$,	V _O = 5.5 V			125			125	μΑ
I _{OZ(P}	U/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μΑ
lozh		1	V _O = 3 V,			5			5	μΑ
lozL		Vcc = 3.6 V	V _O = 0.5 V,			– 5			- 5	μΑ
OZL		00								<u> </u>
ICC			·				<u> </u>			mA
			_	+	0.07	0.1		0.07	0.1	
∆ICC□]					0.4			0.4	mA
Ci		$V_{CC} = 3.3 \text{ V},$	V _I = 3.3 V or 0		3.5			3.5		pF
Со		$V_{CC} = 3.3 \text{ V},$	V _O = 3.3 V or 0		6			6		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

 $[\]Box$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 $[\]P$ An external driver must source at least IBHLO to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

Current into an output in the high state when VO > VCC

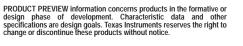
^{*}High-impedance state during power up or power down

SCES078E - JULY 1996 - REVISED JANUARY 1999

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

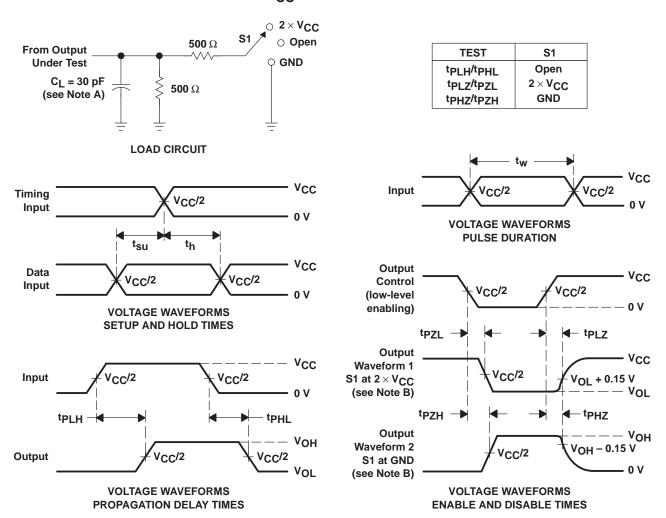
			SN54ALVTH16821 SN74ALVTH16821				UNIT	
			MIN	MAX	MIN	MAX	UNII	
fclock	Clock frequency			150		150	MHz	
t _W	Pulse duration, CLK high or low		1.6	[Y]	1.5		ns	
	Cation times, data hafana CLIVA	Data high	1.6		1.5			
t _{su}	Setup time, data before CLK↑	Data low	2.1		2		ns	
4. Haldeler	Hold time data after CLV^	Data high	0.4		0.3		200	
t _h	Hold time, data after CLK↑ Data low		2 1.1		1		ns	

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)


			SN54ALVT	H16821	SN74ALVT	UNIT		
		MIN MAX MIN MAX		MAX	UNIT			
fclock	Clock frequency			150		150	MHz	
t _W	Pulse duration, CLK high or low		1.6		1.5		ns	
	Data high		1.6		1.5		no	
t _{su}	Setup time, data before CLK↑	Data low	1.6		1.5		ns	
	Hold time, data after CLK↑	Data high	P.1		1		ns	
t _h	Data low		2 1.1		1		113	

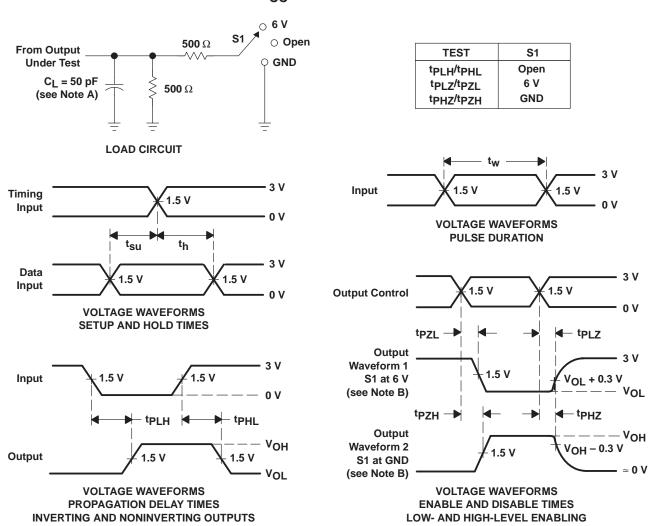
switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVT	H16821	SN74ALVT	UNIT	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	ONIT
f _{max}			150	L. W.	150		MHz
tPLH	CLK			4.2	1	4.1	nc
tPHL	CLK	Q	1 2	4.5	1	4.4	ns
^t PZH	ŌĒ			4.7	1.5	4.6	ns
^t PZL	OE	Q	70	4.2	1	4.1	115
^t PHZ	ŌĒ	Q	21.5	4.6	1.5	4.5	ns
t _{PLZ}	OE .		1	5	1	4.9	115


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DARAMETER	FROM	то	SN54ALVT	H16821	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)		MAX	MIN	MAX	UNII
f _{max}			150	N.	150		MHz
t _{PLH}	CLK	Q	1	3.6	1	3.5	ns
^t PHL	OLK	Q	1 2	3.6	1	3.5	115
^t PZH	ŌĒ	Q	15	4.2	1	4.1	ns
t _{PZL}	OE .	ď	70	3.7	1	3.6	115
^t PHZ	ŌĒ	Q	Q 1	4.9	1	4.8	ns
^t PLZ	OE OE	٧	1	4.8	1	4.6	110

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES078E - JULY 1996 - REVISED JANUARY 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated