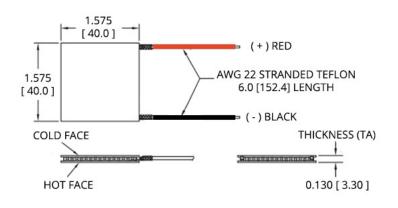
PowerCycling PC Series PC7-16-F1-4040-TA-RT-W6 MFG Part Number: 108161070002

PowerCycling PC Series Thermoelectric Cooler

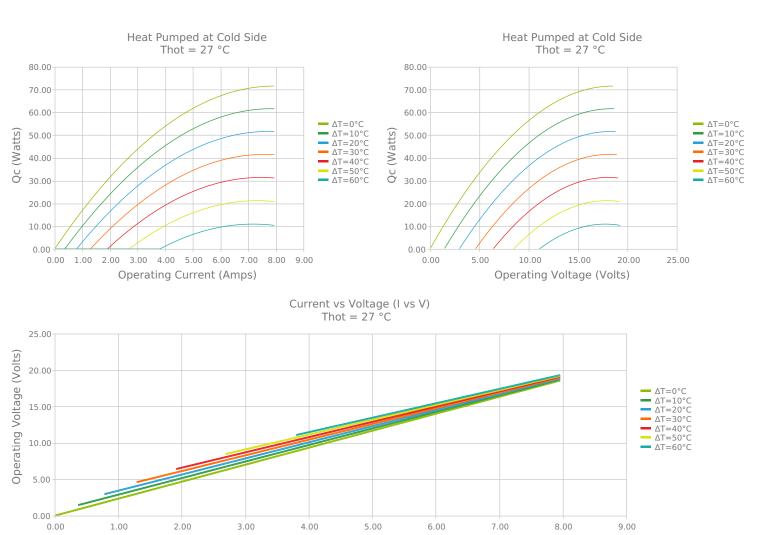

The PC7-16-F1-4040-TA-RT-W6 is a thermoelectric cooler designed for thermal cycling between multiple temperature set points and is ideal for applications in healthcare among others, where fast temperature changes are required. The thermoelectric module is specially constructed to reduce the amount of stress induced on the thermoelectric elements during operation. It has a maximum Qc of 71.6 Watts when $\Delta T=0$ and a maximum ΔT of 70.5 °C at Qc = 0.

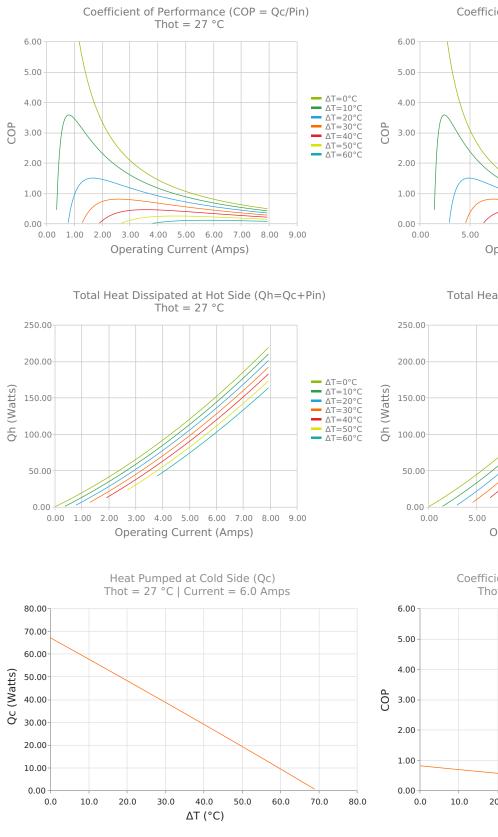
Features

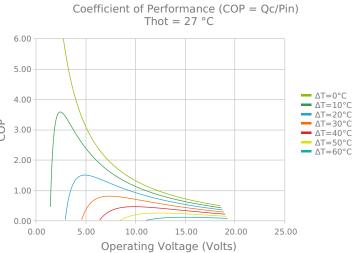
- High thermal cycling capability
- Precise temperature control
- Reliable solid-state operation
- No sound or vibration
- RoHS-compliant

Applications

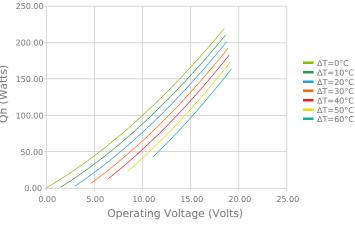
- Thermoelectric Modules Accelerate PCR Thermal Cycling
- DNA Amplification (PCR)

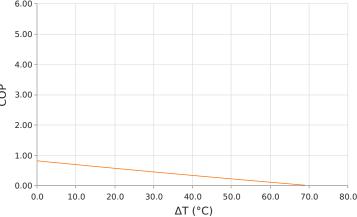



Ceramic Material: Alumina (Al₂O₃) Solder Construction: 138°C, Bismuth Tin (BiSn)


INCHES [MM]

Note: Allow 0.020 in [0.5 mm] around perimeter of the thermoelectric cooler and lead wire attachment to accommodate sealant


ELECTRICAL AND THERMAL PERFORMANCE



Total Heat Dissipated at Hot Side (Qh=Qc+Pin) Thot = 27 °C

Coefficient of Performance (COP = Qc/Pin) Thot = 27 °C | Current = 6.0 Amps

SPECIFICATIONS*

Hot Side Temperature	27.0 °C	35.0 °C	50.0 °C
Qcmax (ΔT = 0)	71.6 Watts	73.7 Watts	77.6 Watts
ΔTmax (Qc = 0)	70.5°C	73.5°C	78.8°C
lmax (I @ ΔTmax)	7.0 Amps	7.0 Amps	6.9 Amps
Vmax (V @ ΔTmax)	17.6 Volts	18.3 Volts	19.5 Volts
Module Resistance	2.33 Ohms	2.43 Ohms	2.61 Ohms
Max Operating Temperature	80 °C		
Weight	20.0 gram(s)		

* Specifications reflect thermoelectric coefficients updated March 2020

FINISHING OPTIONS

Suffix	Thickness	Flatness / Parallelism	Hot Face	Cold Face	Lead Length
ТА	$3.300 \pm 0.025 \text{ mm}$ $0.130 \pm 0.001 \text{ in}$	0.025 mm / 0.025 mm 0.001 in / 0.001 in	Lapped	Lapped	152.4 mm 6.00 in

SEALING OPTIONS

Suffix	Sealant	Color	Temp Range	Description
RT	RTV	White	-60 to 204°C	Non-corrosive, silicone adhesive

NOTES

- 1. Max operating temperature: 120°C
- 2. Do not exceed Imax or Vmax when operating module
- 3. Reference assembly guidelines for recommended installation
- 4. Solder tinning also available on metallized ceramics

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2020 Laird Thermal Systems GmbH. All Rights Reserved. Laird, Laird Technologies, Laird Thermal Systems, the Laird Logo, and other word marks and logos are trademarks or registered trademarks of Laird Limited or an affiliate company thereof. Other product or service names may be the property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property rights.

Date: 04/24/2020