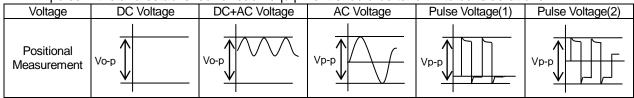


Reference Specification

200°C Operation Leaded MLCC for Automotive with AEC-Q200 RHS Series

Product specifications in this catalog are as of Jul. 2019, and are subject to change or obsolescence without notice.


Please consult the approval sheet before ordering. Please read rating and Cautions first.

Δ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <u>the condition of</u> <u>atmosphere temperature 25 °C</u>. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life. body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 5. Medical equipment
- 4. Power plant control equipment
- - 6. Transportation equipment (vehicles, trains, ships, etc.) 8. Disaster prevention / crime prevention equipment
- 7. Traffic signal equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity : Output of 20 watts per liter or less. Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

- 2. Soldering and Mounting
 - Insertion of the Lead Wire
 - When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
 - Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

A NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. A	pplicat	ion								
-	This sp	ecifica			°C Operation Automotive E			series in acc	ordance with	
2. F	Rating									
	• A				re up to 200° lative time to		in 2000	hours.		
	• Pa	art nun	nber configui	ration						
e	k.) <u>RH</u>	<u>s</u>	7J	2D	101	J	1	A2	H01	В
	Serie		Temperature Characteristic	Rated voltage	Capacitance	Capacitance tolerance	Dimens code		Individual specification code	Packing style code
	• S	eries								
		Coc	le		Content					
		RH	S	Epo>	xy coated, 20	0°C max.				
	• Te	empera	ature charact	eristic						
	Cod		Temp.		np. Range	Temp		Standard	Operating	-
		<u> </u>	Char.			coeff.(ppm	,	Temp.	Temp. Ran	ge
	7J	. U	UNJ		5∼25°C ∽125°C	-750+120/ -750±12		25°C	-55 ~ 200°C	<u> </u>
	75	(Murta code)		;~125°C	-750+347/		25 0		
	• R	ated v			ltere					
		Coc 20		Rated vo DC20	-					
		2L 2H		DC20						
		within 100 -			ture exceeds perature dera					
		Rated voltage (%)				25%	Δ			
		10 - -7	75 -50 -25	0 25 Te	50 75 100 emperature (°C)	125 150 175	200			
	• C		e first two dig) In case of		te significant f	figures ; the la	ast digit	denotes the	multiplier of ?	I0 in pF

• Capacitance tolerance

Code Capacitance tolerance	
J +/-5%	

• Dimension code

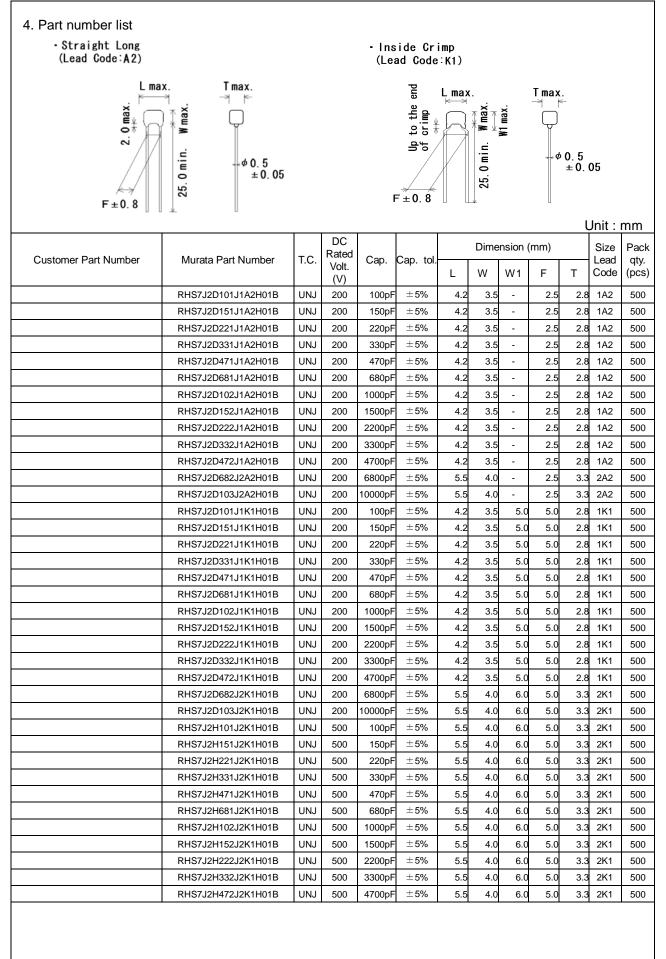
Code	Dimensions (LxW) mm max.
1	4.2 x 3.5
2	5.5 x 4.0

• Lead code

Code	Lead style	Lead spacing (mm)	
A2	Straight type	2.5+/-0.8	
DG	Straight taping type	2.5+0.4/-0.2	
K1	Inside crimp type	5.0+/-0.8	
M2	Inside crimp taping type	5.0+0.6/-0.2	

Lead wire is solder coated CP wire.

• Individual specification code Murata's control code Please refer to [Part number list].


• Packing style code

C	ode	Packing style
	A	Taping type of Ammo
	В	Bulk type

3. Marking

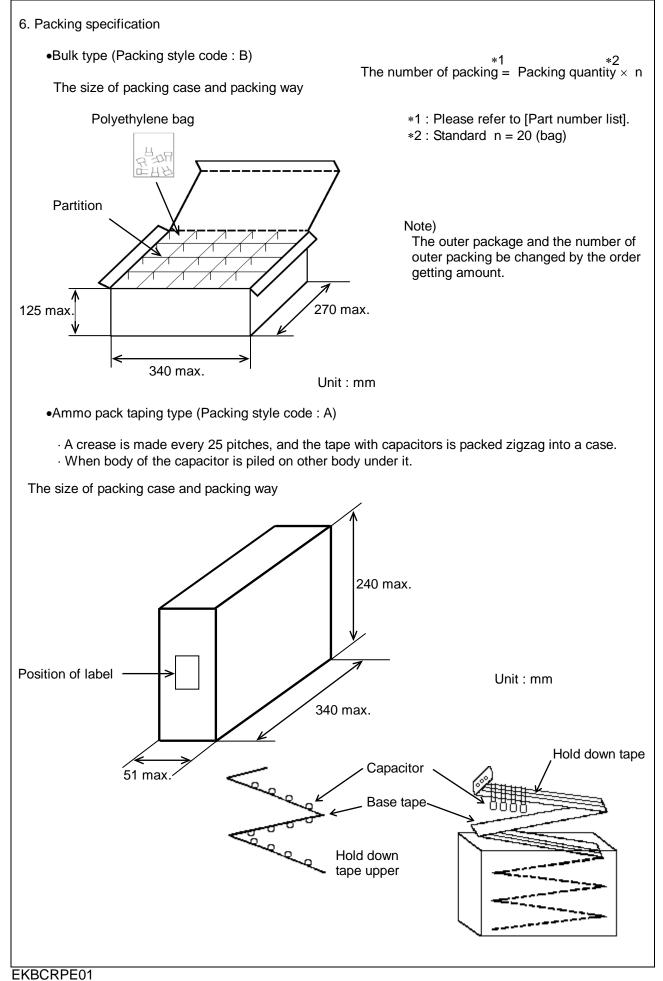
Temp. char.	: Letter code : 2 (UNJ char.)
Capacitance	: 3 digit numbers
Capacitance tolerance	: Code
Rated voltage	: Letter code : 6 (DC200V only. Except dimension code : 1) Letter code : 9 (DC500V only)
Company name code	: Abbreviation : (Except dimension code : 1)

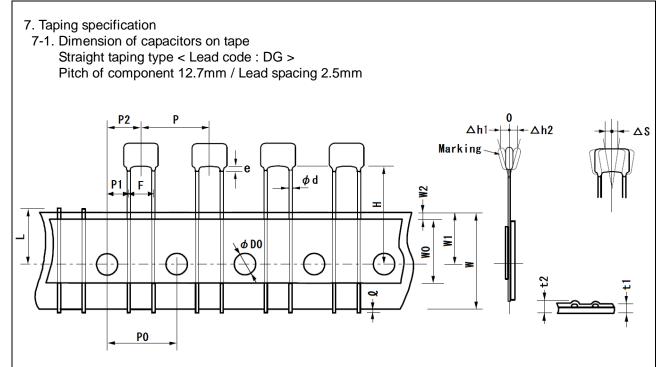
(Ex.)		
Rated voltage Dimension code	200V	500V
1	2 101J	
2	د 103 المع	G 101 J92

Reference only		Тy		eren	IVEI					
 Inside Crimp Taping (Lead Code: M2) 						•StraightTaping (Lead Code:DG)				
$F^{\pm}_{0.2}$	u					$F \pm 0.2$				
DC Bated Dimension (mm) Size Pack	tol.	Са	Cap.	Rated	T.C.	Murata Part Number	Customer Part Number			
Volt. (V) L W W1 F T H/H0 Code (pcs)	L									
		-			-	RHS7J2D101J1DGH01A				
		-				RHS7J2D151J1DGH01A				
		-				RHS7J2D221J1DGH01A				
		-			-	RHS7J2D331J1DGH01A				
		-				RHS7J2D471J1DGH01A RHS7J2D681J1DGH01A				
		-				RHS7J2D681J1DGH01A				
		-			-	RHS7J2D102J1DGH01A RHS7J2D152J1DGH01A				
		-			-	RHS7J2D222J1DGH01A				
		_				RHS7J2D332J1DGH01A				
		_				RHS7J2D472J1DGH01A				
	%	-		200	UNJ	RHS7J2D682J2DGH01A				
IA UNJ 200 10000pF ±5% 5.5 4.0 - 2.5 3.3 20.0 2DG 1500	%	F ±	10000pF	200	UNJ	RHS7J2D103J2DGH01A				
A UNJ 200 100pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	100pF	200	UNJ	RHS7J2D101J1M2H01A				
A UNJ 200 150pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	150pF	200	UNJ	RHS7J2D151J1M2H01A				
A UNJ 200 220pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	220pF	200	UNJ	RHS7J2D221J1M2H01A				
A UNJ 200 330pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	330pF	200	UNJ	RHS7J2D331J1M2H01A				
IA UNJ 200 470pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	470pF	200	UNJ	RHS7J2D471J1M2H01A				
IA UNJ 200 680pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	680pF	200	UNJ	RHS7J2D681J1M2H01A				
IA UNJ 200 1000pF ±5% 4.2 3.5 5.0 5.0 2.8 20.0 1M2 2000	%	F ±	1000pF	200	UNJ	RHS7J2D102J1M2H01A				
		-			-	RHS7J2D152J1M2H01A				
		_			-	RHS7J2D222J1M2H01A				
		-				RHS7J2D332J1M2H01A				
		-			-	RHS7J2D472J1M2H01A				
		-			-	RHS7J2D682J2M2H01A RHS7J2D103J2M2H01A				
		_								
		-			-	RHS7J2H101J2M2H01A RHS7J2H151J2M2H01A				
		-			-	RHS7J2H131J2M2H01A RHS7J2H221J2M2H01A				
		_				RHS7J2H331J2M2H01A				
		-			-	RHS7J2H471J2M2H01A				
					-	RHS7J2H681J2M2H01A				
	%	-				RHS7J2H102J2M2H01A				
A UNJ 500 1500pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 1500	%	F ±	1500pF	500	UNJ	RHS7J2H152J2M2H01A				
A UNJ 500 2200pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 1500	%	F ±	2200pF	500	UNJ	RHS7J2H222J2M2H01A				
A UNJ 500 3300pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 1500	%	F ±	3300pF	500	UNJ	RHS7J2H332J2M2H01A				
IA UNJ 500 4700pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 1500	%	F ±	4700pF	500	UNJ	RHS7J2H472J2M2H01A				
IA UNJ 500 680pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 IA UNJ 500 1000pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 IA UNJ 500 1000pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 IA UNJ 500 1500pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 IA UNJ 500 2200pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2 IA UNJ 500 3300pF ±5% 5.5 4.0 6.0 5.0 3.3 20.0 2M2	% % % % % % %	F ± F ± F ± F ±	680pF 1000pF 1500pF 2200pF 3300pF	500 500 500 500 500	UNJ UNJ UNJ UNJ UNJ	RHS7J2H681J2M2H01A RHS7J2H102J2M2H01A RHS7J2H152J2M2H01A RHS7J2H222J2M2H01A RHS7J2H222J2M2H01A				

Reference only

AEC- Test		Specification	AEC-Q200 Test Method					
			- -					
(Storage) Change Q		(Whichever is larger) Q ≥ 350	Sit the capacitor for 1,000±12h at 200±5°C. Let sit for 24±2h a *room condition, then measure.					
Temperature Cycling		change of outer coating	Perform the 1,000 cycles according to the four heat treatments listed in the following table. Let sit for 24 ± 2 h at *room condition then measure.Step1234Temp. (°C)-55+0/-3Room Temp.200+5/-0Room Temp.Time (min.)15±3115±31					
Resistance	esistance Capacitance Within ±5% or ± 0.5pF Change (Whichever is larger) Q Q ≥ 200 I.R. 500MΩ min. iased umidity Appearance No defects or abnormalities Capacitance Within ±5% or ± 0.5pF Change (Whichever is larger)		Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature Humidity $80-98\%$ Humidity $80-98\%$ Humidity $90-98\%$ 10000% $90-98\%$ 10000% 1120 1120 1120 1120 1120 1120 1120 12					
	Appearance Capacitance Change Q	No defects or abnormalities except color change of outer coating Within $\pm 3\%$ or $\pm 0.3pF$ (Whichever is larger) Q ≥ 350	Apply 25% of the rated voltage for 1,000±12h at 200±5°C. Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.					
External Visu		No defects or abnormalities	Visual inspection					
Physical Dim		Within the specified dimensions	Using calipers and micrometers.					
		To be easily legible.	Visual inspection					
			Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water 1part (by volume) of propylene glycol monomethyl ether					
	Test Pre-and Post Electrical Tes High Temperature Exposure (Storage) Temperature Cycling Moisture Resistance Biased Humidity Operational Life	Test Item Pre-and Post-Stress Electrical Test High Temperature Exposure (Storage) I.R. Temperature Cycling Moisture Resistance Capacitance Change Q I.R. Moisture Resistance Capacitance Change Q I.R. Moisture Resistance Biased Humidity Appearance Change Q I.R. Biased Humidity Appearance Capacitance Change Q I.R. Biased Humidity Appearance Capacitance Change Q I.R. Operational Life Capacitance Chapearance <	Test Item Specification Pre-and Post-Stress Electrical Test High Appearance No defects or abnormalities except color change of outer coating. Capacitance Within 43% or ± 0.3 pF (Storage) Q ≥ 350 I.R. 1,000MΩ min. Temperature Appearance No defects or abnormalities except color change of outer coating. Capacitance Change of outer coating. Capacitance Capacitance Within 45% or ± 0.5 pF Change (Whichever is larger) Q Q ≥ 350 I.R. 1,000MΩ min. Capacitance Within 45% or ± 0.5 pF Change Within 45% or ± 0.5 pF Capacitance Capacitance Moisture Appearance No defects or abnormalities Capacitance Resistance Appearance No defects or abnormalities Capacitance Whichever is larger) Q ≥ 200 I.R. 500MΩ min. Biased Appearance No defects or abnormalities Capacitance Humidity Appearance No defects or					

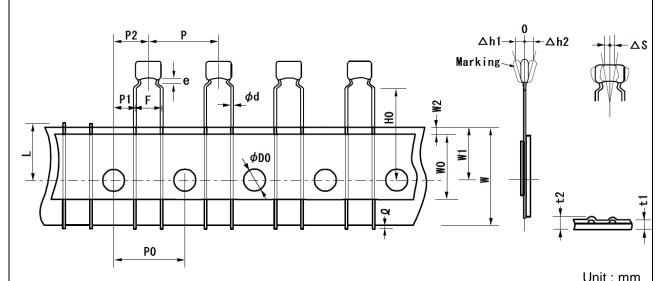

Reference only

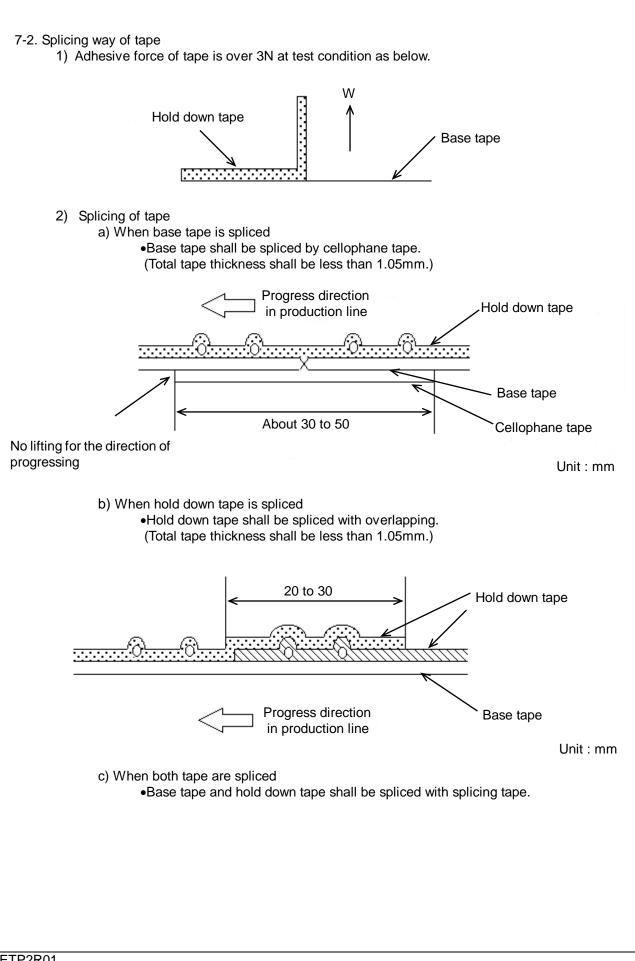

No.	AEC-0 Test		Specification		AE	C-Q200 Test N	/lethod	
11	Mechanical	Appearance	No defects or abnormalities	Three sh	ocks in each	direction should	be applied along	3
	Shock	Capacitance	Within the specified tolerance	mutually perpendicular axes of the tes The specified test pulse should be Ha		specimen (18 should	nocks). I have a	
		Q	Q ≥ 1.000				d velocity change	
12	Vibration	Appearance	No defects or abnormalities	The capa	citor should b	be subjected to a	simple harmoni	c motio
		Capacitance	Within the specified tolerance				frequency being	
		Q	Q ≥ 1,000	uniformly between the approximate limits of 10 and 2,000Hz. The frequency range, from 10 to 2,000Hz and return to 10Hz, should be traversed in approximately 20 min. This motion should be applied for 12 items in each 3 mutually perpendicul directions (total of 36 times).				10Hz, on
13-1	Resistance to Soldering Heat	Appearance	No defects or abnormalities	The lead wires should be immersed in the melted solder 2.0mm from the root of terminal at 260±5°C for 10±1 sect				
	(Non-Preheat)	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)		eatment			
		Dielectric Strength (Between terminals)	No defects	Capacit	or should be s	stored for 24±2	hours at *room c	onditior
13-2	Resistance to	Appearance	No defects or abnormalities	First the	capacitor sh	ould be stored a	t 120+0/-5°C for	60+0/-5
	Soldering Heat	Capacitance	Within ±2.5% or ±0.25pF	seconds		abould be imm	rood in the!	deal-
	(On-Preheat)	Change	(Whichever is larger)				rsed in the melte I at 260±5°C for ⁻	
		Dielectric Strength	No defects	seconds				1.010
		(Between terminals)		 Post-treatment Capacitor should be stored for 24±2 hours at *room conditio 			condition	
13-3	Resistance to	Appearance	No defects or abnormalities			5101E0101 24±2		
	Soldering Heat (soldering iron method)			Termperature of iron-tip : 350±10°C				
		Capacitance	Within ±2.5% or ±0.25pF (Whichever is larger)	Soldering time : 3.5±0.5 seconds Soldering position				
		Change Dielectric	No defects		• •	2.0mm from the	root of terminal.	
		Strength		Crimp Lead:1.5 to 2.0mm from the end of lead bend.				
		(Between		Post-treatment				
		terminals)				e stored for 24±2	hours at *room o	conditio
14	Thermal Shock	Appearance	No defects or abnormalities	Perform t	he 300 cycles	according to the	e two heat treatm	ents list
		Capacitance	Within ±5% or ±0.5pF				r time is 20s.). L	.et sit fo
		Change	(Whichever is larger)	2412110	Step	1	2	
		Q	Q ≥ 350 1,000MΩ min.	-	Temp.	-55+0/-3	200+5/-0	
		I.R.	1,0001/022 11111.		(°C) Time	15±3	15±3	
15	ESD	Appearance	No defects or abnormalities	Per AEC-	(min.) Q200-002	10±0	10±0	
		Capacitance	Within the specified tolerance	-				
			$Q \ge 1,000$	-				
		Q	,					
		I.R.	10,000MΩ min.					
16	Solderability		Lead wire should be soldered with uniform coating on the axial direction over 95% of the circumferential direction.	(JIS-K-81 propotion In both ca the termin Temp. of 245±5° 235±5°	01) and rosin and then intra ases the depth nal body. solder : C Lead Free S C H60A or H6	o (JIS-K-5902) (2 o molten solder	(JIS-Z-3282) for 2 o to about 1.5 to 2 I-0.5Cu)	nt 2±0.5 se
			. ,					

ſ

Reference only

lo.		-Q200 t Item		Specifications	AEC-Q200 Test Method			
17	Electrical Apperance				Visual inspection.			
	Characte- rization	Capacitance Q	Within the sp $Q \ge 1,000$	ecified tolerance	The capacitance, Q should be measured at 25°C at the free and voltage shown in the table.			
					$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
		Insulation Resistance (I.R.)	Room Temperature	10,000MΩ min.	The insulation resistance should be measured at 25±3 °C w DC voltage not exceeding the rated voltage at normal tempe and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)			
			High Temperature	20MΩ min.	The insulation resistance should be measured at 200±5 °C DC voltage not exceeding 25% of the rated voltage at norm temperature and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)			
		Dielectric Strength	Between Terminals	No defects or abnormalities	The capacitor should not be damaged when voltage in Table applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.)			
					Rated voltage Test voltage			
					DC200V 250% of the rated voltage DC500V 150% of the rated voltage			
			Body No de Insulation	No defects or abnormalities	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls as shown in the figure, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.)			
					Rated voltage Test voltage			
					DC200V 250% of the rated voltage DC500V 150% of the rated voltage			
8	Terminal Strength		Termination r	ot to be broken or loosened	As in the figure, fix the capacitor body, apply the force gradu to each lead in the radial direction of the capacitor until reac 10N and then keep the force applied for 10 ± 1 seconds.			
		Bending Strength	Termination r	not to be broken or loosened	Each lead wire should be subjected to a force of 2.5N and the be bent 90° at the point of egress in one direction. Each wind then returned to the original position and bent 90° in the oper direction at the rate of one bend per 2 to 3 seconds.			
9 Capacitance Temperatur Characteris		-		ecified Tolerance. 347ppm/°C (-55~25°C) pm/°C (25~125°C) 120ppm/°C (125~200°C)	The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 200±5 5 25±2			
noc	n condition" Temperature:		5 to 35°C, Re	lative humidity:45 to 75%, Atmosph	The temperature coefficient is determind using the capacita measured in step 3 as a reference. When cycling the temper sequentially from step 1 through 5 (-55°C to +150°C) the capacitance should be within the specified tolerance for temperature coefficient and capacitance change as Table A. The capacitance drift is caluculated by dividing the difference between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3. ere pressure:86 to 106kPa			




Unit : mm

Item	Code	Dimensions	Remarks
	P	12.7+/-1.0	Remains
Pitch of component			
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Doviction of progress direction
Length from hole center to lead	P1	5.1+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	н	20.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	d	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	-
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
	∆h1	1.0 max.	
Deviation across tape	∆h2	1.0 max.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	2.0 max.	

Inside crimp taping type < Lead code : M2 > Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mr			
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom	110	20.01/05	
plane	HO	20.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness.
Total thickness of tape and lead wire	t2	1.5 max.	
Deviation across tape	∆h1	2.0 max. (Dimension code : W)	
	∆h2	1.0 max. (except as above)	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of crimp	

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials •1000 ppm maximum Lead

- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine