

Figure 1.1. PCB Mount without Heat Sink

Figure 1.2. PCB Mount with Heat Sink

Figure 1.3. Terminal Block Mount without Heat Sink

Figure 1.4. Terminal Block with Heat Sink

Figure 1.5. Terminal Block DIN-Rail without Heat Sink

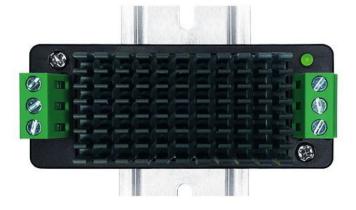


Figure 1.6. Terminal Block DIN-Rail with Heat Sink

ATDC24V5V10AP

FEATURES

• Wide Input Range: 18V ~ 36V

Output Voltage: 5V

Max. Output Current: 10A

• High Efficiency: 90% $@V_{IN} = 18V \& I_{OUT} = 10A$

Switching Frequency: 350kHzHigh Isolation Voltage: 1500VDC

Low Standby Power Consumption ≤ 0.3W

Output Start time ≤ 20ms

Fully Protected: OCP, SCP, OVLO & UVLO

 Durable Construction: Aluminum Housing for EMI Shielding and Durable Construction

Wide Operating Temperature Range: −40°C ~ +85°C

Robust Protections: OCP, SCP, OVLO and UVLO

APPLICATIONS

Our ATDC24V5V10AP power module is designed to convert an unregulated voltage of 18V to 36V into a

regulated 5V output with a maximum current of 10A, making it an ideal power supply source for industrial applications that require high voltage isolation. With various packaging options for different mounting and power consumption needs (as shown in Figure 1), our power module is a versatile solution that can meet the demands of a wide range of applications. Our power supply unit is 90% efficient at V_{IN}=18V and I_{OUT}=10A, reducing power consumption and temperature rise. This eliminates the need for large heat sinks and prolongs the unit's lifespan. The power supply unit has low standby power consumption of less than or equal to 0.3W, making it energy-efficient and eco-friendly. The unit has an isolation voltage of 1500VDC, ensuring complete isolation between the input and output circuits. The power supply unit has low standby

consumption of less than or equal to 0.3W, making it

energy efficient and eco-friendly.

DESCRIPTION AND SPECIFICATIONS

Our power module is designed to operate reliably under extreme conditions, with built-in over-current, short-circuit, over-voltage, and under-voltage protections. With a mean time between failure of 2×10^5 hours (equivalent to 23 years of continuous use), you can trust that it will keep your equipment running smoothly for years to come. Our power module comes in three different mounting packages - PCB, terminal block, and DIN-Rail with or without heat sinks. Heat sinks are recommended for applications with output currents greater than 6A, while applications with output currents below 6A can operate without the need for a heat sink. Our power supply unit features a sturdy aluminum housing that provides both EMI shielding and durable construction, making it an ideal choice for demanding environments. Our power supply unit is designed to withstand extreme temperatures, with a wide operating range of -40° C to $+85^{\circ}$ C. This makes it a versatile and reliable choice for use in a variety of industrial and commercial settings.

Table 1. Pin Names AND Functions.

No.	Name	Туре	Description
1	SDN	Digital Input	Shutdown Control
2	VIN-	Power Input	Negative Input Voltage
3	VIN+	Power Input	Positive Input Voltage
4	VOUT+	Power Output	Positive Output Voltage
5	VOUT-	Power Output	Negative Output Voltage
6	Trim	Analog Input	Trimming Input

ATDC24V5V10AP

Table 2. Specifications

INPUT								
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note		
Input Voltage	V _{IN}		18	24	36	V		
Input Current	${ m I}_{ m IN}$	Full Load		2315		mA		
Input Current	IIN	No Load		50		mA		
Surge Voltage (1sec. max.)					50	VDC		
Under Voltage Lockout	UVLO			16		V		
	V _{SDNH}	ON	3.5		12	V		
Shutdown	V_{SDNL}	OFF	0		1.2	V		
	I _{SDN}			150		mA		
Start-up time	ts			20		ms		
Filter				Pi Filter				
OUTPUT								
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note		
Output Voltage	Vout			5		V		
Output Current	I _{OUT}				10	Α		
Output Voltage Accuracy					±2	%		
Line Regulation	$\Delta V_{OUT}/\Delta V_{VPS}$				±1	%		
Load Regulation	ΔV _{ΟυΤ} /ΔΙ _{ΟυΤ}	Load change from 10% to 100%			±2	%		
Ripple & Noise					100	mV _{p-p}		
Output Over Voltage Lockout	OVLO		1.1V out		2V _{OUT}			
Output Over Current Protection			$1.1I_{OUT}$	1.5I _{ОUТ}	2I _{OUT}			
Capacitive Load					8000	μF		
Efficiency	η			90		%		
Output Voltage Regulation		Trim Pin Function		±10		%		
Output Voltage Drift	ΔVουτ/Δt		≤	±8%/500ı	us			
GENERAL CHARACTERIST	TC							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note		
Isolation Voltage	V _{IS}			1500		VDC		
Isolation Capacitance				2000		pF		
Isolation Resistance			100			ΜΩ		
Switching Frequency	f _{SW}			350		kHz		

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note	
Operating Temperature Range		Topr		-40		85	°C	
Stora	ge Temperature Range	T_{stg}		-55		125	°C	
Maxin	num Case Temperature	T_{cs}	T _A = 25°C			105	°C	
Stor	age Relative Humidity Range	RH		5		95	%	
Mean Time Between Failure		MTBF	MIL-HDBK-217F@25°C	2×10 ⁵			Hrs	
	Case Material				Alu	minum		
Weight					28		g	
					0.062		lbs	
					0.988		Oz	
EMC	EMC CHARACTERISTIC							
ГМТ	Conducted Emissions CISPR32/EN55032 CLASS B							
EMI	Radiated Emissions		CISPR32/EN	N55032 CLASS B				
	ESD	IEC/EN61000-4-2 Contact ±4kV		perf.Criteria B				
	Radiated Immunity		IEC/EN61000-4-3 10V/m		perf.Criteria A			
EMS	EFT/Burst	IEC	/EN61000-4-4 ±2kV	perf.Criteria B				
	Surge	IEC/EN61000-4-5 ±2kV		perf.Criteria B				
	Conducted Immunity	IEC/	IEC/EN61000-4-6 3Vr.m.s		perf.Criteria A			

TYPICAL PERFORMANCE CHARACTERISTICS

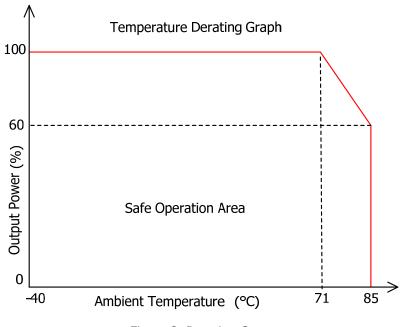
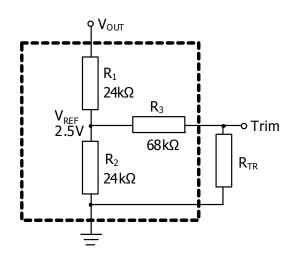
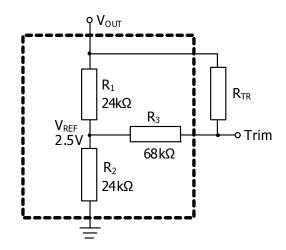


Figure 2. Derating Curve

TRIM APPLICATIONS CIRCUITS

The output voltage can be trimmed in 3 ways: up, down and both.




Figure 3. Trimming Up Output Voltage

$$V_{REF} = \frac{R_2 / / (R_3 + R_{TR})}{R_1 + R_2 / / (R_3 + R_{TR})} \times V_{OUT}$$

$$V_{OUT} = \left[1 + \frac{R_1}{R_2 / / (R_3 + R_{TR})}\right] \times V_{REF}$$

$$V_{OUT} = 5 + \frac{60}{R_{\rm TR} + 68}$$

$$R_{TR} = \frac{110}{V_{OUT} - 5} - 68$$

$$V_{REF} = \frac{R_1//(R_3 + R_{TR})}{R_2 + R_1//(R_3 + R_{TR})} \times V_{OUT}$$

$$V_{OUT} = \left[1 + \frac{R_2}{R_1/(R_3 + R_{TR})}\right] \times V_{REF}$$

$$V_{OUT} = 5 + \frac{60}{R_{\rm TR} + 68}$$

$$R_{TR} = \frac{110}{V_{OUT} - 5} - 68$$

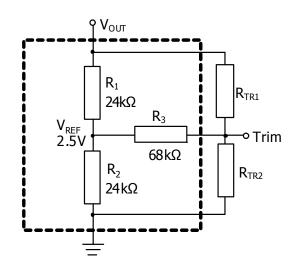


Figure 5. Trimming Up and Down Output Voltage

$$\begin{split} V_{REF} &= \frac{R_2//(R_3 + R_{TR1}//R_{TR2})}{R_1 + R_2//(R_3 + R_{TR1}//R_{TR2})} \times V_{OUT} \\ &+ \frac{R_{TR2}//(R_3 + R_1//R_2)}{R_{TR1} + R_{TR2}//(R_3 + R_1//R_2)} \times V_{OUT} \end{split}$$

$$V_{OUT} =$$

$$\frac{14985 R_{\text{TR1}} R_{\text{TR2}} + 2000 R_{\text{TR2}}^2 + 25600 R_{\text{TR1}}}{5492 R_{\text{TR1}} R_{\text{TR2}} + 69 R_{\text{TR1}} {R_{\text{TR2}}}^2 + 5460 {R_{\text{TR2}}}^2 + 2176 R_{\text{TR1}} + 2176 R_{\text{TR2}}}$$

Figure 4. Trimming Down Output Voltage

ATDC24V5V10AP

TYPICAL APPLICATIONS

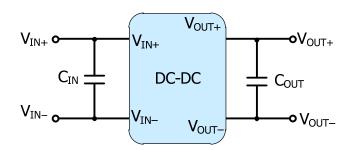


Figure 6. DC-DC Test Circuit

Recommended Values:

 C_{IN} : $47\mu F \sim 100\mu F$, C_{OUT} : $10\mu F \sim 22\mu F$

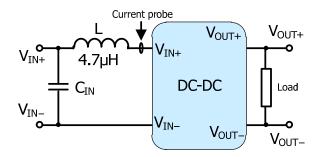


Figure 7. Input ripple Test Current Circuit

Choose a low ESR capacitor with a voltage tolerance higher than the maximum input voltage.

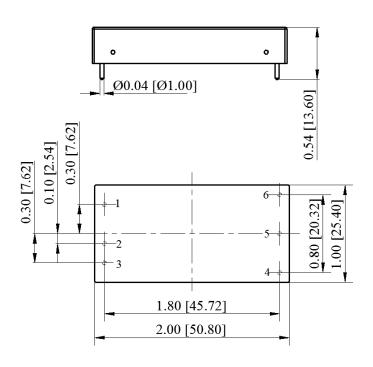
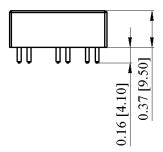
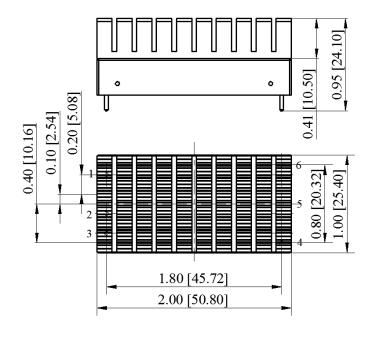
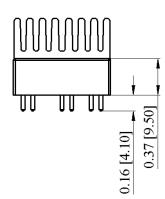




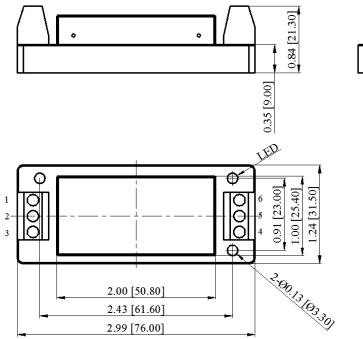
Figure 8. EMC Recommended Circuit

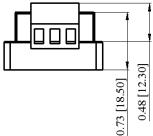
OUTLINE DIMENSIONS


PCB Mount without Heat Sink(P)

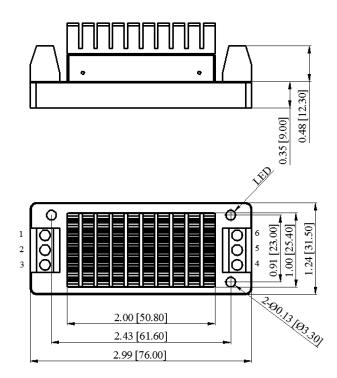


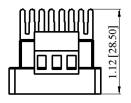
End View	Side View				
Top View	Unit: inch [mm]				


PCB Mount with Heat Sink (PH)

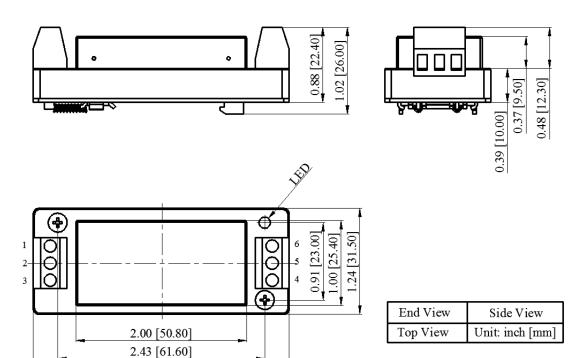


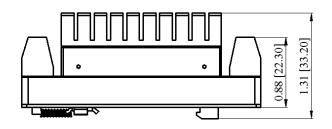
End View	Side View
Top View	Unit: inch [mm]

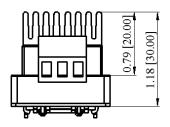

Terminal Block Mount without Heat Sink(T)

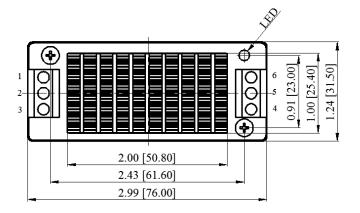


End View	Side View
Top View	Unit: inch [mm]


Terminal Block Mount with Heat Sink(TH)


End View	Side View					
Top View	Unit: inch [mm]					


Terminal Block DIN Rail without Heat Sink(TD)



Terminal Block DIN Rail with Heat Sink (TDH)

2.99 [76.00]

End View	Side View
Top View	Unit: inch [mm]

ORDING INFORMATION

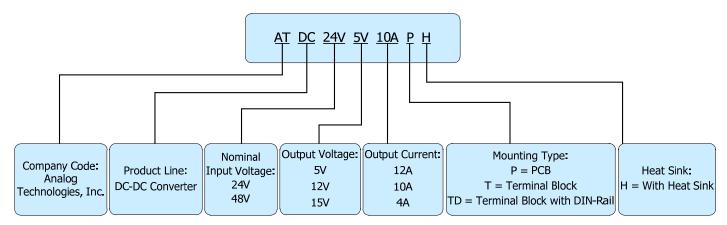


Figure 9. Naming Principle of ATDC24V5V10AP

Table 4. ATDC24V5V10AXXX and Its Families.

Product Model	Input Voltage			Output Current	Input Current (mA)		MAX. Capacitive Load	Ripple & Noise 20MHz(Max)	Efficiency (%)	
	Тур.	Range	V	A	Full Load	No Load	μF	mV _{p-p}	Min.	Тур.
ATDC24V3R3V12AXXX*			3.3	12	1885	50	10000	100	84	87
ATDC24V5V10AXXX*	24	18~36	5	10	2315	50	8000	100	87	90
ATDC24V12V4AXXX*			12	4.16	2350	2	2000	100	86	89
ATDC24V15V3R3AXXX*			15	3.33	2315	2	1000	100	87	90
ATDC24V24V2AXXX*			24	2.08	2315	2	500	100	87	90
ATDC48V3V310AXXX*			3.3	10	790	50	10000	100	84	87
ATDC48V5V10AXXX*			5	10	1158	50	8000	100	85	87
ATDC48V12V4AXXX*	48	48 36~75	12	4.16	1158	2	2000	100	87	89
ATDC48V15V3R3AXXX*			15	3.33	1158	2	1000	100	87	90
ATDC48V24V2AXXX*			24	2.08	1158	2	500	100	87	90

*Note: See Figure 9.

ISOLATED 50W DC-DC Converter

ATDC24V5V10AP

NOTICE

- 1. ATI warrants its products to perform according to specifications for one year from the date of sale, except when damaged due to excessive abuse. If a product fails to meet specifications within one year of the sale, it can be exchanged free of charge.
- 2. ATI reserves the right to make changes or discontinue products or services without notice. Customers are advised to obtain the latest information before placing orders.
- 3. All products are sold subject to terms and conditions of sale, including those pertaining to warranty, patent infringement, and limitation of liability. Customers are responsible for their applications using ATI products, and ATI assumes no liability for applications assistance or customer product design.
- 4. ATI does not grant any license, either express or implied, under any patent right, copyright, mask work right, or other intellectual property right of ATI.
- 5. ATI's publication of information regarding third-party products or services does not constitute approval, warranty, or endorsement.
- 6. ATI retains ownership of all rights for special technologies, techniques, and designs for its products and projects, as well as any modifications, improvements, and inventions made by ATI.

www.analogtechnologies.com Sales: sales@analogti.com Help Improve Datasheet: datasheet@analogti.com Tel.: (408) 748-9100