

Arm-based IoT Kit for Cloud IoT Core -

Getting Started

Created by Matthew DuPuy

https://learn.adafruit.com/raspberry-pi-3-and-sensor-kit-for-google-cloud-iot-core

Last updated on 2022-12-01 03:00:54 PM EST

©Adafruit Industries Page 1 of 15

3

10

Table of Contents

Arm-based IoT Kit for Cloud IoT Core

• Example projects and code on GitHub are supplied to support the Arm-based IoT Kit for Cloud IoT Core.

• This getting started guide assumes you have enabled Google Cloud IoT Core in your GCP concole. It will step

you through setting up the gcloud SDK tools, getting your Raspberry Pi 3 connected to the internet and securely

registered as a device with a Google Cloud project.

• Parts included in kit:

• Getting Started

• Example projects and code are supplied to support the Arm-based IoT Kit for Cloud IoT Core (kit including

RasPi3) from Adafruit

• Network and firmware updates

• Enabling Cloud IoT Core AP, installing the Google Cloud SDK and registering your first device

• Dependencies

• Hello World - Temperature example

• CPUTemp Example

• Useful code

Pubsub thermostat example

©Adafruit Industries Page 2 of 15

Arm-based IoT Kit for Cloud IoT Core

Example projects and code on GitHub are supplied to

support the Arm-based IoT Kit for Cloud IoT Core.

This getting started guide assumes you have enabled Go

ogle Cloud IoT Core in your GCP concole. It will step you

through setting up the gcloud SDK tools, getting your

Raspberry Pi 3 connected to the internet and securely

registered as a device with a Google Cloud project.

Parts included in kit:

• 1x Pi3

• 1x Power Supply

• 1x I2C Temp/Pressure/Humidity Sensor

• 1x 8-Channel 10-bit ADC with SPI

• 1x 8Gb SD with latest Raspian pre-loaded

• 1x Breadboard

• 1x Servo

• 1x Joystick (pluggable into breadboard)

• 1 x Small pixel screen

• 1x Photo cell- CdS photoresistor

• 1x Premium Male/Male Jumper Wires - 20 x 6" [150mm]

• 1x Assembled Pi Cobbler Plus - Breakout Cable - for Pi B+/A+/Pi 2/Pi 3

©Adafruit Industries Page 3 of 15

https://github.com/ARM-software/Cloud-IoT-Core-Kit-Examples
https://www.adafruit.com/product/3609
https://github.com/ARM-software/Cloud-IoT-Core-Kit-Examples/blob/master/readme.md
https://cloud.google.com/iot-core/
https://cloud.google.com/iot-core/
https://cloud.google.com/sdk/docs/
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/1995
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/856
https://www.adafruit.com/product/2767
https://www.adafruit.com/product/239
https://www.adafruit.com/product/169
https://www.adafruit.com/product/245
https://www.adafruit.com/product/1633
https://www.adafruit.com/product/161
https://www.adafruit.com/product/2029

• 1x 8 Channel ADC

• 5x 10K 5% 1/4W Resistor

• 5x 560 ohm 5% 1/4W Resistor

• 1x Diffused 10mm Blue LED

• 1x Electrolytic Capacitor - 1.0uF

• 2x Diffused 10mm Red LED

• 2x Diffused 10mm Green LED

• 2x Diffused 10mm Blue LED

• 2x Breadboard Trim Potentiometer

• 3x 12mm Tactile Switches

Example projects and code are supplied to support the Ar

m-based IoT Kit for Cloud IoT Core (kit including RasPi3)

from Adafruit

Getting Started

If you purchased the kit that includes the Raspberry Pi 3 Model B, this comes with a

pre-formatted NOOBS microSD card. Simply inserting the card into the Pi and

powering up the Pi with the included 5v micro USB power supply will boot the Pi and

with no interaction, it will default to installing the Raspbian Linux distribution. This is

what we want. There are many ways to get a Raspbian and the Pi set up for Google

Cloud IoT Core functionality but this guide will focus on getting Raspbian on your WiFi

network and headless with secure shell running, gcloud tools installed and IoT Core

dependencies for Python installed. These steps will require an HDMI monitor, USB

keyboard and mouse.

Network and firmware updates

Hook up an HDMI monitor, USB keyboard and mouse (plug in an Ethernet cable

if you do not intend to use WiFi) then power up your Pi. Once booted, use the

WiFi menu in the upper right hand corner of the screen (it should appear with

two red 'x's on boot) to connect to the SSID of the wireless network you wish to

use. This assumes your network has a DHCP service running on it. If your

network has corporate security features, please use another guide appropriate

to the type of security required [most require creative use of the wpa_supplicant

command and configuration in /etc].

1.

©Adafruit Industries Page 4 of 15

https://www.adafruit.com/product/856
https://github.com/ARM-software/Cloud-IoT-Core-Kit-Examples
https://www.adafruit.com/product/3609
https://www.adafruit.com/product/3609
https://www.adafruit.com/product/3594
https://www.adafruit.com

2. Use the Raspberry menu to access

Preferences->Raspberry Pi Configuration.

Under the system tab you can change the

hostname to whatever you like and set

Boot to CLI (not Desktop); this is optional.

Under the Interfaces tab enable "ssh" if

you intend to use the Pi without a

keyboard and monitor going forward.

Enable SPI and I2C while you're there.

Under the Localisation tab, set up your

Locale, Time Zone and Keyboard

preferences. A reboot is required after

this. All of these options are also available

with the raspi-config command in a

terminal shell.

©Adafruit Industries Page 5 of 15

https://learn.adafruit.com//assets/47175
https://learn.adafruit.com//assets/47175
https://learn.adafruit.com//assets/47176
https://learn.adafruit.com//assets/47176
https://learn.adafruit.com//assets/47180
https://learn.adafruit.com//assets/47180
https://learn.adafruit.com//assets/47183
https://learn.adafruit.com//assets/47183

3. Once rebooted and connected to a network we can secure shell into our Pi

remotely or use the command line directly to update our Linux distro and Raspberry Pi

3 firmware. The default uersname is "pi", default password is "raspberry ". To get the

Pi's IP, use the command "ifconfig" or nmap your subnet for new ssh services.

However you connect, update your Pi with the following commands and change your

pi's default password with the "passwd" command if you so choose.

Get root access for updates

sudo -s

This step can take a while due to the number of packages installed by default on the

Pi, feel free to uninstall the wolfram-engine, browsers, office applications, etc. at your

discretion before running the updates

apt update && apt upgrade && apt dist-upgrade

Update the pi firmware (most likely requires a reboot after completion)

rpi-update && reboot

note: you can change most boot, bus and, interface options with a curses interface as

well using *sudo raspi-config* i.e. enabling the i2c interface

Enabling Cloud IoT Core AP, installing the Google Cloud

SDK and registering your first device

Before you proceed please ensure you are logged into Google via your browser with

the same userid and password you used with gcloud init on your development

machine.

The Google Cloud SDK can be installed on another host machine or the Pi itself.

These steps will get the gcloud command installed on the Pi but it can just as easily

be done on any machine that you do your development on.

1. Create a Cloud Platform project and enable the Cloud IoT Core API using these "Bef

ore you begin ()" directions.

©Adafruit Industries Page 6 of 15

https://cloud.google.com/iot/docs/how-tos/getting-started
https://cloud.google.com/iot/docs/how-tos/getting-started

2. Install the latest Google Cloud Tools () with the included directions. In Linux some

of the additions require "sudo gcloud" to be used so you'll need to authorize your root

account with sudo in addition to your 'pi' account so instructions from here will

diverge from those included here (). Simply follow the directions below instead if you

are installing gcloud on the Pi rather than another host machine. SSHing into your Pi

(headless) is strongly advised in order facilitate authentication of your accounts with

your normal desktop browser using copy/paste.

sudo gcloud components repositories add https://

storage.googleapis.com/cloud-iot-gcloud/components-json

3. Create shell variables with your specific project name from step 1 as well as region,

registry, device, subscription and event names. Fill in your project ID from step 1, the

rest can remain as is below and used in your .profile or .bashrc. i.e.

project=my-project-name-1234

region=us-central1

registry=example-registry

device=my-rs256-device

device2=my-es256-device

mysub=my-sub

events=events

4. Create a new registry using the gcloud command.

gcloud iot registries create $registry \

--project=$project \

--region=$region \

--pubsub-topic=projects/$project/topics/$events

5. Create a public/private key pair for your device and create a new device in your

project and registry. Or, stretch goal, register one programmatically with [these code

samples](https://cloud.google.com/iot/docs/device_manager_samples).

openssl req -x509 -newkey rsa:2048 -keyout rsa_private.pem -nodes -

out rsa_cert.pem

©Adafruit Industries Page 7 of 15

https://cloud.google.com/sdk/docs/#deb
https://cloud.google.com/iot/docs/device_manager_guide#install_the_gcloud_cli

gcloud iot devices create $device \

--project=$project \

--region=$region \

--registry=$registry \

--public-key path=rsa_cert.pem,type=rs256

openssl ecparam -genkey -name prime256v1 -noout -out ec_private.pem

openssl ec -in ec_private.pem -pubout -out ec_public.pem

gcloud iot devices create $device2 \

--project=$project \

--region=$region \

--registry=$registry \

--public-key path=ec_public.pem,type=es256

6. Create a new pubsub subscription to an event

gcloud pubsub subscriptions create projects/$project/subscriptions/

$mysub --topic=$events

7. Download the CA root certificates from pki.google.com into the same directory as

the example script you want to use:

wget https://pki.google.com/roots.pem

Dependencies

Our initial examples for this kit will focus on Python but it is entirely possible to use

Ruby, Java, C and other languages to work with Google Cloud IoT. Dependencies

include a JSON Web Token and MQTT library as well as a SSL/TLS library like

OpenSSL. You'll need the following to run any of the examples included in this

repository.

sudo -s

apt install build-essential libssl-dev libffi-dev python-dev

pip install pyjwt paho-mqtt cryptography

pip install --upgrade google-api-python-client

pip install --upgrade google-cloud-core

©Adafruit Industries Page 8 of 15

pip install --upgrade google-cloud-pubsub

exit

Hello World - Temperature example

See CPUTemp example's code to verify your device can communicate with your

gcloud project.

CPUTemp Example

This example is the our "Hello World" for our Raspberry Pi 3 setup. This should verify

that you are able to send JWT encoded messages with MQTT to your Google Cloud

project registery topic

On your Pi export or set $project $registry and $device varialbes to your own and run:

pi_cpu_temp_mqtt.py --project_id=$project --registry_id=$registry --device_id=$device --

private_key_file=rsa_private.pem --algorithm=RS256

gcloud command to fetch CPU temperature:

gcloud pubsub subscriptions pull --auto-ack projects/$project/subscriptions/$mysub

Find more samples and documentation at the Google Cloud Platform IoT site.

©Adafruit Industries Page 9 of 15

https://github.com/ARM-software/Cloud-IoT-Core-Kit-Examples/tree/master/CPUTemp
https://cloud.google.com/iot/docs/samples/
https://cloud.google.com/iot/docs/

Useful code

Python driver for BME280 Temp/Pressure/Humidity Sensor

Adafruit Python GPIO library

Servo control with wiringpi

Servo control with Tkinter

Small Pixel Screen (8x8 Backpack) driver

Adafruit MCP3008 ADC Library (Setup Guide)

Adafruit Fritzing Library

Pubsub thermostat example

This example will use the kit's temperature/pressure/humidity sensor to monitor

temperature and control a fan in a complete IoT system with both a server and device

component. The devices in this system (your Cloud IoT Core kit(s) in this case) publish

temperature data on their pubsub registry feeds and individual device IDs. A server

python application, which you can run from any machine you like, consumes the

telemetry data from your Cloud Pub/Sub topic and events. The server then decides

whether to turn on or off the individual devices' fans via a Cloud IoT Core

configuration update.

This example requires i2c to be enabled in order to read the temperature sensor

included with this kit. If you haven't already enabled i2c during your initial setup,

please run

sudo raspi-config

Go to Interfacing Options->I2C and enable.

©Adafruit Industries Page 10 of 15

https://github.com/adafruit/Adafruit_Python_BME280
https://github.com/adafruit/Adafruit_Python_GPIO
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-8-using-a-servo-motor/software
http://razzpisampler.oreilly.com/ch05.html
https://github.com/adafruit/Adafruit_Python_LED_Backpack
https://github.com/adafruit/Adafruit_Python_MCP3008
https://learn.adafruit.com/raspberry-pi-analog-to-digital-converters/mcp3008
https://github.com/adafruit/Fritzing-Library
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/2652

Exit out of raspi-config and run:

sudo i2cdetect -F 1

Connect the RasPi Cobbler board to your breadboard and the 40 pin cable to your Pi

3 as pictured here. The keyed end in the cobbler is obvious, the white striped end of

the cable and 90° angle of the cable coming off the RasPi (which is not keyed) are

useful visual queues. Connect the Temp/Pressure/Humidity Sensor to the breadboard

and connect the 3.3v and ground pins to the cobbler. Then connnect the i2c clock

and data pins:

©Adafruit Industries Page 11 of 15

https://cdn-shop.adafruit.com/970x728/2029-01.jpg

On the Pi Cobbler SDA is data pin and SCL is clock pin. On the BME280 sensor SDI is

the data pin and SCK is the clock pin.

Verify i2c is enabled.

sudo i2cdetect -y 1

Will display a grid showing what address any devices are using on the i2C bus.

You can dump more information about any of the addresses shown with:

sudo i2cdump -y 1 0x77 <--- hex number shown from previous command

Install the AdafruitPythonGPIO and AdafruitPythonBME280 abstraction librabies

©Adafruit Industries Page 12 of 15

https://cdn-learn.adafruit.com/assets/assets/000/046/724/medium800/temperature_end-to-end-thermo.png
https://cdn-learn.adafruit.com/assets/assets/000/046/724/medium800/temperature_end-to-end-thermo.png

sudo apt-get install build-essential python-pip python-dev python-smbus git

cd ~ && mkdir dev

cd dev

git clone https://github.com/adafruit/Adafruit_Python_GPIO.git

cd Adafruit_Python_GPIO

sudo python setup.py install

cd ..

git clone https://github.com/adafruit/Adafruit_Python_BME280.git

cd Adafruit_Python_BME280

sudo python setup.py install

If you wish to sanity check your i2c wiring and sensor further:

python Adafruit_BME280_Example.py

Now connect an LED to GIPO 21 and one of the GND pins with a resistor in series on

your breadboard. i.e Pin 21 on your Cobbler -> the long pin of the blue LED -> resistor

-> GND rail or pin row:

The included 560 Ohm and 10K Ohm resistors will both protect the circuit, the latter

make the LED dim. You can sanity check your wiring with python using the following

commands one by one:

©Adafruit Industries Page 13 of 15

python

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(21, GPIO.OUT)

GPIO.output(21, GPIO.HIGH)

GPIO.output(21, GPIO.LOW)

quit()

Using "GPIO.output(21, GPIO.HIGH)" and "GPIO.output(21, GPIO.LOW)" should toggle

your LED on an off. Or sanity check from bash using "gpio -g blink 21"

You'll also need the Python pub/sub library and APIs

sudo pip install --upgrade google-cloud-pubsub

sudo pip install google-api-python-client google-auth-httplib2 google-auth google-

cloud

Create an API key and service account named api-tester and make a

service_account.json file (steps 1 and 2 in the link) and put it in this example's

directory (scp or rsync over ssh are easy ways to move files to your ssh connected Pi

if you've downloaded the json file on a host machine).

Make sure you're authenticated. If you haven't already associated a gcloud project_id

with this project, you'll be asked to do so. Use the project you created in the top level

readme of this code base.

gcloud auth application-default login

Change to the directory you've cloned this example to. i.e. "cd ~/Cloud-IoT-Core-Kit-

Examples/pubsub-thermostat"

Our control server can run on any host machine, including the RasPi. The "--fanoff"

and "--fanon" arguments are the integer temperatures in °C that will turn on the "fan"

LED i.e. when a devices is over 23°C and when it will turn the fan back off i.e. when a

device is under 22°C. See optional argument options like "--serviceaccountjson=direct

ory/location" in the code.

python control_server.py \

 --project_id=$project \

 --pubsub_topic=$events \

 --pubsub_subscription=$mysub \

 --api_key=$apiKey \

©Adafruit Industries Page 14 of 15

https://cloud.google.com/iot/docs/device_manager_samples

 --fan_off=22 \

 --fan_on=23

The client will run on one or many RasPi Cloud IoT kits with unique device ids:

python pubsub_thermostat.py \

 --project_id=$project \

 --registry_id=$registry \

 --device_id=$device \

 --private_key_file=rsa_private.pem \

 --algorithm=RS256

©Adafruit Industries Page 15 of 15

	Arm-based IoT Kit for Cloud IoT Core - Getting Started
	Table of Contents
	Arm-based IoT Kit for Cloud IoT Core
	Pubsub thermostat example

	Arm-based IoT Kit for Cloud IoT Core
	Example projects and code on GitHub are supplied to support the Arm-based IoT Kit for Cloud IoT Core.
	This getting started guide assumes you have enabled Google Cloud IoT Core in your GCP concole. It will step you through setting up the gcloud SDK tools, getting your Raspberry Pi 3 connected to the internet and securely registered as a device with a Google Cloud project.
	Parts included in kit:
	Example projects and code are supplied to support the Arm-based IoT Kit for Cloud IoT Core (kit including RasPi3) from Adafruit

	Getting Started
	Network and firmware updates
	Enabling Cloud IoT Core AP, installing the Google Cloud SDK and registering your first device
	Dependencies
	Hello World - Temperature example
	CPUTemp Example
	Useful code

	Pubsub thermostat example

