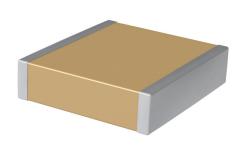
High Voltage, U2J Dielectric, 2,000 VDC (Commercial & Automotive Grade)



Overview

KEMET's Class I U2J High Voltage series is designed to meet the growing demand for high AC current resonant applications such as LLC resonant converters and wireless power transfer circuits in electric vehicles. By utilizing KEMET's proprietary U2J dielectric, this series provides designers with a surface mount solution with extremely low ESR and ESL with very high AC current capability. This leads to minimal i²R heating losses which equates to higher efficiency power conversion.

U2J is not sensitive to capacitance loss with DC Bias as compared to Class II dielectric materials and retains over 99% of nominal capacitance at full rated voltage. KEMET automotive grade capacitors meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements. Capacitance change is limited to -750 ±120 ppm/°C from -55°C to +125°C. These devices are lead (Pb)-free, RoHS and REACH compliant without exception and are capable of withstanding multiple passes through a lead (Pb)-free solder reflow profile.

Benefits

- AEC-Q200 automotive qualified
- Very High ripple current capability
- Extremely low effective series resistance (ESR)
- Extremely low effective series inductance (ESL)
- · Retains over 99% of nominal capacitance at full rated voltage
- Small predictable and linear capacitance change with respect to temperature < -750 ±120 ppm/°C
- Operating temperature range of -55°C to +125°C
- · Lead (Pb)-free, RoHS, and REACH Compliant

Applications

- · Wide bandgap (WBG), silicon carbide (SiC) and gallium nitride (GaN) systems
- EV/HEV (drive systems, charging)
- Wireless charging
- · Power converters
- Inverters
- · LLC resonant converters

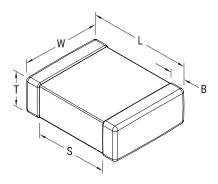
C1122_U2J_HV • 08/22/2022

Ordering Information

С	3640	С	153	J	G	J	Α	С	TU
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance ¹	Rated Voltage (VDC)	Dielectric	Failure Rate/ Design	Termination Finish	Packaging/ Grade (C-Spec)
С	3640	C = Standard	Two significant digits and number of zeros.	F = ±1% G = ±2% J = ±5% K = ±10% M = ±20%	G = 2,000 V	J = U2J	A = N/A	C = 100% Matte Sn	See "Packaging C-Spec Ordering Options Table"

¹ Additional capacitance tolerance offerings may be available. Contact KEMET for details.

Packaging C-Spec Ordering Options Table


Packaging Type ¹	Packaging/Grade Ordering Code (C-Spec)			
Comme	rcial Grade			
7" Reel/Unmarked	TU			
13" Reel/Unmarked	7210			
Automo	tive Grade ¹			
7" Reel	AUT0			
13" Reel/Unmarked	AUT07210			

¹ For additional information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information."

All Automotive packaging C-Specs listed exclude the option to laser mark components. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking".

Dimensions - Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
3640	9210	9.10 (0.358) ±0.40 (0.016)	10.20 (0.402) ±0.40 (0.016)	See Table 2 for thickness	1.27 (0.050) ±0.40 (0.016)	N/A	Solder Reflow Only

Qualification/Certification

Commercial grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance and Reliability.

Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.

Environmental Compliance

Lead (Pb)-free, RoHS, and REACH compliant without exemptions.

Automotive C-Spec Information

KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO." This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below.)

Product Change Notification (PCN)

The KEMET product change notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- · Changes in manufacturing site
- Product obsolescence

KEMET Automotive	Customer Notifica	tion Due To:	Days Prior To	
C-Spec	Process/Product change Obsolescence		Implementation	
KEMET assigned ¹	Yes (with approval and sign off)	Yes	180 days minimum	
AUT0	Yes (without approval)	Yes	90 days minimum	

¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

Production Part Approval Process (PPAP)

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design records and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part.

KEMET Automotive	1	PPAP (Product	Part Approval	Process) Leve	
C-Spec	1	2	3	4	5
KEMET assigned ¹	•	•	•	•	•
AUTO			0		

¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

- Part number specific PPAP available
- Product family PPAP only

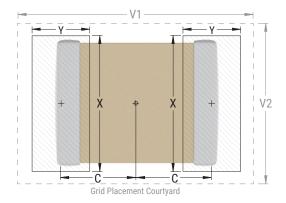
Table 1 - Capacitance Range/Selection Waterfall

		Case Size/ Series	C3640	
Capacitance	Cap Code	Voltage Code	G	
	Code	Rated Voltage (VDC)	2,000	
			Product Availability and Chip Thickness Codes See Table 2 for Chip Thickness Dimensions	
15,000 pF	153	F G J K M	МС	
		Rated Voltage (VDC)	2,000	
Capacitance	Cap Code	Voltage Code	G	
	2340	Case Size/ Series	C3640	

These products are protected under US Patent 7,172,985 & 7,670,981, other patents pending, and any foreign counterparts.

Table 2 - Chip Thickness/Tape & Reel Packaging Quantities

Thickness	Case	Thickness ±	Paper C	uantity	Plastic Quantity		
Code	Size ¹	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel	
MC	3640	2.50 ± 0.20	0 0		250	1,000	
Thickness	Case	Thickness ±	Thickness ± 7" Reel 13" Reel		7" Reel	13" Reel	
Code	Size ¹ Range (mm)		Paper C	uantity	Plastic (Quantity	


Table 3 - Chip Capacitor Land Pattern Design Recommendations per IPC-7351

EIA Size Code	Metric Size	Maximum (Most)				Density Level B: Median (Nominal) Land Protrusion (mm)				Density Level C: Minimum (Least) Land Protrusion (mm)						
Oouc	Oouc	С	Y	X	V1	V2	С	Y	X	V1	V2	С	Υ	X	V 1	V2
3640	9210	4.45	1.70	10.70	11.60	11.70	4.35	1.50	10.60	10.70	11.10	4.25	1.30	10.50	10.00	10.80

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

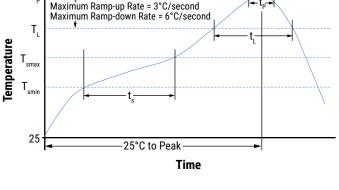
Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations, the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.

Soldering Process

Recommended Soldering Technique:

· Solder reflow only


Recommended Reflow Soldering Profile:

The KEMET families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

 T_{p}

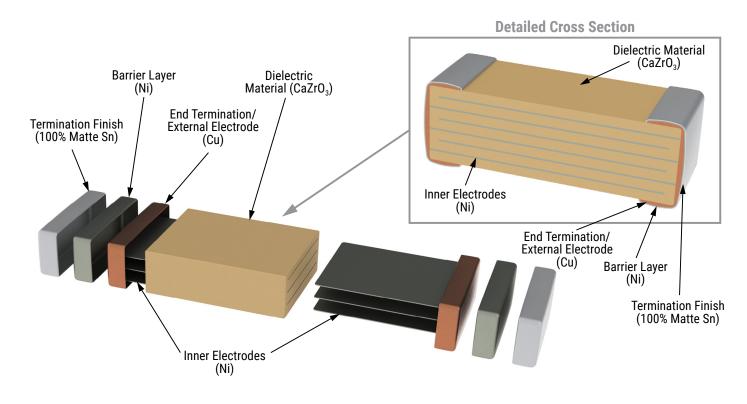
Profile Feature	Terminat	ion Finish
1 Tome Teature	SnPb	100% Matte Sn
Preheat/Soak		
Temperature Minimum (T _{Smin})	100°C	150°C
Temperature Maximum (T _{Smax})	150°C	200°C
Time (t_s) from T_{smin} to T_{smax}	60 - 120 seconds	60 – 120 seconds
Ramp-Up Rate $(T_L \text{ to } T_P)$	3°C/second maximum	3°C/second maximum
Liquidous Temperature (T _L)	183°C	217°C
Time Above Liquidous (t _L)	60 - 150 seconds	60 - 150 seconds
Peak Temperature (T _P)	235°C	260°C
Time Within 5°C of Maximum Peak Temperature (t _P)	20 seconds maximum	30 seconds maximum
Ramp-Down Rate (T _P to T _L)	6°C/second maximum	6°C/second maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum

Note: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.

Table 4 - Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test Condition	Limits		
Visual & Mechanical	KEMET Internal	No defects that may affect performance (10X)	Dimensions according KEMET Spec Sheet		
Capacitance (Cap)	KEMET Internal	C ≤ 1,000 pF Frequency: 1 MHz ±100 kHz Voltage*:1.0 V $_{rms}$ ±0.2 V C > 1,000 pF Frequency: 1 kHz ±50 Hz Voltage: 1.0 V $_{rms}$ ±0.2 V * See part number specification sheet for voltage	Within Tolerance		
Dissipation Factor (DF)	KEMET Internal	C ≤ 1,000 pF Frequency: 1 MHz \pm 100 kHz Voltage*:1.0 V $_{rms}$ \pm 0.2 V C > 1,000 pF Frequency: 1 kHz \pm 50 Hz Voltage: 1.0 V $_{rms}$ \pm 0.2 V * See part number specification sheet for voltage	Within Specification Dissipation factor (DF) maximum limit at 25°C = 0.1%		
Insulation Resistance (IR)	KEMET Internal	Rated voltage applied for 120 ±5 seconds at 25°C	Within Specification To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits: 1,000 megohm microfarads or 100 $G\Omega$.		
Temperature Coefficient of Capacitance (TCC)	KEMET Internal	Capacitance change with reference to +25°C and 0 VDC applied. * See part number specification sheet for voltage Step Temperature (°C) 1 +25°C 2 -55°C 3 +25°C (Reference) 4 +125°C	Within Specification: -750 ±120 ppm/°C		
Dielectric Withstanding Voltage (DWV)	KEMET Internal	120% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit Withstand test voltage without insulation breakdown or damage.		
Aging Rate (Maximum % Capacitance Loss/Decade Hour)	KEMET Internal	Maximum % capacitance loss/decade hour	0.1% Loss/Decade Hour		
Terminal Strength	KEMET Internal	Shear stress test per specific case size, Time: 60±1 seconds Case Size Force 3640 18N	No evidence of mechanical damage		

Table 4 - Performance & Reliability: Test Methods and Conditions cont.


Stress	Reference	Test Condition	Limits
Board Flex	AEC-Q200-005	3.0 mm minimum Test Time: 60 ±5 seconds Ramp Time: 1 mm/second	No evidence of mechanical damage
Solderability	J-STD-002	Condition: 4 hours ±15 minutes at 155°C dry bake apply all methods Test 245 ±5°C (SnPb & Pb-Free)	Visual Inspection. 95% coverage on termination. No leaching
Temperature Cycling	JESD22 Method JA-104	1,000 cycles (-55°C to +125°C) 2 - 3 cycles per hour Soak Time: 1 or 5 minutes	Measurement at 24 hours ±4 hours after test conclusion. Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Biased Humidity	MIL-STD-202 Method 103	Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V.	Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift IR: 10% of Initial Limit DF Limits Maximum: 0.5%
High Temperature Life	MIL-STD-202	1,000 hours at 125°C with 2 X rated voltage applied	Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift
Storage Life	Method 108	1,000 hours at 125°C, Unpowered	IR: 10% of Initial Limit DF: 0.5%
Vibration	MIL-STD-202 Method 204	5 g's for 20 minutes, 12 cycles each of 3 orientations. Test from 10 – 2,000 Hz	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Mechanical Shock	MIL-STD-202 Method 213	1,500 g's 0.5 ms Half-sine, Velocity Change 15.4 ft/second (Condition F)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Resistance to Solvents	MIL-STD-202 Method 215	Add Aqueous wash chemical OKEMCLEAN (A 6% concentrated Oakite cleaner) or equivalent. Do not use banned solvents	Readable marking, no discoloration or stains. No physical damage.

Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction

Capacitor Marking (Optional)

Laser marking option is not available on:

- · COG, U2J, Ultra Stable X8R, and Y5V dielectric devices
- · EIA 0402 case size devices
- EIA 0603 case size devices with flexible termination option
- · KPS commercial and automotive grade stacked devices

These capacitors are supplied unmarked only.

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

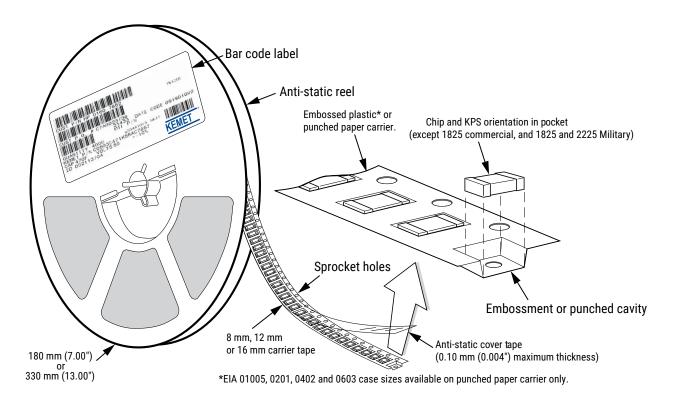


Table 5 - Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

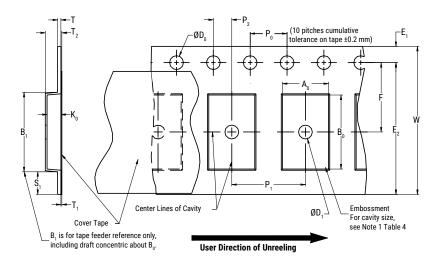
	Tape	Embosse	ed Plastic	Punched Paper		
EIA Case Size	Size	7" Reel	13" Reel	7" Reel	13" Reel	
	(W)*	Pitch	(P ₁)*	Pitch	(P ₁)*	
01005 - 0402	8			2	2	
0603	8			2/4	2/4 -	
0805	8	4	4	4	4	
1206 - 1210	8	4	4	4	4	
1805 - 1808	12	4	4			
≥ 1812	12	8	8			
KPS 1210	12	8	8			
KPS 1812 and 2220	16	12	12			
Array 0612	8	4	4			

^{*}Refer to Figures 1 and 2 for W and P_1 carrier tape reference locations.

New 2 mm Pitch Reel Uptions	•
-----------------------------	---

	Packaging Ordering Code (C-Spec)	Packaging Type/Options				
•	C-3190	Automotive grade 7" reel unmarked				
	C-3191	Automotive grade 13" reel unmarked				
	C-7081	Commercial grade 7" reel unmarked				
	C-7082	Commercial grade 13" reel unmarked				

^{* 2} mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.

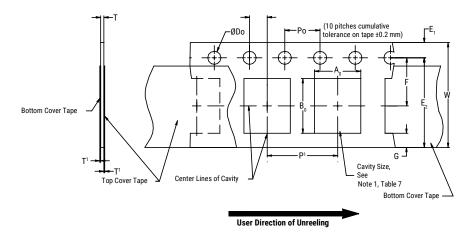

Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- · Lower placement costs.
- Double the parts on each reel results in fewer reel changes and increased efficiency.
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste.

^{*}Refer to Tables 6 and 7 for tolerance specifications.

Figure 1 - Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions


Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.0 (0.039)			2.0 ±0.05 (0.079 ±0.002)	25.0 (0.984)	0.600 (0.024)		
12 mm			1.75 ±0.10 (0.069 ±0.004) (0	4.0 ±0.10 (0.157 ±0.004)		30 (1.181)		0.600 (0.024)	0.100 (0.004)
16 mm									
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	B ₁ Maximum Note 4	${\sf E_2^{}}$ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) and double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Note 5	
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6.)
- 3. If S₁ < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)
- 4. B_1 dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_{α} , B_{α} and K_{α} shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape
 - (e) for KPS product, A_0 and B_0 are measured on a plane 0.3 mm above the bottom of the pocket.
 - (f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 - Punched (Paper) Carrier Tape Dimensions

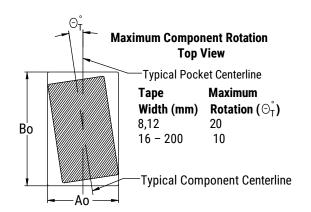
Table 7 - Punched (Paper) Carrier Tape Dimensions

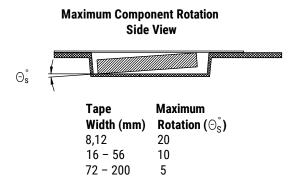
Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D _o	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2		
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) maximum	0.75 (0.030)	25 (0.984)		
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	$A_0^{}B_0^{}$		
8 mm	Half (2 mm)	6.25	6.25 (0.246) 3.5 ±0.05 (0.138 ±0.002)	2.0 ±0.05 (0.079 ±0.002)	1.1 (0.098)	8.3 (0.327)	Note 1		
8 mm	Single (4 mm)	(0.246)		4.0 ±0.10 (0.157 ±0.004)		8.3 (0.327)	Note 1		

- 1. The cavity defined by A_{n} , B_{n} and T shall surround the component with sufficient clearance that:
 - a) the component does not protrude beyond either surface of the carrier tape.
 - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been
 - c) rotation of the component is limited to 20° maximum (see Figure 3.)
 - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)
 - e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6.)

Packaging Information Performance Notes


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:


Tape Width	Peel Strength			
8 mm	0.1 to 1.0 Newton (10 to 100 gf)			
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)			
24 mm	0.1 to 1.6 Newton (10 to 160 gf)			

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA Standards 556 and 624.

Figure 3 – Maximum Component Rotation

Figure 4 - Maximum Lateral Movement

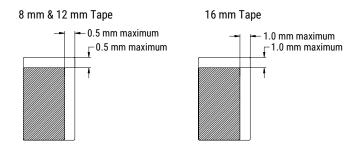


Figure 5 - Bending Radius

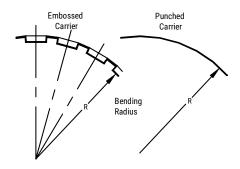
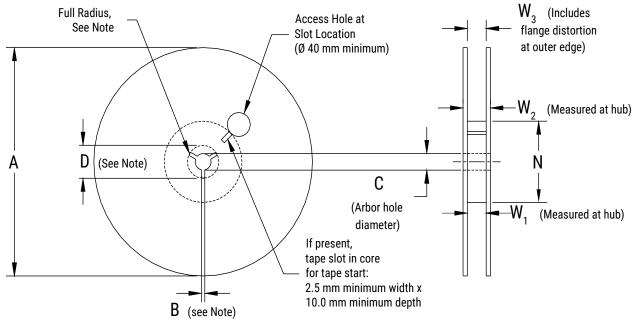
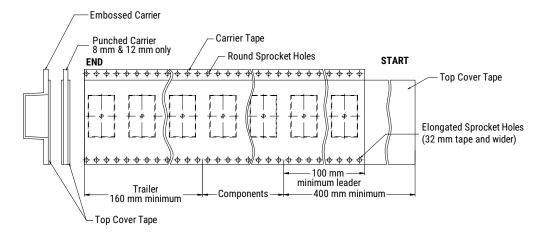



Figure 6 - Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 8 - Reel Dimensions

Metric will govern

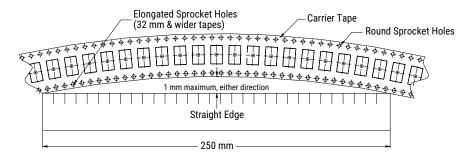

Constant Dimensions — Millimeters (Inches)							
Tape Size	A	B Minimum	С	D Minimum			
8 mm	178 ±0.20						
12 mm	(7.008 ±0.008) or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)			
16 mm	330 ±0.20 (13.000 ±0.008)	(* **)	((3 2 3)			
	Variable	Dimensions — Millimeter	rs (Inches)				
Tape Size N Minimum		W_1	W ₂ Maximum	W_3			
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)				
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference			
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)				

Figure 7 - Tape Leader & Trailer Dimensions

Figure 8 - Maximum Camber

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute - and KEMET specifically disclaims - any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.