Pro**Labs**

ONS-C2-WDM-DE-1HL-C

Cisco[®] ONS-C2-WDM-DE-1HL Compatible TAA 200GBase-DWDM CFP2 Transceiver (SMF, 1528.77nm to 1568.36nm, 80km, LC)

Features:

- CFP Multi-Source Agreement Compliant
- Hot pluggable CFP2 footprint
- Supports CAUI-4 for 100GE and CEI-28G-VSR for OTU4 Host Interface
- Proprietary Internal Soft-Decision Forward Error Correction (SD-FEC)
- Single-mode Fiber
- Tunable C-band Transmitter
- Tunable Optical Filter (TOF)
- Coherent Receiver
- Single-mode Fibre
- Operating temperature range 0C to 70C
- Power Consumption < 19W

Applications:

- 200GBase Ethernet
- Access and Enterprise

Product Description

This Cisco[®] ONS-C2-WDM-DE-1HL compatible CFP2 transceiver provides 200GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1528.77nm to 1568.36nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Cisco[®], as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 051623

Absolute Maximum Ratings

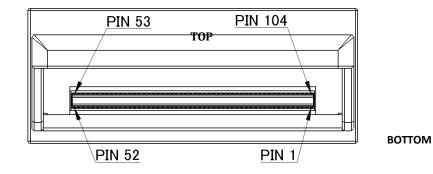
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Ts	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity (non-condensing)	RH			85	%	
Supported Hest Signal Tupos			103.125		Gbps	1
Supported Host Signal Types			111.81		Gbps	2

Note:

- 1. 100GE as per IEEE 802.3ba. The line format can be selected as OTU4 (G.709 HD-FEC) or with SD-FEC (proprietary)
- 2. OTU4 as per ITU-T G.709. The line format can be selected as OTU4 (transparent) or with S-DFEC (proprietary)

Electrical Characteristics

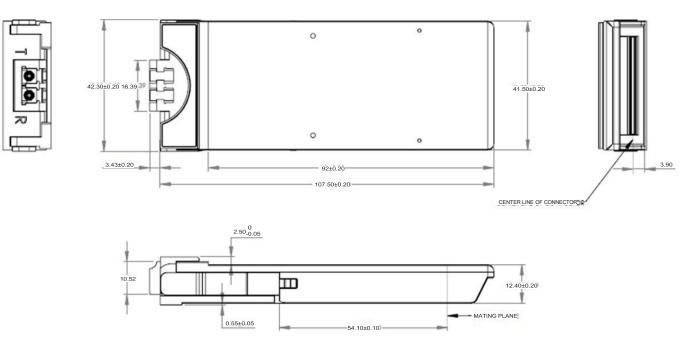
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.2	3.3	3.4	V	
Power Supply Current	lcc			6	А	
Power Dissipation	PD			19	W	


Optical Characteristics

Parameter	Min.	Тур.	Max.	Unit	Notes
Transmitter					
Average Output Power	-15		1	dBm	1, 2
Output Power Accuracy and Stability	-1		1	dB	2, 3
Centre Wavelength Range	1528.77		1567.54	nm	
Frequency Grid Setting		50		GHz	4
Centre Wavelength	λΤ -15	λτ	λΤ +15	pm	4
Receiver					
Receiver Operating Wavelength	1528.77		1567.54	nm	
Receiver Input Power Range	-18		0	dBm	5
Receiver Sensitivity			-25	dBm	6
		11.5		dB/0.1nm	7,8
OSNR Tolerance		17		dB/0.1nm	7,9
		20		dB/0.1nm	7, 10
			40	ns/nm	8
Chromatic Dispersion Tolerance			20	ns/nm	9, 10

Notes:

- 1. The output power is settable in steps of 0.1 dB within the specified wavelength range
- 2. Output power coupled into a $9/125 \,\mu m$ single mode fibre
- 3. Difference between the set value and actual value
- 4. Per ITU-T G.694.1 grid definition
- 5. An input power in this range guarantees optimum OSNR performance
- 6. Minimum input power needed to achieve post-FEC BER \leq 10⁻¹⁵ (OSNR > 35dB, SD-FEC enabled)
- 7. Post-FEC BER $\leq 10^{-15}$, SD-FEC enabled
- 8. 100G QPSK, post-FEC BER $\leq 10^{-15}$, SD-FEC enabled
- 9. 200G 8QAM, post-FEC BER < 10⁻¹⁵, SD-FEC enabled
- 10. 200G 16QAM, post-FEC BER \leq 10⁻¹⁵, SD-FEC enabled


Electrical Pad Layout

Pir	Descriptions								
Pin	Symbol	I/O	Description	Logic	Pin	Symbol	I/O	Description	Logic
1	GND		Ground		53	GND		Ground	
2	OHIO_RDn	0	Overhead extraction		54	RX7p	0	Ch7 25Gbps Receive Output	CML
3	OHIO_RDp				55	RX7n			
4	GND		Ground		56	GND		Ground	
5	OHIO_TDn	I	Overhead insertion		57	RX0p	0	Ch0 25Gbps Receive Output	CML
6	OHIO_TDp				58	RX0n			
7	3.3V_GND		Ground		59	GND		Ground	
8	3.3V_GND				60	RX1p	0	Ch1 25Gbps Receive Output	CML
9	3.3V				61	RX1n			
10	3.3V		3.3V Power Supply		62	GND		Ground	
11	3.3V				63	RX6p	0	Ch6 25Gbps Receive Output	CML
12	3.3V				64	RX6n			
13	3.3V_GND		Ground		65	GND		Ground	
14	3.3V_GND				66	RX5p	0	Ch5 25Gbps Receive Output	CML
15	VND_IO_A		Do not connect		67	RX5n			
16	VND_IO_B				68	GND		Ground	
17	PRG_CNTL1		Programmable Control 1	LVCMOS w/ PUR	69	RX2p	0	Ch2 25Gbps Receive Output	CML
18	PRG_CNTL2		Programmable Control 2		70	RX2n			I
19	PRG_CNTL3		Programmable Control 3		71	GND		Ground	
20	PRG_ALRM1		Programmable Alarm 1		72	RX3p	0	Ch3 25Gbps Receive Output	CML
21	PRG_ALRM2	0	Programmable Alarm 2	LVCMOS	73	RX3n			
22	PRG_ALRM3		Programmable Alarm 3		74	GND		Ground	
23	GND		Ground		75	RX4p			
24	TX_DIS	Т	Transmitter Disable	LVCMOS w/ PUR	76	RX4n	0	Ch4 25Gbps Receive Output	CML
25	RX_LOS	0	Loss of Optical Input Signal	LVCMOS	77	GND		Ground	
26	MOD_LOPWR	1	Module Low Power Mode	LVCMOS w/ PUR	78	REFCLKp			
27	MOD_ABS	0	Module Absent Indicator	GND	79	REFCLKn	1	Not Used	
28	MOD_RSTn	1	Module Reset	LVCMOS w/ PDR	80	GND		Ground	
29	GLB_ALRMn	0	Global Alarm	LVCMOS (open drain)	81	ТХ7р	I	Ch7 25Gbps Transmit Input	CML
30	GND		Ground		82	TX7n	1		
31	MDC	I	Management Data Clock	1.2V CMOS	83	GND		Ground	
32	MDIO	I/O	Management bi-dir. Data	1.2V CMOS	84	ТХ0р			
33	PRTADRO		MDIO Physical Port addr. bit0	1.2V CMOS	85	TX0n	- 1	Ch0 25Gbps Transmit Input	CML
34	PRTADR1	1	MDIO Physical Port addr. bit1		86	GND		Ground	
35	PRTADR2		MDIO Physical Port addr. bit2		87	TX1p	1	Ch1 25Gbps Transmit Input	CML

36	VND_IO_C		_	88	TX1n]		
37	VND_IO_D		Do not connect	89	GND		Ground	
38	VND_IO_E			90	ТХ6р	I	Ch6 25Gbps Transmit Input	CML
39	3.3V_GND		Ground	91	TX6n			
40	3.3V_GND		Ground	92	GND		Ground	
41	3.3V			93	ТХ5р	I	Ch5 25Gbps Transmit Input	CML
42	3.3V		3.3V Power Supply	94	TX5n			
43	3.3V			95	GND		Ground	
44	3.3V			96	ТХ2р	I	Ch2 25Gbps Transmit Input	CML
45	3.3V_GND		Ground	97	TX2n			
46	3.3V_GND			98	GND		Ground	
47	OHIO_REFCLKn	Ι	Overhead I/O Reference Clock	99	ТХ3р	I	Ch3 25Gbps Transmit Input	CML
48	OHIO_REFCLKp			100	TX3n			
49	GND		Ground	101	GND		Ground	
50	RX_MCLKn		Not for normal use	102	ТХ4р	I	Ch4 25Gbps Transmit Input	CML
51	RX_MCLKp			103	TX4n	1		
52	GND		Ground	104	GND		Ground	

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600