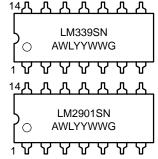
Single Supply Quad Comparators

These comparators are designed for use in level detection, low-level sensing and memory applications in consumer and industrial electronic applications.

Features

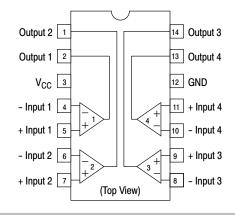
- Single or Split Supply Operation
- Low Input Bias Current: 25 nA (Typ)
- Low Input Offset Current: ±5.0 nA (Typ)
- Low Input Offset Voltage
- Input Common Mode Voltage Range to GND
- Low Output Saturation Voltage: 130 mV (Typ) @ 4.0 mA
- TTL and CMOS Compatible
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

CASE 646


LMxxxx = Specific Device Code

A = Assembly Location

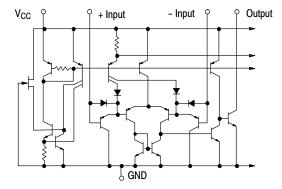
WL = Wafer Lot Y, YY = Year

WW = Work Week
G = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.


MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC}	+36 or ±18	Vdc
Input Differential Voltage Range		V_{IDR}	36	Vdc
Input Common Mode Voltage Range		V _{ICMR}	−0.3 to V _{CC}	Vdc
Output Short Circuit to Ground (Note 1)		I _{sc}	Continuous	
Power Dissipation @ T _A = 25°C	Plastic Package Derate above 25°C	P _D 1/R _{θJA}	1.0 8.0	W mW/°C
Junction Temperature		TJ	150	°C
Operating Ambient Temperature Range	LM2901S LM339S	T _A	-40 to +105 0 to +70	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}. Output short circuits to V_{CC} can cause excessive

heating and eventual destruction.

NOTE: Diagram shown is for 1 comparator.

Figure 1. Circuit Schematic

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$, unless otherwise noted)

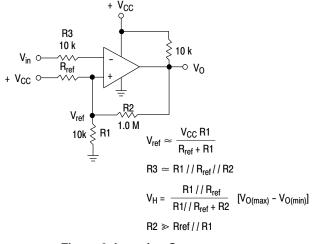
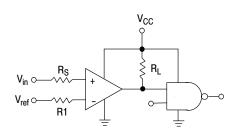
			LM339S		L	M2901	3	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 2)	V _{IO}	-	±2.0	±5.0	_	±2.0	±7.0	mVdc
Input Bias Current (Notes 2, 3) (Output in Analog Range)	I _{IB}	-	25	250	-	25	250	nA
Input Offset Current (Note 2)	I _{IO}	_	±5.0	±50	_	±5.0	±50	nA
Input Common Mode Voltage Range	V _{ICMR}	0	-	V _{CC} -1.5	0	-	V _{CC} -1.5	V
Supply Current	Icc							mA
$R_L = \infty$ (For All Comparators)		-	0.8	2.0	_	0.8	2.0	
$R_L = \infty$, $V_{CC} = 30 \text{ Vdc}$		-	1.0	2.5	_	1.0	2.5	
Voltage Gain $R_L \geq 15 \; k\Omega, \; V_{CC} = 15 \; Vdc$	A _{VOL}	50	200	-	25	100	-	V/mV
Large Signal Response Time $V_{I} = TTL \ Logic \ Swing, \ V_{ref} = 1.4 \ Vdc, \ V_{RL} = 5.0 \ Vdc, \\ R_{L} = 5.1 \ k\Omega$	-	_	200	-	_	200	-	ns
Response Time (Note 4) $V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega$	-	_	1.0	-	-	1.0	-	μs
Output Sink Current $V_{I}(-) \ge +1.0 \text{ Vdc}, V_{I}(+) = 0, V_{O} \le 1.5 \text{ Vdc}$	I _{Sink}	6.0	16	-	6.0	16	-	mA
Saturation Voltage $V_I(-) \ge +1.0 \text{ Vdc}, V_I(+) = 0, I_{sink} \le 4.0 \text{ mA}$	V _{sat}	_	130	400	-	130	400	mV
Output Leakage Current $V_I(+) \ge +1.0 \text{ Vdc}, V_I(-) = 0, V_O = +5.0 \text{ Vdc}$	I _{OL}	_	0.1	_	_	0.1	-	nA

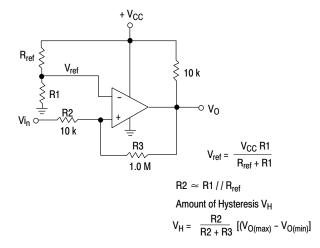
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. At the output switch point, V_O ≈ 1.4 Vdc, R_S ≤ 100 Ω 5.0 Vdc ≤ V_{CC} ≤ 30 Vdc, with the inputs over the full common mode range (0 Vdc to V_{CC} −1.5 Vdc).
3. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.
4. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.

PERFORMANCE CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $T_A = T_{low} \text{ to } T_{high} \text{ (Note 5))}$

		LM339S		LM2901S				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 6)	V _{IO}	_	-	±9.0	_	_	±15	mVdc
Input Bias Current (Notes 6, 7) (Output in Analog Range)	I _{IB}	-	-	400	-	-	500	nA
Input Offset Current (Note 6)	I _{IO}	-	-	±150	-	_	±200	nA
Input Common Mode Voltage Range	V _{ICMR}	0	-	V _{CC} –2.0	0	_	V _{CC} -2.0	V
Saturation Voltage $V_I(-) \ge +1.0 \text{ Vdc}, V_I(+) = 0, I_{sink} \le 4.0 \text{ mA}$	V _{sat}	-	-	700	-	-	700	mV
Output Leakage Current $V_I(+) \ge +1.0 \text{ Vdc}, V_I(-) = 0, V_O = 30 \text{ Vdc}$	l _{OL}	-	1	1.0	ı	-	1.0	μΑ
Differential Input Voltage All V _I ≥ 0 Vdc	V _{ID}	_	_	V _{CC}	_	_	V _{CC}	Vdc

- (LM339S) $T_{low} = 0^{\circ}C$, $T_{high} = +70^{\circ}C$ (LM2901S) $T_{low} = -40^{\circ}C$, $T_{high} = +105^{\circ}C$ At the output switch plant, $V_{O} \simeq 1.4$ Vdc, $R_{S} \le 100~\Omega$ 5.0 Vdc $\le V_{CC} \le 30$ Vdc, with the inputs over the full common mode range (2) Vdc $\le V_{CC} \le 30$ Vdc, with the inputs over the full common mode range (0 Vdc to \dot{V}_{CC} –1.5 \dot{V} dc).
- 7. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.

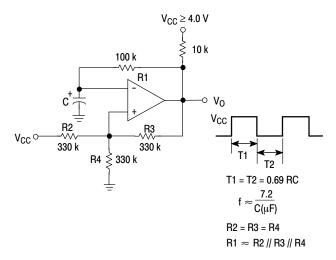

Figure 2. Inverting Comparator with Hysteresis

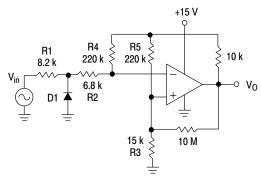
R_S = Source Resistance $R1 \simeq R_S$

Logic	Device	V _{CC} (V)	R _L kΩ
CMOS	1/4 MC14001	+15	100
TTL	1/4 MC7400	+5.0	10

Figure 4. Driving Logic

Figure 3. Noninverting Comparator with Hysteresis



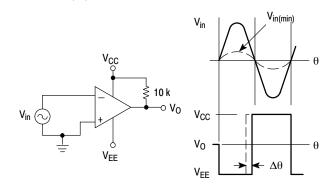

Figure 5. Squarewave Oscillator

APPLICATIONS INFORMATION

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation input resistors < 10 k Ω should be used. The

addition of positive feedback (< 10 mV) is also recommended. It is good design practice to ground all unused input pins.

Differential input voltages may be larger than supply voltages without damaging the comparator's inputs. Voltages more negative than -300 mV should not be used.



D1 prevents input from going negative by more than 0.6 V.

$$R1 + R2 = R3$$

 $R3 \le \frac{R5}{10}$ for small error in zero crossing

Figure 6. Zero Crossing Detector (Single Supply)

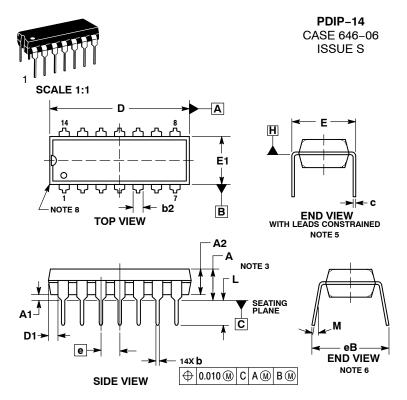

 $V_{in(min)} \approx 0.4 \text{ V peak for 1\% phase distortion } (\Delta\theta).$

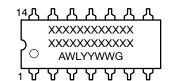
Figure 7. Zero Crossing Detector (Split Supplies)

ORDERING INFORMATION

Device	Package	Shipping [†]
LM339SNG	PDIP-14 (Pb-Free)	25 Units / Rail
LM2901SNG	PDIP-14 (Pb-Free)	25 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 22 APR 2015


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
- NOT TO EXCEED 0.10 INCH.
 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.

 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
- CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52	TYP
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54	BSC
eB		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document R- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP-14	•	PAGE 1 OF 2		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP-14 CASE 646-06 ISSUE S

DATE 22 APR 2015

STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN
STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE	STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE	STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE 14. ANODE/CATHODE

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP-14		PAGE 2 OF 2		

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative