

Description


The VS-702 is a SAW Based Voltage Controlled Oscillator that achieves low phase noise and very low jitter performance. The VS-702 is housed in an industry standard hermetically sealed LCC package and available in tape and reel.

Features

- Industry Standard Package, 5.0 x 7.5 x 2.0 mm
- ASIC Technology for Ultra Low Jitter
 0.100 ps-rms typical across 12 kHz to 20 MHz BW
 0.120 ps-rms typical across 50 kHz to 80 MHz BW
- Output Frequencies from 150 MHz to 1 GHz
- 3.3 V Operation
- LV-PECL or LVDS Configuration with Fast Transition Times
- Improved Temperature Stability over Standard VCSO (±20 ppm)
- Output Disable Feature
- 0/70°C or -40/85°C operating temperature
- Product is free of lead and compliant to EC RoHS Directive

Block Diagram

Pb

Applications

Ideal for PLL circuits for clock smoothing and frequency translation

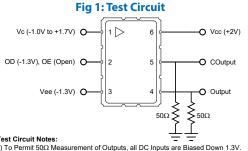
- SONET, SDH
- Synchronous Ethernet
- Fiber Channel
- LAN / WAN
- Test and Measurement

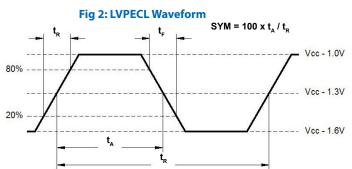
Performance Specifications

Table 1. Electrical Performance					
Parameter	Symbol	Min	Typical	Maximum	Units
		Supply	•		
Voltage ¹	V _{DD}	2.97	3.3	3.63	V
Current (No Load)	I _{DD}		70	90	mA
		Frequency			
Nominal Frequency ²	f _N	150		1000	MHz
Absolute Pull Range ^{3,6}	APR	±50			ppm
Linearity ³	Lin		5	10	%
Gain Transfer Positive ³ (See pg 5)	K _v		+100		ppm/V
Temperature Stability ³	f _{stab}		±20		ppm
		Outputs			
Mid Level ³		V _{DD} -1.5	V _{DD} -1.3	V _{DD} -1.2	V
Single Ended Swing ³			750		mV-pp
Double Ended Swing ³			1.5		V-pp
Current	I _{OUT}			20	mA
Rise Time⁴	t _R			500	ps
Fall Time ⁴	t _F	45	50	500	ps
Symmetry ³	SYM	45	50	55	%
Jitter (12 kHz - 20 MHz BW)622.08MHz ⁵	φJ		0.1	0.250	ps-rms
Jitter (50 kHz - 80 MHz BW)155.52MHz ⁵	φJ		0.12	0.300	ps-rms
Period Jitter, RMS (622.08MHz) ⁷	φJ		2.5	3.0	ps
Period Jitter, Peak - Peak (622.08MHz) ⁷	φJ		16	24	ps
Spurious Suppression ²			-60	-50	dBc
		trol Voltage	1	20	V
Control Voltage Range for APR	V _c	0.3		3.0	-
Control Voltage Input Impedance		75			KΩ
Control Voltage Modulation BW	BW	50		<u> </u>	kHz
		ble/Disable	1	<u>г г</u>	N/
Output Enabled, Option A Output Disabled, Option A	V _{IH} V _{IL}	0.7*V _{DD}		0.3*V _{DD}	V V
Output Enabled, Option C Output Disabled, Option C	V _{IL} V _{IH}	0.7*V _{DD}		0.2*V _{DD}	
Operating Temperature	T _{OP}		0/70 or -40/85		°C
Package Size			5.0 x 7.5 x 2.0		mm

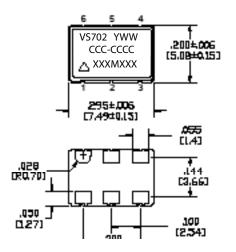
1] The VS-702 power supply should be filtered, eg, 0.1 and 0.01uF to ground

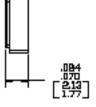
2] See Standard Frequencies and Ordering Information tables for more specific information

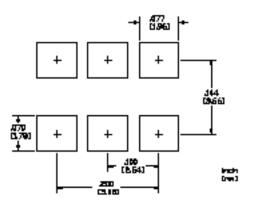

3] Parameters are tested with production test circuit below (Fig 1).


4] Measured from 20% to 80% of a full output swing (Fig 2).

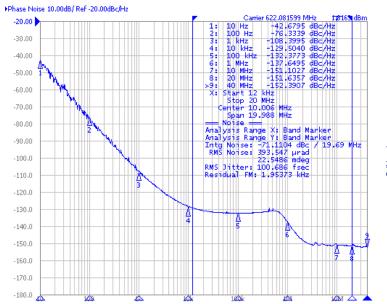
5] Integrated across stated bandwidth.


6] Tested with Vc = 0.3V to 3.0V unless otherwise stated in part description


7] Broadband Period Jitter measured using Lecroy Wavemaster 8600A 6 GHz Oscilloscope, 25K samples taken. See application note.



Outline Drawing & Pad Layout



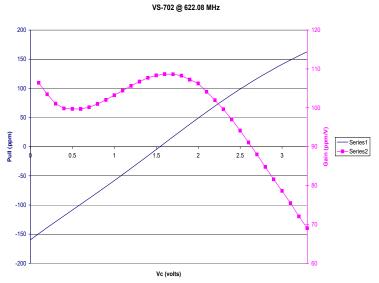
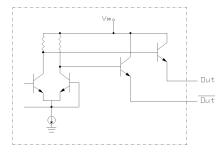
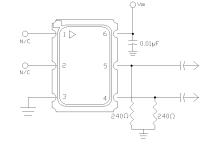

Dimensions in inches (mm)

Table 2	Table 2. Pin Out						
Pin	Symbol	Function					
1	V _c	VCXO Control Voltage					
2	OE	Enable/Disable **See Ordering Options**					
3	GND	Case and Electrical Ground					
4	Output	Output					
5	COutput	Complementary Output					
6	V _{DD}	Power Supply Voltage (3.3V $\pm 10\%$)					

Typical Phase Noise

Typical Gain




Suggested Output Load Configurations

The VS-702 incorporates a standard PECL output scheme, which are un-terminated emitters as shown in Figure 3. There are numerous application notes on terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 4, and a pull-up/pull-down scheme as shown in Figure 5. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

Figure 3 Standard PECL Output Configuration

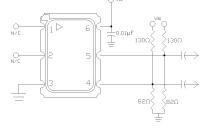


Figure 4 Single Resistor Termination Scheme Resistor values are typically 120 to 240 ohms

Figure 5 Pull-Up Pull-Down Termination

Reliability

Vectron qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VS-702 family is capable of meeting the following qualification tests:

Table 3. Environmental Compliance						
Parameter	Conditions					
Mechanical Shock	MIL-STD-883, Method 2002					
Mechanical Vibration	MIL-STD-883, Method 2007					
Solderability	MIL-STD-883, Method 2003					
Gross and Fine Leak	MIL-STD-883, Method 1014					
Resistance to Solvents	MIL-STD-883, Method 2015					
Moisture Sensitivity Level	MSL 1					
Contact Pads	Gold over Nickel					

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if OD or Vc is applied before Vcc.

Table 4. Absolute Maximum Ratings							
Parameter	Symbol	Ratings	Unit				
Power Supply	V _{DD}	0 to 6	V				
Output Current	I _{out}	25	mA				
Voltage Control Range	V _c	0 to V _{DD}	V				
Storage Temperature	TS	-55 to 125	°C				
Soldering Temp/Time	T _{LS}	260 / 40	°C / sec				

Although ESD protection circuitry has been designed into the VS-702 proper precautions should be taken when handling and mounting. Vectron employs a human body model (HBM) and a charged device model (CDM) for ESD susceptibility testing and design protection evaluation.

Table 5. ESD Ratings						
Model	Minimum	Conditions				
Human Body Model	500V	MIL-STD-883, Method 3015				
Charged Device Model	500V	JESD22-C101				

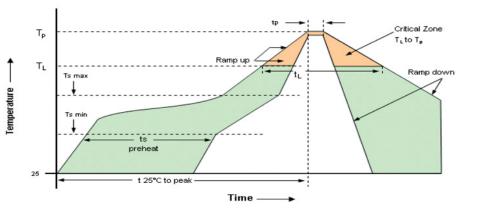
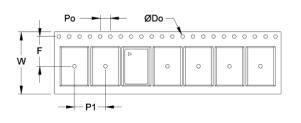
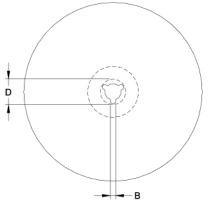
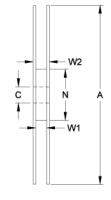

IR Reflow

Table 6. Reflow Profile (IPC/JEDEC J-STD-020C)						
Parameter	Symbol	Value				
PreHeat Time Ts-min Ts-max	t _s	60 sec Min, 180 sec Max 150°C 200°C				
Ramp Up	R _{up}	3 °C/sec Max				
Time Above 217 °C	t	60 sec Min, 150 sec Max				
Time To Peak Temperature	T _{25C to peak}	480 sec Max				
Time at 260 °C	t _P	20 sec Min, 40 sec Max				
Ramp Down	R _{DN}	6 °C/sec Max				


The device is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The VS-702 device is hermetically sealed so an aqueous wash is not an issue.


Termination Plating: Electroless Gold Plate over Nickel Plate


Solderprofile:

Tape & Reel (EIA-481-2-A)

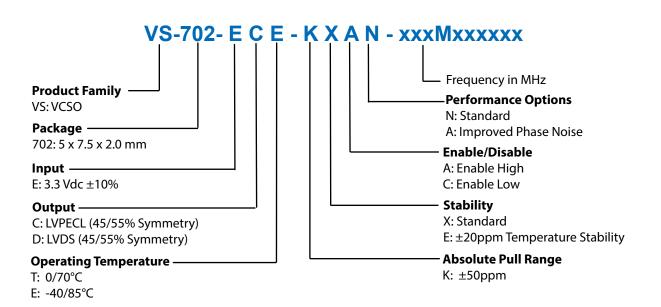


Table 7. Tape and Reel Information													
Tape Dimensions (mm)			Reel Dimensions (mm)										
Dimension	w	F	Do	Ро	P1	A B C D N W1 W2				W2	# Per		
Tolerance	Тур	Тур	Тур	Тур	Тур	Тур	Min	Тур	Min	Min	Тур	Мах	Reel
VS-702	16	7.5	1.5	4	8	178	1.5	13	20.2	50	16.4	22.4	200

Table 8. Stand	Table 8. Standard Output Frequencies (MHz)						
155M520000	156M250000	160M000000	162M000000	175M000000	187M500000	200M000000	212M500000
240M000000	245M760000	250M000000	260M000000	268M800000	300M000000	311M040000	312M500000
320M000000	324M000000	350M000000	375M000000	384M000000	389M600000	400M000000	480M000000
491M520000	500M000000	531M250000	532M000000	533M000000	537M600000	622M080000	625M000000
635M040000	637M500000	640M000000	644M531300	657M421900	666M514300	669M326600	672M162700
690M569200	693M483000	704M380600	707M352700	720M000000	742M434700	768M000000	796M875000
800M000000	901M120000	1000M00000					

Ordering Information

*Note: not all combination of options are available. Other specifications may be available upon request.

Example: VS-702-ECE-KXAN-622M080000

* Add **_SNPB** for tin lead solder dip Example: VS-702-ECE-KXAN-622M080000_SNPB

Revision History

Revision Date	Approved	Change Summary
Feb 12, 2014	SD	Updated VI Asia address.
July 7, 2015	VN	Change current specification in Table 1 to reflect 70 ma typical and 90mA maximum.
Aug 10, 2018	FB	Update logo and contact information, add "SNPBDIP" ordering information.
June 13	FB	Update logo and contact information, change "SNPBDIP" to "SNPB".

Contact Information

USA:

100 Watts Street Mt Holly Springs, PA 17065 Tel: 1.717.486.3411 Fax: 1.717.486.5920 **Europe:** Landstrasse 74924 Neckarbischofsheim Germany Tel: +49 (0) 7268.801.0 Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATU-TORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFOR-MANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.