

RC1xxx-xSM-DK Sensor module Development Kit User Manual

Table of contents

TABLE OF CONTENTS	1
DEVELOPMENT KIT INTRODUCTION	3
SIGFOX KIT	3
MBUS KIT	4
MSM QUICK START	5
SSM QUICK START	
SENSOR BOARD INTRODUCTION	7
BLOCK DIAGRAM SENSOR BOARD	8
POWERING THE SENSOR BOARD	9
CONTROLLING AND CONFIGURING SENSOR BOARD	9
I/O CONNECTION	10
I/O SILKSCREEN	
SHT35 TEMPERATURE AND HUMIDITY SENSOR	
HDC2010 LOW POWER TEMPERATURE AND HUMIDITY SENSOR	12
BME680 ENVIRONMENTAL SENSOR	
ALS-PT-315C, ANALOGUE LIGHT SENSOR	12
SL353LT HALL DETECTOR	13
LIS3DE ACCELEROMETER	13
BLUE LED	13
PROTOTYPING WITH THE SENSOR BOARD	14
SENSOR BOARD PCB AND ASSEMBLY LAYOUT	15
PROGRAMMING/DEBUG CONNECTOR	15
SENSOR BOARD CIRCUIT DIAGRAM	15
SENSOR BOARD BILL OF MATERIALS	18
REFERENCES	20
DOCUMENT REVISION HISTORY	20

DISCLAIMER	20
TRADEMARKS	
LIFE SUPPORT POLICY	
CONTACT INFORMATION	

Development Kit Introduction

The Development Kit (DK) is designed to make it easy for the user to evaluate the onboard sensor module, tune the application and build prototypes very quickly.

This document covers the following kits.

KIT	Technology
RC1180-MSM-DK	Wireless M-Bus, 868 MHz
RC1701HP-MSM-DK	Wireless M-Bus, 169 MHz
RC1682-SSM-DK	Sigfox (RZ1), 868 MHz
RC1692HP-SSM-DK	Sigfox (RZ2/RZ4) 915 MHz

Your Development Kit contains the following items:

Kit contents (Sigfox kit)		
Item	Number of articles	
Sensor board w/radio module	1	
Antenna, 50Ω quarter-wave monopole, SMA male connector	1	
USB cable (micro)	2	
USB power supply	1	

Kit contents (MBUS kit)		
Item	Number of articles	
Sensor board w/radio module	1	
MBUS development board	1	
Antenna, 50Ω quarter-wave monopole, SMA male connector	2	
USB cable (micro)	2	
USB cable (Type A)	1	
USB power supply	1	
AC/DC adapter	1 (RC1701HP only)	

The sensor board contains the selected module with embedded protocol and associated support circuits.

This User Manual describes how to use the Development Kit and provides detailed documentation for the Sensor board.

Sigfox Kit

The Sigfox sensor board is delivered with pre-coded ID, PAC and encryption key and with a 12 month subscription.

It you have an active Sigfox network in your region you can register the device at Sigfox and actively see data from the sensor module on the Sigfox cloud.

If you want to test the Sensor board, but do not have Sigfox coverage, a Sigfox SDR dongle is needed to receive packets. This is available from Sigfox: https://build.sigfox.com/sdr-dongle.

For details about the PC-tool, Sigfox registration and activation process, the RC16xxxx-SIG-DK_Quick_Start[1] is mandatory reading, The information there is also relevant for the sensor board, except downlink and the way Sigfox messages are generated.

For detailed information on using the RC16xx-SSM modules see [2],[3] and [4].

MBUS Kit

For MBUS kit a sensor board is delivered together with a standard MBUS development board. The development board can be used a concentrator/gateway/receiver for the sensor board.

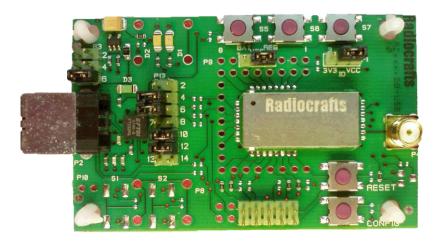


Figure 1. RC1180-MBUS3 development board

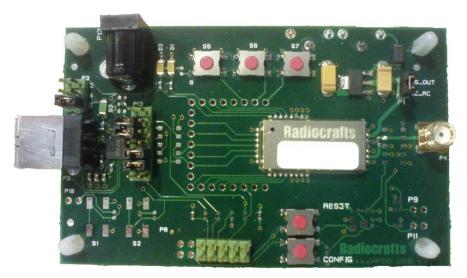


Figure 2 RC1701HP-MBUS4 development board

MSM Quick Start

The MSM Demonstration Kit is designed to make it easy for the user to evaluate the module, do prototyping and develop an application.

The demonstration Kit consists of two boards: The Sensor Board and the MBUS development board. To have a demo up and running in minutes, follow this guideline:

- 1. If you are using a RC1701HP-MSM-SB:
 - a. Connect the USB power adapter to P13
 - b. Ensure the jumper described in "Powering the Sensor Board" (later in this document) is set to "USB power 1A"
- 2. If you are using a RC1180-MSM-SB:
 - a. Ensure the jumper described in "Powering the Sensor Board" (later in this document) is set to "USB PC"
- 3. Connect the SB to a PC using the USB cable on P1
- 4. Connect the MBUS development board to a PC using USB
- 5. Open the MBUS-Demo tool (Free download at www.radiocrafts.com)
- 6. The boards are already set up to use all the supported sensors on the board and transfer data every minute. Therefore, all that is needed is to start the packet sniffer in the MBUS-Demo tool:
 - a. Connect to the COM-port of the MBUS development board (not the SB)
 - b. Press "Read module setting" arrow in the "Module Quick Setup" tab
 - c. Select MBUS Packet Sniffer tab
 - d. Press start
- 7. Packets should now start appearing in the list

To understand the data received, refer to the RCxxxxxx-MSM User Manual

Default key configuration parameters:

Parameter	Setting
RF Power	Maximum
MBUS Mode	T1
M-field	0x4824 (Radiocrafts)
A-field	0x12345678
VER	0x01
DEV	0x00
Transmission interval	1 minute
Encryption	Not used
Sensors used	GPIO: GPIO1: out (LED), GPIO2-4: inputs
	ADC : AIN (via light transistor), Temp, VDD
	HDC2010 : Temperature + Humidity
	SHT35 : Temperature + Humidity
	LIS3DE : X,Y,Z-axis

Detailed parameter list

Parameter	RC1180-MSM	RC1701HP-MSM
RF_Power	0x05	0x05
MBUS_MODE	0x01	0x01
MAN_ID1	0x48	0x48
MAN_ID2	0x24	0x24
MBUS A-Field ID1	0x12	0x12
MBUS A-Field ID2	0x34	0x34
MBUS A-Field ID3	0x56	0x56
MBUS A-Field ID4	0x78	0x78
MBUS A-Field VER	0x01	0x01

MBUS A-Field DEV	0x00	0x00
CI_FIELD	0x7A	0x7A
TX INTERVAL_H	0x00	0x00
TX INTERVAL_L	0x01	0x01
BATTERY_THRESHOLD	0x66	0x66
ENCRYPT_FLAG	0x00	0x00

SSM Quick Start

The SSM Demonstration Kit is designed to make it easy for the user to evaluate the module, do prototyping and develop an application.

The demonstration Kit consists of one board. To have a demo up and running in minutes, follow this guideline:

- 1. If you are using a RC1692HP-SSM-SB:
 - a. Connect the USB power adapter to P13
 - b. Ensure the jumper described in "Powering the Sensor Board" (later in this document) is set to "USB power 1A"
- 2. If you are using a RC1682-SSM-SB:
 - a. Ensure the jumper described in "Powering the Sensor Board" (later in this document) is set to "USB PC"
- 3. Connect the SB to a PC using the USB cable on P1
- 4. The boards are already set up to use all the supported sensors on the board and transfer data every 10 minutes. You have two options to receive packets:
 - a. Using the Sigfox network. See https://www.sigfox.com/en
 - b. Using the Sigfox Network Emulator (SNE) together with an SDR Dongle. See https://build.sigfox.com/sdr-dongle
- 5. Default setup is to use public key and address, which enables you to use the SDR. This can be changed by changing the parameter "Public Key and Address" (configuration address 0x28)
- 6. You will now see packets arriving either at the SNE or Sigfox backend, depending on your setting.

To understand the data received, refer to the RC16xxxx-SSM User Manual

Default key configuration parameters:

Parameter	Setting
RF Frequency domain	ETSI (RC1682-SSM)
, ,	FCC (RC1692HP-SSM)
Transmission interval	15 minutes
Public Key and Address	1 (Yes)
Sensors used	GPIO: GPIO1: out (LED), GPIO2-4: inputs
	ADC : AIN (via light transistor), Temp, VDD
	HDC2010 : Temperature + Humidity
	SHT35 : Temperature + Humidity
	LIS3DE: X,Y,Z-axis

Sensor Board Introduction

The Sensor Board includes the module to be evaluated. In addition it contains other circuitry needed for powering and communication to the module. All I/O signals are routed to holes at the edge suitable for 2.54 mm pitch pin headers for easy monitoring and control externally.

The board includes 6 different sensors and a controllable LED to demonstrate GPIO control options.

Sensor	Manufacturer	Sensor Type
SHT35	Sensirion	Precision Temperature and Humidity Sensor
HDC2010	Texas Instruments	Low Power Temperature and Humidity Sensor
BME680	Bosch Sensortech	Environmental sensor (Not supported in MSM v1.0
		/ SSM v2.0)
ALS-PT-315C	Everlight	Analogue Light Sensor
SL353LT	Honeywell	Hall detector
LIS3DE	ST	Accelerometer

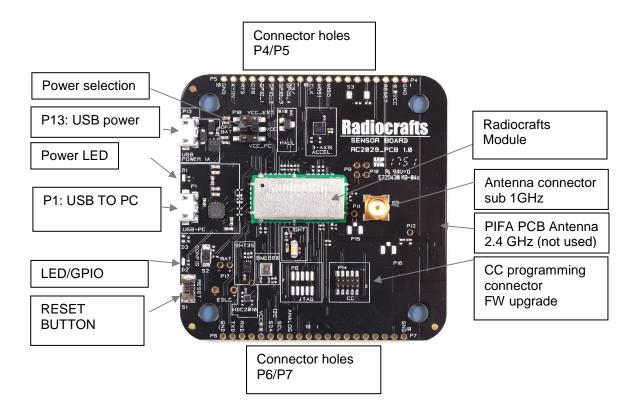


Figure 3: Sensor Board

Block Diagram Sensor Board

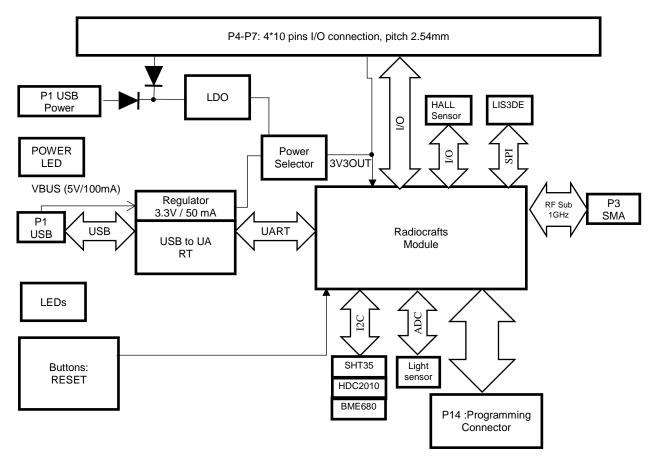


Figure 4. Block schematic Sensor board

Powering the Sensor Board

The sensor board can be power in several different ways, thus giving flexibility and ease of use.

Power source	Jumper position/RED	Comment
USB power 1A	VCC - VCC_EXT	Make sure to use a USB power source capable of 1 A. A PC does normally not offer that high current
Extern Volt 4-11 V /9V battery	VCC - VCC_EXT	Connect through pin holes at edge. Here a 9V battery can also be connected. NB: Using VCC > 6V, continuous transmission test mode cannot be used.
Battery 3.0/3.6V	VCC - OFF/BAT	Battery can be connected
USB PC	VCC – VCC_PC	Only for RC1180MSM. The others draw too high current

The sensor board is setup with a green power on LED, D1. This draws 2 mA and is always on. In case of using the sensor board for battery operated proof of concept, this LED need to be removed to ensure low power consumption

Controlling and Configuring Sensor Board

The sensor module can be controlled and configured through UART. For ease of use the UART is connected through a UART-to-USB bridge from FTDI and to a micro USB contact. By connecting a computer to this USB connector on the sensor board, a terminal emulator program can be used to communication with the module. There is also a config button on the board to easily put the module in configuration mode. See datasheets [3][4][6][7] and user manual [2][5] for details on communication via UART.

I/O Connection

All pins to the module are available through standard pin rows using a pitch distance of 100 mils (2.54 mm). These pins are connected to 4×10 pins holes named P4 to P7. The table below gives an overview of the edge connectors and their logical signals. Details on the pinning can be found in module datasheet.

I/O connection				
Connector	PIN	Signal	Module PIN	Note
P4	1	GND		
	2	VCC		Not used
	3	RESET		
	4	Not used		
	5	Not used		Reserved for future use
	6	Not used	32	Reserved for future use
	7	Not used	33	
	8	Not used	34	
	9	SPI_MISO	35	
	10	SPI_MOSI	36	
P5	1	SPI_CLK	37	
	2	Not used	38	Internally used. DO not connect!
	3	SPI_CS	39	
	4	HALL_OUT	40 (GPIO3)	
	5	DRDY	41 (GPIO2)	
	6	LED_1	42 (GPIO1)	
	7	CTS	2	
	8	RTS	3	
	9	VCC_4_11V	4	
	10	GND		
P6	1	GND		
	2	CONFIG	5	
	3	TXD	6	TXD output (Connected to USB FTDI chip)
	4	RXD	27	RXD input (Connected to USB FTDI chip)
	5	VCC	8	Via EMI bead to module
	6	SDA	9	
	7	SCL	10	
	8	LIGHT_OUT_ ANALOG	11	
	9	DIO_24	12 (GPIO4)	
	10	TMSC	13	
P7	1	TCKC	14	
	2	DIO_16/TDO	15	
	3	DIO_17/TDI	16	
	4	DIO_26	17	
	5	DIO_27	18	
	6	DIO_28	19	
	7	DIO_29	20	
	8	DIO_30	21	
	9			Not connected
	10	GND		

I/O Silkscreen

On revision 1.0 of the sensor board there are some inaccuracies in the silkscreen print. GPIO4 is marked the wrong position and marking of RXD/TXD is offset. See below

SHT35 Temperature and Humidity Sensor

SHT35 is the next generation of Sensirion's temperature and humidity sensors. It has a typical accuracy of \pm 1.5 %RH and \pm 0.1 °C. It connected to sensor module by I2C and is setup with I2C address 0x44.

HDC2010 Low Power Temperature and Humidity Sensor

The HDC2010 is an integrated humidity and temperature sensor from Texas Instruments, with very low power consumption and in an ultra-compact package. I has an accuracy of ± 2 %RH and ± 0.2 °C. It connected to sensor module by I2C and is setup with I2C address 0x40.

The data ready pin is connected to the GPIO-2 of the sensor module.

BME680 Environmental sensor

BME680 is an integrated environmental sensor developed specifically for mobile applications and wearables where size and low power consumption are key requirements. The sensor reads is a 4-in-1 sensor that measure gas, humidity, pressure and temperature. It connected to sensor module by I2C and is setup with I2C address 0x76.

ALS-PT-315C, Analogue Light Sensor

The ALS-PT-315C is light sensor that gives an analogue output based on the illuminance (Lux). The output is connected to the analogue input of the sensor module. On the sensor board this sensor is always on.

SL353LT Hall Detector

The SL353LT is a state-of-the art hall detector that enable magnetic detection. It has a very low power consumption of 1.8 uA in average for 2.8V operation. The output of the hall detector is connected to GPIO-3 on the sensor module.

LIS3DE Accelerometer

The LIS3DE is an ultra-low-power high-performance 3-axis linear accelerometer belonging to the "nano" family, with digital I²C/SPI serial interface standard output. The device features ultra-low-power operational modes that allow advanced power saving and smart embedded functions.

It is connected to the sensor module via the SPI and GPIO-4 is the chip select pin.

Blue LED

There is a blue LED on the board (D2) that is connected to GPIO-1 of the sensor module. This is used to demonstrate the GPIO output control capabilities of the sensor module.

Prototyping with the Sensor Board

The sensor board is well suited for prototyping/bread boarding. With all I/O pins easily accessible at the edge, connection to external boards can be made through board stacking with standard pin headers or cabled with standard 2.54 mm pitch cable.

With angled header mounted on I/O connector, the sensor board can also be mounted vertically to other boards with 2.54mm pitch connectors.

The idea is that an external application specific circuitry/sensors etc. easily can be connected to the sensor board as a proof of concept for the final product.

The sensor board is built to fit a commercially off the shelf enclosure named *Router Cube* from New Age Enclosure. Available at Mouser. The sensor board is not delivered with enclosure. Machining for connectors/antenna is required.

Figure 5 Optional enclosure from New Age Enclosures

Sensor Board PCB and Assembly Layout

The PCB is a simple 4-layer board where Layer 2 is used as ground plane. The laminate used is standard FR-4 board material. The PCB is 1.6mm thick. Full resolution layout and assembly drawing are found in [8]

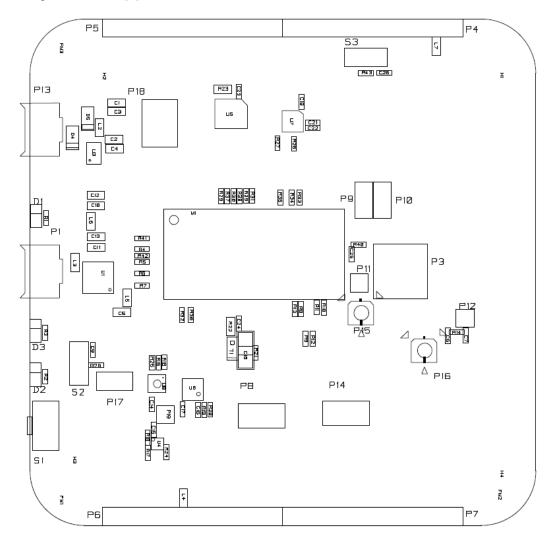


Figure 6. Sensor Board PCB component placement, top side

Programming/debug connector

Programming debug connector (P14) is connector with 1.27mm pitch. This can be used for firmware upgrade. A CC-debugger programming device is needed to upgrading.

Sensor Board Circuit Diagram

The circuit diagram of RC1xxx-xSM-SB is in figure 6. For better quality please see PDF in [8]

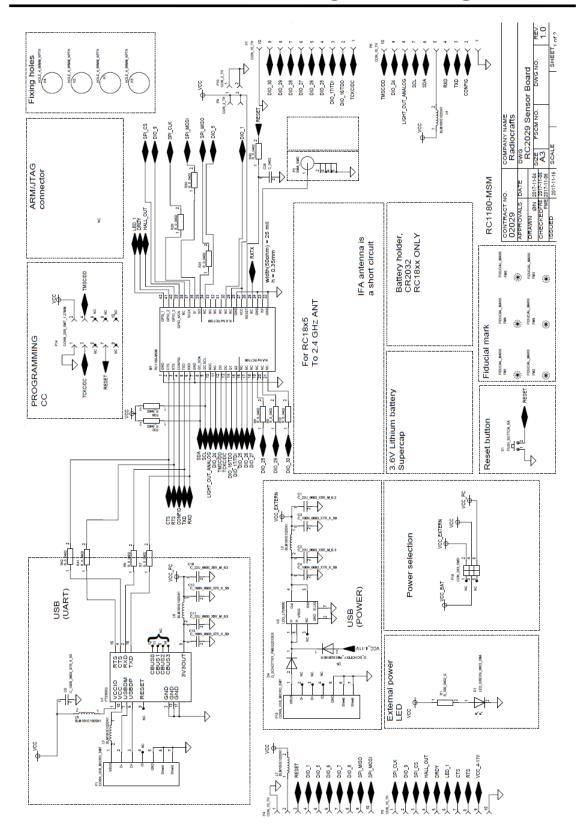


Figure 7: RC1xxx-xSM-SB Circuit diagram, page 1

RC1180-MSM

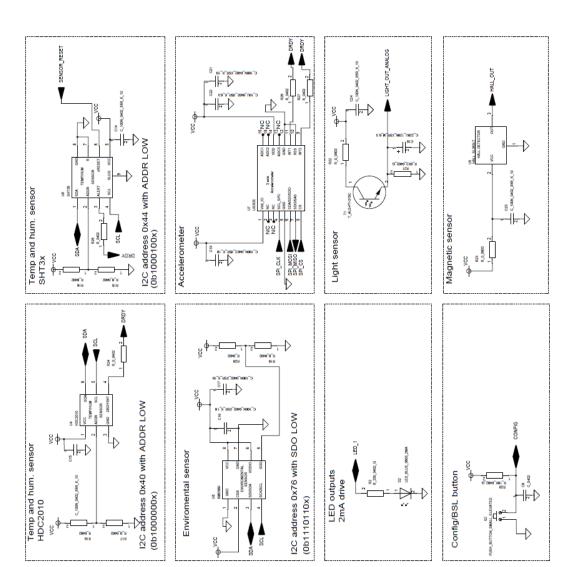


Figure 8: RC1xxx-xSM-SB Circuit diagram, page 2

Sensor Board Bill of Materials

The circuit diagram includes all components of RC1xxx-xSM-SB, but the Bill of Material describes which components are mounted. Details are listed in the following table. Components not mounted are marked *DNM (Do Not Mount)* in the 'Quantity/# column.

Bill of materials for Sensor board					
Reference	Quantity	Part number	Description		
L2-7	6	BLM18HE102SN1	EMI filter bead, 1000ohm@1GHz		
U6	1	BME680	Environmental sensor		
P14	1	CONN_2X5_SMT_1.27MM	Connector 2x5 SMT with 1.27 mm spacing		
P8	DNM	CONN_2X5_SMT_1.27MM	Connector 2x5 SMT with 1.27 mm spacing		
P1;P13	2	CONN_USB_MICRO_SMT	USB micro connector SMT		
P4-7	DNM	CON_10_TH	Connector, 0.9mm pin		
P11-12;P19	DNM	CON_1_TH	Connector, 0.9 mm pin		
P18	1	CON_2X3_SMD	Connector, 2x3 pins, SMD, pitch 2.54mm		
P9-10;P17	DNM	CON_2_TH	Connector, 0.9 mm pin		
P2	DNM	CR2032_HOLDER	HOLDER for coin cell		
C6-7; C9;C25;C26	DNM	C_0402	Capacitor, 0402, general		
C14-17;C19;					
C21;C23-24	8	C_100N_0402_X5R_K_10	Capacitor, 0402		
00.5.040.40	_	O 400N 0000 VZD // 50	0 " 0000		
C3-5;C12-13	5	C_100N_0603_X7R_K_50	Capacitor, 0603		
C22		C 40H 0402 VED IV 6.2	Conscitor 0402		
C22	1	C_10U_0402_X5R_K_6.3	Capacitor, 0402		
C18	1	C 220U 1206 X5R M 6.3	Capacitor, 1206		
C8	DNM	C_1206	Capacitor, 1206		
C1-2;C10-11	4	C_22U_0603_X5R_M_6.3	Capacitor, 0603		
C20	DNM	C_VSCM_005R4_155A	EDLC capacitor, 1.5F, 5,4V		
D4-5	2	D_SCHOTTKY_PMEG2010ER	Schottky diode, low Vf =.24V @ 200mA		
U1	1	FT230XQ	FTDI USB to UART		
U5	1	HALL_SL353LT	Hall sensor, low duty cycle, SOT23		
U4	1	HDC2010	Temp and humidity sensor		
U3	1	LDO_LP38690	Low drop regulator, 3.3V, 1 A, 3x3mm WSON		
D2	1	LED_BLUE_0603_2MA	LED 0603 Blue 2mA If		
D1	1	LED_GREEN_0603_2MA	LED 0603 Green 2mA If		
D3	DNM	LED_YELLOW_0603_2MA	LED 0603 Yellow 2mA If		
U7	1	LIS3DE	3 axis accelerometer		
S1	1	PUSH_BUTTON_RA	Push button, SMD, Right angled		
S2	1	PUSH_BUTTON_SMALL_ELEVATED	Push button, SMD		
S3	DNM	PUSH_BUTTON_SMALL_ELEVATED	Push button, SMD		
M1	1	RF module, depend on variant of board RC1682-SSM RC1692HP-SSM RC1180-MSM RC1701HP-MSM	Sensor module		
R3-5 ;R11-14 ;R16;R18;R20; R25-27; R32;	22	R_0402	Resistor, 0402, general		

R33-35;R36; R37-39;R43			
R6-10; R15; R17; R19; R24;R29-31; R40-42	15	R 0_0402	Resistor, 0402
R22-23	2	R_0_0603	Resistor, 0603
R28	1	R_10K_0402_G	Resistor, 0402
R1-2	2	R_330_0402_G	Resistor, 0402
R21	1	R_6K2_0402_G	Resistor, 0402
U8	1	SHT35	Temp and humidity sensor
P3	1	SMA_SMD	Surface-mount SMA, straight
T1	1	T_ALS-PT-315C	Phototransistor, ambient light, SMT
P15-16	2	UFL_CONNECTOR	U.FL compatible connector

References

- [1] RC16xxxx-SIG-DK_Quick_Start
- [2] RC16xxxx-SSM_User_Manual
- [3] RC1682-SSM_Datasheet
- [4] RC1692HP-SSM Datasheet
- [5] RC1xxx-MSM User Manual
- [6] RC1180-MSM_Datasheet
- [7] RC1701HPHP_MSM_Datasheet
- [8] RC1xxx-xSM-SB_web (zip)

Document Revision History

Document Revision	Changes
1.00	First release
1.10	Added MSM Quick Start
1.20	Added SSM Quick Start

Disclaimer

Radiocrafts AS believes the information contained herein is correct and accurate at the time of this printing. However, Radiocrafts AS reserves the right to make changes to this product without notice. Radiocrafts AS does not assume any responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights of others. The latest updates are available at the Radiocrafts website or by contacting Radiocrafts directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific Errata Notes published at the Radiocrafts website. Customers are encouraged to check regularly for the most recent updates on products and support tools.

Trademarks

All other trademarks, registered trademarks and product names are the sole property of their respective owners.

Life Support Policy

This Radiocrafts product is not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Radiocrafts AS customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Radiocrafts AS for any damages resulting from any improper use or sale.

© 2018, Radiocrafts AS. All rights reserved.

Contact Information

Web site: www.radiocrafts.com

Address:

Radiocrafts AS Sandakerveien 64 NO-0484 OSLO NORWAY

Tel: +47 4000 5195 Fax: +47 22 71 29 15

E-mails: sales@radiocrafts.com